2004

Primitive Ideals of Semigroup Graded Rings

Hema Gopalakrishnan

Sacred Heart University, gopalakrishnanh@sacredheart.edu

Follow this and additional works at: http://digitalcommons.sacredheart.edu/math_fac

Part of the Algebra Commons

Recommended Citation

http://digitalcommons.sacredheart.edu/math_fac/19

This Article is brought to you for free and open access by the Mathematics Department at DigitalCommons@SHU. It has been accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of DigitalCommons@SHU. For more information, please contact ferribyp@sacredheart.edu.
Primitive Ideals of Semigroup Graded Rings

Hema Gopalakrishnan
Department of Mathematics, Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825-1000, U.S.A.
e-mail: gopalakrishnanh@sacredheart.edu

Abstract. Prime ideals of strong semigroup graded rings have been characterized by Bell, Stalder and Teply for some important classes of semigroups. The prime ideals correspond to certain families of ideals of the component rings called prime families. In this paper, we define the notion of a primitive family and show that primitive ideals of such rings correspond to primitive families of ideals of the component rings.

0. Introduction

A semigroup is a set with an associative binary operation. Let \(\Omega \) be a semigroup. Let \(\prec \) be a reflexive and transitive relation on \(\Omega \) (i.e., a preorder). Assume that \((\Omega, \prec)\) is directed, that is, for any \(\alpha, \beta \in \Omega \), there exists \(\gamma \in \Omega \) such that \(\alpha \prec \gamma \) and \(\beta \prec \gamma \). A system of rings \(R \) over \((\Omega, \prec)\) is a collection \((R_\alpha)_{\alpha \in \Omega}\) of rings, together with ring homomorphisms \(\phi_{\alpha,\beta} : R_\alpha \rightarrow R_\beta \) for all \(\alpha, \beta \in \Omega \) with \(\alpha \prec \beta \) such that \(\phi_{\alpha,\alpha} = id_{R_\alpha} \) for all \(\alpha \) and \(\phi_{\beta,\gamma} \circ \phi_{\alpha,\beta} = \phi_{\alpha,\gamma} \) whenever \(\alpha \prec \beta \prec \gamma \). Throughout this paper, the preorder \(\prec \) on \(\Omega \) is defined by \(\alpha \prec \beta \) if \(\beta \) is in the ideal generated by \(\alpha \), that is, \(\beta \) can be written as a product of one or more factors involving \(\alpha \) as a factor. This preorder is defined in [1] and is called the ideal preorder. With a system \(R \) we can associate a ring \(R = \oplus R_\alpha \), a direct sum of \(R_\alpha \)'s as additive abelian groups, with multiplication in \(R \) defined via \(r_\alpha \cdot r_\beta = \phi_{\alpha,\alpha \beta} (r_\alpha) \phi_{\beta,\alpha \beta} (r_\beta) \) for \(r_\alpha \in R_\alpha \) and \(r_\beta \in R_\beta \). (Note that by the definition of \(\prec \), \(\alpha \prec \alpha \beta \) and \(\beta \prec \alpha \beta \).) We call \(R \) a strong \(\Omega \)-graded ring. Also note that this definition of a strong grading arises from an analogous notion in semigroup theory and is different from the usual definition of a strong grading. If \(R \) is a ring, then a semigroup ring \(R[\Omega] \) is defined as the set of all finite sums of the form \(\sum_{\alpha \in \Omega} r_\alpha \alpha \), where \(r_\alpha \in R \). Addition is defined by adding coefficients of like terms and multiplication is defined via \(r_\alpha \alpha \cdot r'_\beta \beta = r_\alpha r'_\alpha \alpha \beta \). A semigroup ring, \(R[\Omega] \) can be viewed as a strong \(\Omega \)-graded ring by defining \(R_\alpha = R_\alpha \) for each \(\alpha \in \Omega \) and \(\phi_{\alpha,\beta}(r\alpha) = r\beta \). Thus the study of strong \(\Omega \)-graded rings can be applied to the study of semigroup rings.

Strong semigroup graded rings have been studied for various ring theoretic

Received August 28, 2003.
2000 Mathematics Subject Classification: 16S36, 16W50, 16N99, and 20M25.
Key words and phrases: primitive ideals, semigroup, graded rings.

