Acute Arginine Supplementation Fails to Improve Muscle Endurance or Affect Blood Pressure Responses to Resistance Training

Beau K. Greer
Sacred Heart University, greerb@sacredheart.edu

Brett T. Jones
Sacred Heart University

Follow this and additional works at: http://digitalcommons.sacredheart.edu/pthms_fac

Part of the [Exercise Science Commons](http://digitalcommons.sacredheart.edu/exercise), [Medical Nutrition Commons](http://digitalcommons.sacredheart.edu/nutrition), [Musculoskeletal System Commons](http://digitalcommons.sacredheart.edu/musculoskeletal), and the [Sports Sciences Commons](http://digitalcommons.sacredheart.edu/sports)

Recommended Citation

http://digitalcommons.sacredheart.edu/pthms_fac/28

This Article is brought to you for free and open access by the Physical Therapy & Human Movement Science at DigitalCommons@SHU. It has been accepted for inclusion in PTHMS Faculty Publications by an authorized administrator of DigitalCommons@SHU. For more information, please contact ferribyp@sacredheart.edu.
TITLE: Acute Arginine α-ketoglutarate Supplementation Fails to Improve Muscle Endurance or Affect Blood Pressure Responses to Resistance Training
ABSTRACT

Dietary supplement companies claim that arginine supplements acutely enhance skeletal muscular endurance. The purpose of this study was to determine whether acute arginine α-ketoglutarate supplementation (AAKG) will affect local muscle endurance of the arm and shoulder girdle, or the blood pressure (BP) response to anaerobic exercise. Twelve trained college-aged males (22.6 ± 3.8 yr) performed two trials of exercise separated by at least one week. At four hours prior, and 30 minutes prior to exercise, a serving of an AAKG supplement (3700 mg arginine alpha-ketoglutarate/serving) or placebo was administered. Resting BP was assessed pre-exercise after 16 minutes of seated rest, as well as 5 and 10 minutes post exercise. Three sets each of chin-ups, reverse chin-ups, and push-ups were performed to exhaustion with three minutes of rest between each set. Data was analyzed using repeated measures ANOVA and paired t-tests. AAKG supplementation did not improve muscle endurance or significantly affect the BP response to anaerobic work. Subjects performed fewer total chin-ups (23.75 ± 6.38 vs. 25.58 ± 7.18) and total trial repetitions (137.92 ± 28.18 vs. 141.08 ± 28.57) in the supplement trial (p ≤ 0.05). Subjects executed fewer reverse chin-ups (5.83 ± 1.85 vs. 6.75 ± 2.09) during Set 2 after receiving the supplement as compared to the placebo (p < 0.05). Since AAKG supplementation may hinder muscular endurance, the use of these supplements prior to resistance training should be questioned.

Key Words: ergogenic aids; nitric oxide; anaerobic

INTRODUCTION

L-arginine is a conditionally essential amino acid with a bioavailability of approximately 60%. The average arginine intake via an omnivorous Western diet is approximately 5 g/day. The majority of endogenous arginine is made via L-ornithine and L-citrulline in the kidneys, but may not be sufficient after traumatic injuries. Arginine can be
converted to nitric oxide (NO) via nitric oxide synthase resulting in acute vasodilation.20 This dilatory effect is partially mediated by endogenous insulin release,12 although this does not appear in the short term (< 6 days) to be a rate-limiting step in NO synthesis.5 Although sales of arginine-containing supplements, sometimes marketed as “nitric oxide stimulators”, have increased markedly in the past decade, there is scant evidence that they provide ergogenic benefits in healthy populations. Many companies’ products claiming to stimulate nitric oxide release advertise increased muscular power, strength, and endurance as potential benefits.

