Participation Type

Poster

Mentor/s

Professor Todd Sullivan

Location

University Commons

Start Day/Time

4-20-2018 1:00 PM

End Day/Time

4-20-2018 3:00 PM

Abstract

Arginase is an enzyme that catalyzes the formation of L-ornithine and urea from L-arginine. L-arginine is also a substrate for nitric oxide synthase (NOS), resulting in the formation of nitric oxide (NO) which is a key vasodilator. Not surprisingly, arginase inhibitors are being studied to treat various diseases, including hypertension, erectile dysfunction, atherosclerosis, wound healing and myocardial reperfusion injury. Recently, the use of virtual screening and docking to identify and characterize novel arginase inhibitors as potential therapeutics to treat leshmania infections has been reported in the literature. Hence, there is interest in the development of new and improved arginase inhibitors. Here, we describe the use of an iterative in silico and in vitro work-flow for identifying novel arginase inhibitors. The first in silico arm of the work-flow involves the use of library design, virtual screening, docking, and consensus scoring to identify predicted hit compounds. The in vitro arm involves rapid assaying of predicted hits in an optimized arginase assay. Confirmed hits are passed into the second in silico arm which involves ligand-based screening, docking, and consensus scoring. The crank is turned on the in silico – in vitro – in silico cycle until a promising candidate for hit-to-lead optimization has been identified. Preliminary results appear encouraging, providing hope that a novel arginase drug candidate will be identified and that our computational work-flow will prove useful on other targets.

College

College of Health Professions

College and Major available

Health Science

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Comments

Sushma Sree Bondela and Hatoon Albilady are graduate students in the Chemistry Department; Renee Russo and Evan Jones are undergraduate students.

Share

COinS
 
Apr 20th, 1:00 PM Apr 20th, 3:00 PM

Integrated Screening for Arginase Inhibitors

University Commons

Arginase is an enzyme that catalyzes the formation of L-ornithine and urea from L-arginine. L-arginine is also a substrate for nitric oxide synthase (NOS), resulting in the formation of nitric oxide (NO) which is a key vasodilator. Not surprisingly, arginase inhibitors are being studied to treat various diseases, including hypertension, erectile dysfunction, atherosclerosis, wound healing and myocardial reperfusion injury. Recently, the use of virtual screening and docking to identify and characterize novel arginase inhibitors as potential therapeutics to treat leshmania infections has been reported in the literature. Hence, there is interest in the development of new and improved arginase inhibitors. Here, we describe the use of an iterative in silico and in vitro work-flow for identifying novel arginase inhibitors. The first in silico arm of the work-flow involves the use of library design, virtual screening, docking, and consensus scoring to identify predicted hit compounds. The in vitro arm involves rapid assaying of predicted hits in an optimized arginase assay. Confirmed hits are passed into the second in silico arm which involves ligand-based screening, docking, and consensus scoring. The crank is turned on the in silico – in vitro – in silico cycle until a promising candidate for hit-to-lead optimization has been identified. Preliminary results appear encouraging, providing hope that a novel arginase drug candidate will be identified and that our computational work-flow will prove useful on other targets.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.