565
properties in [1], [2], [3], [5], [6], and [10]. When Ω is a semilattice, a strong Ω-graded ring is also known as a strong supplementary semilattice sum of rings (see [9] and [12]). Prime ideals of strong Ω-graded rings were characterized in [1] and [2] for some classes of semigroups and have been recently used in the study of π-regularity of such rings in [6]. The classes of semigroups considered include semigroups such as regular bands, power stationary semigroups, commutative periodic semigroups, and Clifford semigroups as special cases. In particular, it was proved that there exists a bijective correspondence between prime ideals of R and certain families of ideals of the component rings called prime families. In this paper we define, analogously, the notion of a primitive family and show that a prime ideal is primitive if and only if its corresponding prime family is also a primitive family.

1. Preliminaries

Let P be an ideal of a ring R. Then P is said to be prime if for ideals A and B in R, $AB \subseteq P$ implies that $A \subseteq P$ or $B \subseteq P$. P is completely prime if $ab \in P$ implies that $a \in P$ or $b \in P$ for elements $a, b \in R$. P is left (right) primitive if it is the annihilator of a simple faithful left (right) R-module. A left (right) R-module is said to be simple if it is isomorphic to R/M for some modular maximal left (right) ideal M of R (see [8]). Note that a primitive ideal of a ring R is also a prime ideal of R. We shall now define some of the semigroup terms used in this paper. A subsemigroup T of Ω is an ideal if for all $t \in T$ and $s \in S$ we have $st, ts \in T$. The definition of a prime (completely prime) ideal in a semigroup is similar to that of a prime (completely prime) ideal in a ring. A band is a semigroup of idempotents. In a band, the ideal preorder is equivalent to $\alpha \prec \beta \iff \beta \alpha \beta = \beta$. A band is said to be regular if it satisfies the identity $xyzx = xyzx$ for some n depending on x. Ω is periodic if $x^{n+m} = x^n$ for each $x \in \Omega$, where m, n are positive integers depending on x. For more details on semigroups we refer the reader to [4] and [7].

The notion of a compatible family of ideals over R was first defined in [1]. In this paper we retain the notation and terminology of [1] and [2]. A family of left, right, two-sided ideals over R is a collection $I = (I_\alpha)_{\alpha \in \Omega}$ such that each I_α is a left, right, two-sided ideal of R_α and $\phi_{\alpha,\beta}(I_\alpha) \subseteq I_\beta$ for all $\alpha, \beta \in \Omega$ with $\alpha \prec \beta$. We call the family compatible if $\phi_{\alpha,\beta}^{-1}(I_\beta) = I_\alpha$ for all $\alpha, \beta \in \Omega$ with $\alpha \prec \beta$. As in [1], we partially order families over R by $I \subseteq J'$ if $I_\alpha \subseteq J'_\alpha$ for all $\alpha \in \Omega$. We call a compatible family maximal if it is maximal among proper compatible families, that is, maximal among compatible families I with at least one $I_\alpha \neq R_\alpha$. We say that a proper compatible family P is a prime family if whenever $P \supseteq I, J$ for families of ideals, we have $P \supseteq I$ or $P \supseteq J$.

Let Φ be a completely prime ideal of Ω. Define $I(\Phi)$ to be the additive subgroup of $R = \oplus R$ generated by the elements r_α with $\alpha \in \Phi$ and $r_\alpha - \phi_{\alpha,\beta}(r_\alpha)$, with
α, β ∈ Ω \ Φ and α ≺ β, where rα is an arbitrary element of Rα. By [Lemma 2.4, [1]], I(Φ) is an ideal of R = ⊕R and R/I(Φ) ≃ lim α∈Ω\Φ Rα. Let I be a compatible family of [left, right, two-sided] ideals over the system R|Ω/Φ. Then the pair (Φ, I) is called a compatible family and if I is a prime family, we call the pair (Φ, I) a prime family. The ideal I(Φ, I) plays an important role in the characterization of prime ideals of R = ⊕R and is given by I(Φ, I) = I(Φ) + ∪ Iα. The following result proved in [1] gives a complete description of ideals of R = ⊕R that contain the ideal I(Φ).

Proposition 1.1 ([1]). Let R be a system of rings over (Ω, ≺) and let Φ be a completely prime ideal of Ω. Then there exists an order preserving bijection between the set of [left, right, two-sided] ideals of R = ⊕R containing I(Φ) and the set of compatible families of [left, right, two-sided] ideals given by I → (Φ, (I ∩ Rα)α∈Ω\Φ), with inverse given by (Φ, I) → I(Φ, I). Moreover, if I is an ideal of R containing I(Φ), then R/I ≃ lim α∈Ω\Φ Rα/(I ∩ Rα).

Definition 1.2 ([1]). We say that a semigroup Ω satisfies condition (†) if for any prime ideal Φ of Ω and for any α, β ∈ Ω \ Φ, there exists a γ ∈ Ω \ Φ such that γ'αγ'' = γ'βγ'' for all γ', γ'' ∈ (γ) \ Φ.