One study reports that arginine and ornithine supplementation (1 gram each/day) while resistance training (5 weeks; 3 sessions per week) significantly increases overall strength and lean body mass as compared to a placebo.9 Unfortunately, this study was a post-test only design and therefore the groups’ baseline strength and lean body mass may have differed. The majority of research regarding arginine supplements and performance has focused on aerobic training. Colombani et al. report that 14 days of arginine-aspartate did not affect indirect markers of muscle damage post-marathon and had no metabolic effects.7 Four weeks of arginine aspartate supplementation had no effect on endurance performance or human growth hormone, cortisol, testosterone, and glucagon concentrations in trained athletes.1 However, Matsumoto et al. showed a decrease in proteolysis during endurance exercise with the ingestion of 2 g branched chain amino acids + 0.5 g arginine.19 Alternate studies have failed to find an ergogenic effect with arginine supplementation particularly in regards to a hypothesized exercise-induced or arginine-induced growth hormone release.1, 10, 18

![Figure 1. Chin-ups (individual subjects). Set 3 mean is significantly lower (p < 0.01) than set 1 for both trials. No differences between trials were found.](image)

To our knowledge, only one study has investigated the independent effects of arginine \(\alpha\)-ketoglutarate (AAKG).4 Campbell et al. reports that 1RM bench press performance
and Wingate peak power performance increased significantly with 8 wk of AAKG supplementation (12 g daily), although isokinetic quadriceps muscle endurance was not affected.

The present study was designed based on pilot data suggesting that AAKG supplementation may cause an acute decrease in local muscular endurance. The hemodynamic response to anaerobic exercise was also assessed as arginine supplementation decreases blood pressure (BP) in healthy subjects.25

\section*{METHODS}

\subsection*{Experimental Approach to the Problem}

Upper body muscle endurance was assessed on two separate occasions in a double-blind, crossover design after consuming either 2 separate servings (3700 mg/serving) of AAKG or a placebo 4-hours prior, and 30-minutes prior to exercise. It was assumed that since most arginine supplements are marketed toward individuals engaged in resistance training, using resistance trained subjects would increase the applicability of the study.

Figure 2. Reverse chin-ups (individual subjects). Set 2 mean was significantly higher in the Placebo trial than in the Supplement trial (p < 0.01). Set 2 mean for the Supplement trial and set 3 mean for both trials were significantly lower (p < 0.01) than set 1 for both trials.
SUBJECTS

Twelve resistance-trained college-aged males (22.6 ± 3.8 years; body fat 12.1 ± 4.1% as determined by 3-site skinfold analysis) volunteered for this experiment. In order to qualify as “trained,” the subject must have engaged in resistance training for the past six months (at least 2 sessions per week), and be able to perform 10 unassisted chin-ups with a 1 second pause between repetitions. Subjects who had taken any dietary supplement in the past 6 months were excluded, with the exception of vitamin/mineral supplements and protein supplements. If the protein supplement contained creatine or supplementary arginine not originating from the whole protein, the subject was excluded. Pre-hypertensive or hypertensive subjects were not excluded from the study as arginine supplementation can lower BP in both healthy and hypertensive individuals.13,25

Figure 3. Push-ups (individual subjects). Sets 2 and 3 means are significantly lower (p<0.01) than set 1 for both trials. No differences between trials were found.
All subjects signed a consent form informing them of the aims, procedures, and risks of the study. The consent form and study design were approved by the institutional review board at Sacred Heart University.

PROCEDURES

Subjects performed two trials of exercise separated by at least one week. Subjects were required not to perform upper body resistance training within 72 hours of each trial, and lower body training within 48 hours as musculature not connected to the arm and shoulder girdle still aids in stabilization during particular exercises. Seventy-two hours of rest was assumed to be an adequate recovery time from previous resistance work in trained subjects. Subjects did not consume food or caloric drinks for 4 hours prior to testing to control for postprandial effects on BP. Caffeine consumption on the day of testing was also prohibited as it has been shown to increase muscle endurance and blood pressure in non-habituated users. Aerobic exercise was not permitted on the day of testing until the trial was over.