Semigroups satisfying condition (†) were first considered in the description of prime ideals of strong Ω-graded rings in [1]. Such semigroups are generalizations of regular or finite bands and power stationary semigroups. Let P be a prime ideal of R = ⊕R. By Lemma 2.6, [1], if Ω satisfies condition (†) and all prime ideals of Ω are completely prime then P ⊇ I(Φ). In view of Proposition 1.1 the following result on prime ideals was obtained in [1].

Theorem 1.3 ([1]). Let Ω be a semigroup satisfying condition (†) and Φ be a completely prime ideal of Ω. Let R be a system of rings over (Ω, ≺). Then there exists an order preserving bijection between the set of prime ideals P in R = ⊕R and the set of prime families (Φ, P) with Φ a prime ideal of Ω, given by P → (Φ = {α ∈ Ω|Rβ ⊆ P for all β ∈ (α)}, (P ∩ Rα)α∈Ω\Φ), with inverse given by (Φ, P) → I(Φ, P).

This result was generalized to some other classes of strong semigroup graded rings in [2].

2. Primitive ideals of strong semigroup graded rings

In this section we begin our study of primitive ideals of those strong Ω-graded rings whose prime ideals were characterized in [1] and [2].

Definition 2.1. Let R be a system of rings over (Ω, ≺) and Φ be a completely prime ideal of Ω. Then a family of ideals (Φ, P) is a (left) primitive family if the following conditions are satisfied:
(i) \((\Phi, \mathcal{P})\) is a prime family and

(ii) there exists a maximal compatible family of left ideals \((\Phi, \mathcal{M})\) such that \(\mathcal{P} \subseteq \mathcal{M}\) (that is, \(P_\alpha \subseteq M_\alpha\) for all \(\alpha \in \Omega \setminus \Phi\), \(P_\alpha \in \mathcal{P}\) and \(M_\alpha \in \mathcal{M}\)) and for every \(r_\alpha \in R_\alpha \setminus P_\alpha\), \(\alpha \in \Omega \setminus \Phi\) there exists an \(s_\gamma \in R_\gamma\) for some \(\gamma \in \Omega \setminus \Phi\) such that \(r_\alpha \cdot s_\gamma \notin M_\alpha\gamma\).

A (right) primitive family is defined similarly. As in the case of prime ideals, if the defining maps \(\phi_{\alpha,\beta}\) are all onto then a primitive family consists entirely of prime ideals. We prove this fact in the next result.

Proposition 2.2. Let \(\mathcal{R}\) be a system of rings over \((\Omega, \prec)\). If the defining maps \(\phi_{\alpha,\beta}\) for \(\alpha \prec \beta\) are all onto, then a primitive family \((\Phi, \mathcal{P})\), where \(\mathcal{P} = \{P_\alpha\}_{\alpha \in \Omega \setminus \Phi}\), consists entirely of primitive ideals.

Proof. Since \((\Phi, \mathcal{P})\) is a primitive family, there exists a maximal compatible family of left ideals \((\Phi, \mathcal{M})\) satisfying condition (ii) in Definition 2.1. Since the maps \(\phi_{\alpha,\beta}\) are all onto, \(\mathcal{M}\) consists entirely of maximal left ideals and \(\mathcal{P}\) consists entirely of prime ideals (see Corollary 1.7 in [1]). Now suppose that \(P_\alpha \in \mathcal{P}\) is not primitive for some \(\alpha \in \Omega \setminus \Phi\). Then \(P_\alpha \neq R_\alpha\) since \(P_\alpha\) is prime and \(P_\alpha \subseteq Q_\alpha\), where \(Q_\alpha = \text{ann } R_\alpha/M_\alpha\). Now let \(r_\alpha \in Q_\alpha \setminus P_\alpha\). By condition (ii) in the definition of a primitive family, there exists an \(s_\gamma \in R_\gamma\) for some \(\gamma \in \Omega \setminus \Phi\) such that \(r_\alpha \cdot s_\gamma \notin M_\alpha\gamma\), that is, \(\phi_{\alpha,\alpha\gamma}(r_\alpha)\phi_{\gamma,\alpha\gamma}(s_\gamma) \notin M_\alpha\gamma\). But \(r_\alpha \cdot R_\alpha \subseteq M_\alpha\) since \(r_\alpha \in Q_\alpha\) and \(\phi_{\alpha,\alpha\gamma}(R_\alpha) = R_\alpha\gamma\) since \(\phi_{\alpha,\alpha\gamma}\) is onto. Therefore \(\phi_{\alpha,\alpha\gamma}(r_\alpha) \cdot R_\alpha\gamma \subseteq M_\alpha\gamma\). This is a contradiction to the fact that \(\phi_{\alpha,\alpha\gamma}(r_\alpha)\phi_{\gamma,\alpha\gamma}(s_\gamma) \notin M_\alpha\gamma\). Hence \(P_\alpha = Q_\alpha\) and \(P_\alpha = \text{ann } R_\alpha/M_\alpha\). Thus \(P_\alpha\) is primitive.

The next theorem characterizing primitive ideals of strong \(\Omega\)-graded rings, where \(\Omega\) satisfies condition (\dagger) is the main result of this section.

Theorem 2.3. Let \(\mathcal{R}\) be a system of rings and suppose that \(\Omega\) satisfies condition (\dagger) and that every prime ideal of \(\Omega\) is completely prime. Let \(R = \oplus \mathcal{R}\) be a strong \(\Omega\)-graded ring. Then there exists a bijective correspondence between the primitive ideals \(P\) of \(R\) and primitive families \((\Phi, \mathcal{P})\), with \(\Phi\) a prime ideal of \(\Omega\) as described in Theorem 1.3.

Proof. Suppose that \(P\) is a primitive ideal of \(R\). Since \(P\) is a prime ideal of \(R\), \(P\) is of the form \(I(\Phi, \mathcal{P})\), that is, \(P\) can be written explicitly as \(P = I(\Phi') + \cup_{\alpha \in \Omega \setminus \Phi} P_\alpha\), where \(P_\alpha \in \mathcal{P}\), for some prime ideal \(\Phi\) of \(\Omega\) and a prime family \((\Phi, \mathcal{P})\). Now since \(P\) is primitive, \(P = \text{ann } R/M\), where \(M\) is a modular maximal left ideal of \(R\). Then \(M\) can be expressed as \(M = I(\Phi') + \cup_{\alpha \in \Omega \setminus \Phi} M_\alpha\) for some prime ideal \(\Phi'\) of \(\Omega\) and a maximal compatible family \(\mathcal{M} = \{M_\alpha\}_{\alpha \in \Omega \setminus \Phi}\) (see [1]). Since \(P \subseteq M\), \(\Phi = \Phi'\) and \(P_\alpha \subseteq M_\alpha\) for all \(\alpha \in \Omega \setminus \Phi\) because \(P_\alpha = P \cap R_\alpha \subseteq M \cap R_\alpha = M_\alpha\).

Claim: \((\Phi, \mathcal{P})\) is a primitive family.
Suppose there exists an \(r_\alpha \in R_\alpha \setminus P_\alpha\) for some \(\alpha \in \Omega \setminus \Phi\) and all \(s_\gamma \in R_\gamma\) and all \(\gamma \in \Omega \setminus \Phi\) with \(\alpha \prec \gamma\). This implies that \(r_\alpha \cdot s_\gamma \notin M_\alpha\gamma\). Thus \(r_\alpha \cdot \oplus_{\alpha \in \Omega \setminus \Phi} R_\alpha \subseteq M\), since \(\oplus_{\alpha \in \Phi} R_\alpha \subseteq M\) by definition of \(M\).
Let $r_a \in \text{ann} R/M = P$. Therefore $r_a \in R_\alpha \cap P = P_\alpha$ which is a contradiction to our assumption. Hence for every $r_a \in R_\alpha \setminus P_\alpha$, there exists an $s_\gamma \in R_\gamma$ for some $\gamma \in \Omega \setminus \Phi$ such that $r_a \cdot s_\gamma \notin M_\alpha \gamma$. Thus (Φ, \mathcal{P}) is a primitive family.

Conversely, suppose that (Φ, \mathcal{P}), where $\mathcal{P} = (P_\alpha)_{\alpha \in \Omega \setminus \Phi}$, is a primitive family. Then there exists a maximal compatible family of left ideals $\mathcal{M} = (M_\alpha)_{\alpha \in \Omega \setminus \Phi}$ satisfying condition (ii) in Definition 2.1. Let $\Omega = \{\alpha, \beta \}$ be a semigroup satisfying condition (1) such that all prime ideals of Ω are completely prime. Then for some $s_\gamma \in R_\gamma \gamma \in \Omega \setminus \Phi$, (the product of all $\phi_{\alpha, \delta}(r_\alpha)$) $\cdot s_\gamma \notin M_\delta \gamma$, by the definition of a primitive family. Therefore $(\sum_{\alpha \in \Omega \setminus \Phi} \phi_{\alpha, \delta}(r_\alpha)) \cdot s_\gamma \notin M_\delta \gamma$. This implies that $\sum_{\alpha \in \Omega \setminus \Phi} \phi_{\alpha, \delta}(r_\alpha) \notin \text{ann} R/M$. Hence $\sum_{\alpha \in \Omega} r_\alpha \notin \text{ann} R/M$. Since $\sum_{\alpha \in \Omega} r_\alpha$ was arbitrary in $R \setminus P$, it follows that $P = \text{ann} R/M$. Since $P \neq R$, M is a modular maximal left ideal of R. Hence P is primitive.