![Figure 4. Mean (± SD) total repetitions for exercise and complete trial. *Significantly different (p # 0.05) between trials.](image)

Three sets each of chin-ups (hands pronated), reverse chin-ups (hands supinated), and push-ups were performed to exhaustion with three minutes of rest between each set.
Subjects waited on a “go” command at the initial hanging position with full elbow extension for each chin-up or reverse chin-up repetition. The repetition was counted if the subject’s chin reached a parallel level with the bar. A tester held his arm in front of the subject to prevent excessive swinging of the body. Markings on the apparatus ensured the subject maintained the same hand position during each trial and set. Push-up repetitions were counted if the subject’s chest made contact with the tester’s fist resting on the ground, and the elbows were fully extended after the concentric portion of the repetition.

![Figure 5. Systolic blood pressure (individual subjects). No significant differences between trials were found.](image)

Subjects were instructed to do the push-ups as quickly as possible. The order of exercises was the same for all subjects. In regard to total repetitions this protocol had a significantly high test-retest reliability ($r = 0.98$, $p < 0.01$). When broken into its individual subcomponents, the reliability remains high ($r = 0.94$, $p < 0.01$).

Resting BP was manually assessed via auscultatory method at the brachial artery pre-exercise after 16 minutes of seated rest as suggested by Sala et al.,24 as well as 5 and 10 minutes post-exercise.

SUPPLEMENTATION

At 4- hours prior, and 30-minutes prior to exercise a serving of a commercially available AAKG supplement (Nitric Suspension$^{\text{TM}}$, German American Technologies$^{\text{TM}}$) or placebo (maltodextrin) was administered. The placebo was similar in color, size, and texture to the supplement. Each serving of the supplement contained 3700 mg AAKG and 7 mg of piperine extract (Bioperine$^\circledR$). Many alternate widely-used “nitric oxide stimulating” supplements could have been used but their caffeine content could influence the results. Due to budgetary restraints, the ingredients of the supplement were not
confirmed via an independent laboratory analysis and therefore quality control could be a confounding factor.

Figure 6. Diastolic blood pressure (individual subjects). No significant differences between trials were found.

STATISTICAL ANALYSIS

The study followed a 2 x 3, trial x time, within-subjects design with repeated measures. Analyses of variance (ANOVA) with repeated measures were used to analyze the variance of experimental treatments. Paired t-tests were used to determine significant differences for total trial repetitions as well as total repetitions per exercise (Set 1 + Set 2 + Set 3). Acceptance for statistical significance was $p \leq 0.05$. Twelve subjects were chosen in order to achieve a power ≥ 0.80 based upon pilot data. The Tukey HSD post-hoc test was used to determine significant differences between means, and Mauchly's test of sphericity was used to confirm homogeneity of repeated measures variability. Statistical calculations were performed using commercially available software (SPSS Inc., Chicago, IL).

RESULTS

All twelve subjects who initially volunteered completed the testing procedures. Every volunteer had over 2 years of resistance training experience, even though the
qualification was only for 6 months. There were no order effects observed between the two trials (p > 0.05).

When examining individual sets, there was no trial x time interaction for the chin-up test (Figure 1), however, subjects performed fewer chin-ups during Set 3 than Set 1 in both trials (p < 0.01).

In regard to reverse chin-ups, ANOVA with repeated measures revealed a significant main effect for trial and time (p < 0.01) and a trial x time interaction (p < 0.01; Figure 2). Subjects performed fewer reverse chin-ups in the Supplement trial than the Placebo trial, and performed fewer during Set 3 than Set 1 in both trials. Subjects also executed fewer reverse chin-ups in the Supplement trial during Set 2 than Set 1.

There were no trial x time interactions for push-up tests (Figure 3). Subjects performed fewer push-ups during Set 2 and Set 3 than Set 1 in both trials (p < 0.01).

When data was analyzed by exercise (repetition sum of individual sets), subject performed fewer chin-ups in the Supplement trial (p < 0.05) than in the Placebo trial (Figure 4). The total number of repetitions for the trial (repetition sum of all sets and exercises) was significantly lower in the Supplement trial (p = 0.05; Figure 4).

There were no significant main effects found with any BP measures (Figures 5 and 6).