\[\sum_{\alpha \in \Omega} r_\alpha = \sum_{\alpha \in \Phi} r_\alpha + \sum_{\alpha \in \Omega \setminus \Phi} r_\alpha = \sum_{\alpha \in \Phi} r_\alpha + \sum_{\alpha \in \Omega \setminus \Phi} (r_\alpha - \phi_{\alpha, \delta}(r_\alpha)) + \sum_{\alpha \in \Omega \setminus \Phi} \phi_{\alpha, \delta}(r_\alpha), \]

where δ is the product in a certain order of all $\alpha \in \Omega \setminus \Phi$ in the support of $\sum_{\alpha \in \Omega \setminus \Phi} r_\alpha$.

Since $\sum_{\alpha \in \Omega} r_\alpha \notin P$, this implies that $\sum_{\alpha \in \Omega \setminus \Phi} \phi_{\alpha, \delta}(r_\alpha) \notin P$. Hence $\sum_{\alpha \in \Omega \setminus \Phi} \phi_{\alpha, \delta}(r_\alpha) \notin P_\beta$. Then for some $s_\gamma \in R_\gamma \gamma \in \Omega \setminus \Phi$, (the product of $\phi_{\alpha, \delta}(r_\alpha)$) $\cdot s_\gamma \notin M_\delta \gamma$, by the definition of a primitive family. Therefore $(\sum_{\alpha \in \Omega \setminus \Phi} \phi_{\alpha, \delta}(r_\alpha)) \cdot s_\gamma \notin M_\delta \gamma$. This implies that $\sum_{\alpha \in \Omega \setminus \Phi} \phi_{\alpha, \delta}(r_\alpha) \notin \text{ann} R/M$. Hence $\sum_{\alpha \in \Omega \setminus \Phi} r_\alpha \notin \text{ann} R/M$. Since $\sum_{\alpha \in \Omega} r_\alpha$ was arbitrary in $R \setminus P$, it follows that $P = \text{ann} R/M$. Since $P \neq R$, M is a modular maximal left ideal of R. Hence P is primitive.

Corollary 2.4. Let S be a ring, Ω be a semigroup satisfying condition (1) such that all prime ideals of Ω are completely prime. Then there exists a bijective correspondence between the primitive ideals P of $S[\Omega]$ and primitive families (Φ, \mathcal{P}), with Φ a prime ideal of Ω, given by $P \mapsto (\Phi = \{\alpha \in \Omega | S \beta \subseteq P \text{ for all } \beta \in (\alpha)\}, (P^\prime \alpha = P \cap S \alpha)_{\alpha \in \Omega \setminus \Phi})$, where P^\prime is a primitive ideal of S, with inverse given by $(\Phi, \mathcal{P} = (P^\prime \alpha)_{\alpha \in \Omega \setminus \Phi}) \mapsto I(\Phi, \mathcal{P})$.

As regular bands are semigroups of idempotents that satisfy condition (1) and since all prime ideals in a regular band are completely prime, the conclusion of Theorem 2.3 applies to strong regular band graded rings. Semilattices are regular bands. Hence the following examples based on semilattices illustrate Theorem 2.3. The prime families in these examples were first considered in [11].

Example 2.5. Let $\Omega = \{\alpha, \beta | \alpha \prec \beta\}$ be a semilattice. Let $R = R_\alpha + R_\beta$ be a strong supplementary semilattice sum of rings over Ω, where $R_\alpha = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$,
\(R_\beta = \begin{pmatrix} F & F \\ F & F \end{pmatrix}, \) \(F \) is a field and the map \(\phi_{\alpha, \beta} : R_\alpha \rightarrow R_\beta \) is the inclusion map.

Let \(\Phi = \emptyset \), let \(P_\alpha = 0 \), and \(P_\beta = 0 \). Then \(P_\alpha \) is not a prime ideal of \(R_\alpha \) and \(P_\alpha = \phi_{\alpha, \beta}^{-1}(P_\beta) \). Since \(P_\beta \) is a prime ideal of \(R_\beta \), it follows that \((\Phi, \mathcal{P}) = (\emptyset, \{P_\alpha, P_\beta\}) \) is a prime family by Corollary 1.5, [1]. Thus condition (i) in Definition is satisfied.

Now let \(M_\alpha = \begin{pmatrix} 0 & F \\ 0 & F \end{pmatrix} \). Then \(M_\alpha \) is a modular maximal left ideal of \(R_\alpha \) (in fact, \(M_\alpha \) is an ideal). Let \(M_\beta = \begin{pmatrix} 0 & F \\ 0 & F \end{pmatrix} \). Then \(M_\beta \) is a modular maximal left ideal of \(R_\beta \). Note that \(P_\alpha \subseteq M_\alpha \) and \(P_\beta \subseteq M_\beta \). Moreover, if \(\mathcal{M} = \{M_\alpha, M_\beta\} \), then \((\Phi, \mathcal{M}) \) is a maximal compatible family of left ideals as \(\phi_{\alpha, \beta}^{-1}(M_\beta) = M_\alpha \). Now since \(M_\alpha \) is an ideal, \(\text{ann } R_\alpha / M_\alpha = M_\alpha \), and \(\text{ann } R_\beta / M_\beta = 0 = P_\beta \). Therefore, \(P_\beta \) is primitive but \(P_\beta \) is not a prime ideal of \(R_\beta \). Let \(r_\alpha \in R_\alpha \setminus P_\alpha \). Then \(\phi_{\alpha, \beta}(r_\alpha) \notin P_\beta \). As \(P_\beta = \text{ann } R_\beta / M_\beta \), there exists an \(s_\beta \in R_\beta \) such that \(\phi_{\alpha, \beta}(r_\alpha) \cdot s_\beta \notin M_\beta \). Now let \(r_\beta \in R_\beta \setminus P_\beta \). Then again as \(P_\beta = \text{ann } R_\beta / M_\beta \), there exists an \(s_\beta \in R_\beta \) such that \(r_\beta \cdot s_\beta \notin M_\beta \). Thus condition (ii) in the definition of a primitive family is satisfied. Hence \((\Phi, \mathcal{P}) \) is a primitive family and the corresponding prime ideal \(I(\Phi, \mathcal{P}) \) is a primitive ideal of \(R \) by Theorem 2.3.

Example 2.6. Let \(\Omega = \{1, 2, 3, \ldots\} \) be viewed as an upper semilattice with the partial order \(\leq \) given by \(m \leq n \iff mn = n \). Let \(F \) be a field and let \(M_\omega \) be the ring of infinite matrices \((a_{ij})_{i,j \in \mathbb{N}}\) over \(F \), where \(\mathbb{N} \) is the set of natural numbers such that only a finite number of entries \(a_{ij} \) are nonzero. Let \(R_n \) be the subring of \(M_\omega \) with \(2^n \times 2^n \) upper block triangular matrices, that is, \(R_n = \begin{pmatrix} 2^n \times 2^n & 2^n \times 2^n & 0 \\ 0 & 2^n \times 2^n & 0 \\ 0 & 0 & 0 \end{pmatrix} \).

Then \(M_\omega = \bigcup_{n=1}^{\infty} R_n \). Let \(R = \bigoplus_{n \in \Omega} R_n \) be a strong supplementary semilattice sum of rings over \(\Omega \) with the maps \(\phi_{n, m} : R_n \rightarrow R_m \) being inclusion maps for all \(n, m \in Y \) with \(n \leq m \). Let \(\Phi = \emptyset \). Then \(\Phi \) is a completely prime ideal of \(\Omega \). Let \(\mathcal{P} = \{P_n = \langle 0 \rangle \subseteq R_n\}_{n \in \Omega} \).

Then clearly,

(i) \(P_n = \phi_{n,m}^{-1}(P_m) = \langle 0 \rangle \).

(ii) If \(a, b \in R_n \) are such that \(aR_m b \subseteq P_m = \langle 0 \rangle \) for all \(m \in \Omega \) with \(n \leq m \), then \(aM_\omega b \subseteq \langle 0 \rangle \subseteq M_\omega \). Therefore either \(a = 0 \in P_n \) or \(b = 0 \in P_n \), since \(\langle 0 \rangle \) is a prime ideal in \(M_\omega \). Hence \((\Phi, \mathcal{P}) \) is a prime family by [Proposition 1.4, [1]]. Note that \(P_n \) is not a prime ideal for any \(n \). Let \(P \) be the prime ideal of \(R \) corresponding to \((\Phi, \mathcal{P}) \). We will show that \((\Phi, \mathcal{P}) \) is a primitive family, which would imply that \(P \) is also a primitive ideal of \(R \). For each \(R_n \), consider the set \(M_n \) of \(2^n \times 2^n \) upper block triangular matrices such that the first column consists entirely of zeros. Then \(M_n \) is a maximal left ideal of \(R_n \) for each \(n \) and the set \(\{M_n | n \in \mathbb{N}\} \) is a maximal compatible family. Note that \(P_n \subseteq M_n \). Let \(r_n \in R_n \setminus P_n \). Then \(r_n \neq 0 \). So \(r_n \) has a non-zero entry at some \((i, j)\)th position. Then for any \(m > n \), we can choose an element \(s_m \) of \(R_m \) with a non-zero entry at the \((j, 1)\) position, so that \(r_n \cdot s_m = \phi_{n,m}(r_n) \cdot s_m \) has a non-zero entry at the \((i, 1)\) position and hence
3. Primitive ideals of strong Clifford semigroup graded rings

In this section we shall extend Theorem 2.3 to another class of strong \(\Omega \)-graded rings, where \(\Omega \) does not necessarily satisfy condition \((\dagger)\) but has the following properties.

(i) all prime ideals of \(\Omega \) are completely prime,

(ii) \(e\alpha e\beta e = e\alpha\beta e \) for all \(\alpha, \beta, e \) with \(e \) idempotent, and

(iii) for every \(\alpha \) there exists an idempotent \(e \) lying in exactly the same prime ideals as \(\alpha \).

Conditions (i) - (iii) are satisfied by many classes of semigroups such as regular bands, Clifford semigroups, and commutative periodic semigroups. They were considered in the description of prime ideals of semigroup graded rings in [2]. We first characterize primitive ideals of strong Clifford semigroup graded rings and then apply the method to the study of strong \(\Omega \)-graded rings where \(\Omega \) satisfies properties (i) - (iii).

Let \(R \) be a system of rings over \((\Omega, \prec)\). Let \(R = \oplus R \) be a strong \(\Omega \)-graded ring, where \(\Omega \) is a Clifford semigroup. Let \(E \) denote the set of idempotents of \(\Omega \). Then \(E \) is a semilattice and \(\Omega \) is a strong semilattice of groups, \(\Omega_e \), for \(e \in E \) (see [7]). Let \(R[e] = \oplus_{\alpha \in \Omega_e} R[e] \) be a subring of \(R \) and as proved in [2], \(R[e] \) is isomorphic to the group ring \(R[e][\Omega_e] \). The maps \(\phi^{(e,f)} \) can be redefined as \(\phi^{(e,f)}(\sum_{\alpha \in \Omega_e} s_\alpha \alpha) = \sum_{\alpha \in \Omega_e} \phi^{(e,f)}(s_\alpha)\alpha f \), where \(s_\alpha \in R_e \) and \(e \prec f \). Thus \(R \) can be expressed as a strong supplementary semilattice sum of group rings, via the redefined maps \(\phi^{(e,f)} \). Then by Theorem 2.3 we have the following result.

Theorem 3.1. Let \(\Omega \) be a Clifford semigroup with set of idempotents \(E \) and let \(R \) be a system of rings over \((\Omega, \prec)\). Suppose that \(R = \oplus R \) is a strong Clifford semigroup graded ring. Then the primitive ideals in \(R \) correspond bijectively to primitive families \((\Phi, P)\) with \(\Phi \) a prime ideal of \(E \) and \(P \) a primitive family over the group rings \(R[e][\Omega_e] \) with \(e \in E \setminus \Phi \) as in Theorem 2.3.

Corollary 3.2. Let \(\Omega \) be a Clifford semigroup with set of idempotents \(E \). Let \(S \) be a ring and let \(S[\Omega] \) be a semigroup ring. Then the primitive ideals in \(S[\Omega] \) correspond bijectively to primitive families \((\Phi, P)\) with \(\Phi \) a prime ideal of \(E \) and \(P \) a primitive family over the group rings \(S[\Omega_e] \) with \(e \in E \setminus \Phi \).

Proof. \(S[\Omega] \) can be expressed as a strong supplementary semilattice sum, \(S[\Omega] = \oplus S[\Omega] \).
We now apply Theorem 3.2 to strong \(\Omega \)-graded rings, where \(\Omega \) satisfies conditions (i) - (iii). As in [2] we shall define a congruence \(\equiv \) on \(\Omega \) that makes \(\Omega / \equiv \) into a Clifford semigroup. This would enable us to pass from a strong \(\Omega \)-graded ring \(R \) to the strong \(\Omega / \equiv \)-graded ring \(\bar{R} \) in our description of primitive ideals of \(R \).

We first give an exposition of some important definitions and results stated and proved in [2]. Let \(\eta \) be the least semilattice congruence on \(\Omega \). By Proposition 2.5 in [2] for each \(e \in E \), \(\Gamma_e = \{ eae | a \in \Omega \} \) is a subgroup of \(\Omega \) with identity \(e \). Then the congruence \(\equiv \) on \(\Omega \) is defined as follows: \(\alpha \equiv \beta \Leftrightarrow \text{there is an } e \in E \text{ such that } a\eta e = e\beta e. \) This definition is independent of the choice of \(e \) because then \(eaf = f\beta f \) for any \(f \in E \) with \(f\eta e \). Also if \(e, f \in E \) then \(e \equiv f \) if and only if \(ef \) and \(ef \) as well. Moreover, \(E \in \Omega \) can be viewed as the union of the groups \(\Gamma_e \) for \(e \in \bar{E} \). Moreover, \(E \) can be made into a semilattice by defining \(e \vee f \) to be the unique element of \(E \) that is \(\eta \)-equivalent to \(e \). Hence \(\bar{\Omega} \) is a semilattice, \(\bar{E} \), of the groups, \(\Gamma_e \) for \(e \in \bar{E} \). Moreover, by Theorem 2.6, [2], \(\bar{\Omega} \) is a Clifford semigroup and \(\equiv \) is the least Clifford semigroup congruence on \(\Omega \).

Let \(\mathcal{R} \) be a system of rings over \((\Omega, \prec) \) and let \(R = \oplus \mathcal{R} \) be a strong \(\Omega \)-graded ring. Then \(\bar{R} = \oplus_{e \in \bar{E}, x \in \Gamma_e} R_{e,x} \) is a strong Clifford semigroup graded ring and there is a surjective ring homomorphism \(\phi : \Omega \rightarrow \bar{\Omega} = \Omega / \equiv \) induced by \(\phi \). The homomorphism \(\pi \) is given by \(\pi(\sum_{\alpha \in \Omega} r_{\alpha}) = \sum_{e \in \bar{E}, x \in \Gamma_e} \phi_{e,x}(r_{\alpha}) \). If \(K \) denotes the kernel of \(\pi \), we have \(R/K \cong \bar{R} \). Moreover, by Lemma 3.1, [2], the ideal \(K \) is contained in the prime radical of \(R \). Hence every primitive ideal of \(R \) contains \(K \) as well. Therefore there is a bijective correspondence between the primitive ideals of \(R \) and \(\bar{R} \). Further since \(\phi_{e,x} \) are isomorphisms for all \(x \in \Gamma_e \), we have \(\bar{R} = \oplus_{e \in \bar{E}, x \in \Gamma_e} R_{e,x} \) is isomorphic to the strong supplementary semilattice sum of group rings \(\oplus_{e \in \bar{E}} \bar{R}_{e}[\Gamma_e] \) as in the proof of Theorem 3.2. Hence we have the following result.

Theorem 3.3. Let \(\Omega \) be a semigroup having properties (i), (ii) and (iii) with set of idempotents \(E \) and with \(\bar{E} \) as defined above. Let \(\mathcal{R} \) be a system of rings over \((\Omega, \prec) \) and let \(R = \oplus \mathcal{R} \) be a strong \(\Omega \)-graded ring. Then the primitive ideals in \(R \) correspond bijectively to primitive families \((\Phi, P) \) with \(\Phi \) a prime ideal of the semilattice \(\bar{E} \) and \(P \) a primitive family over the group rings \(\bar{R}_{e}[\Gamma_e] \) with \(e \in \bar{E} \setminus \Phi \) as in Theorem 3.2 (1), [2].

Corollary 3.4. Let \(\Omega \) be a semigroup having properties (i), (ii) and (iii) with set of idempotents \(E \) and with \(\bar{E} \) as defined above. Let \(S \) be a ring and let \(S[\Omega] \) be the semigroup ring. Then the primitive ideals in \(S[\Omega] \) correspond bijectively to primitive families \((\Phi, P) \) with \(\Phi \) a prime ideal of the semilattice \(\bar{E} \) and \(P \) a primitive family over the group rings \(S[\Gamma_e] \) with \(e \in \bar{E} \setminus \Phi \) as in Theorem 3.2 (1), [2].
Acknowledgements. I wish to thank Professor Mark L. Teply for his valuable suggestions and comments on this paper.

References