DISCUSSION

An arginine-containing supplement had no positive ergogenic benefit in the present study, and may acutely be counterproductive in developing muscular endurance. An NO-stimulated increase in blood flow to the working muscle may create a mechanical hindrance preventing a full range of motion during particular exercises (a reverse chin-up in this case). NO has also been shown to decrease contractile force of mammalian skeletal muscle.\(^{27}\)

Arginine-induced nitric oxide production may directly stimulate protein synthesis via ERK 1/2 activation.\(^{28}\) Arginine supplementation may also be effective at indirectly
stimulating protein synthesis when consumed with other amino acids. This results from enhanced amino acid delivery to skeletal muscle via arginine-induced NO production.20 If arginine supplementation proves useful in stimulating protein synthesis directly or indirectly, the results of the present study indicate it would be optimal to ingest the supplement post-exercise in conjunction with other amino acids. Although Matsumoto et al. showed a decrease in skeletal muscle proteolysis with arginine supplementation during moderate intensity aerobic exercise,19 the supplement also contained BCAA which decrease indirect indicators of muscle damage independently of arginine.14

Almost all advertised benefits of arginine supplements rest on the assumption of nitric oxide stimulation. It should be noted that arginine-induced nitric oxide production is not a foregone conclusion, as production is not limited by arginine availability.5, 17 Also, if vasodilation is produced via arginine feeding, it may be the result of insulin release as opposed to nitric oxide production,17 as insulin induces vasodilation.2

No significant differences in blood pressure were found between trials despite an over 5 mm drop in SBP 5 minutes post-exercise in the supplement trial. Diets high in arginine via either oral supplementation or the inclusion of arginine-rich foods are reported to lower blood pressure in healthy, human subjects.25 The blood pressure response in the present study may have been confounded by the presence of piperine extract in the supplement. Piperine is derived from the plant Piper nigrum and/or Piper longum L. (black pepper and long pepper, respectively), and may have thermogenic properties.26 However, there is no available evidence known to our lab that suggests piperine will affect blood pressure at rest or post-exercise.

Oral arginine doses of 10 grams have been associated with gastrointestinal pain and/or diarrhea.23 Although none of the subjects in the present study (7.4 grams/day) reported gastrointestinal distress, 10 subjects voided between the first and second arginine feedings as compared to only two between the placebo feedings. In addition, Jackson identified several unfavorable metabolic effects that may result from single amino acid supplementation.16 The addition of a single amino acid, lysine, to a balanced amino acid solution exacerbated negative nitrogen balance over 10 days in patients under total
Arginine Supplementation

15 It should be noted, however, that this effect is specific to subjects already in a negative nitrogen balance.

Considering that acute arginine supplementation may contribute to decreased local muscular endurance, and that prolonged arginine feeding (7 d) in high doses (approximately 25 g/day) can cause sodium and consequent water loss in the urine, its acute use prior to resistance training should be questioned and in need of further study.

PRACTICAL APPLICATIONS

Although arginine-containing “nitric oxide stimulating” supplements are marketed to increase muscle endurance, the present study does not support this contention with acute ingestion. One study has demonstrated chronic AAKG supplementation efficacy in improving muscular strength but with no influence on body composition. As suggested by Paddon-Jones et al., arginine ingestion may also be effective in indirectly stimulating protein synthesis when coupled with ingestion of essential amino acids. This contention and others that propose pathways involving direct stimulation of protein synthesis via arginine supplementation remain valid hypotheses, but industry instructions to ingest large doses of arginine prior to exercise may be unwarranted and potentially counterproductive in developing muscle endurance.

[In the figures below darker gray indicates the placebo, lighter gray indicates the
Arginine Supplementation

Graphs showing the effects of arginine supplementation on chin-ups and reverse chin-ups across three sets. The graphs compare the performance of participants taking the supplement versus those taking a placebo.

- Chin-ups: The graph shows a decrease in the number of chin-ups performed across three sets for both the supplement and placebo groups. The supplement group shows a slightly higher number of chin-ups compared to the placebo group in all three sets.

- Reverse Chin-ups: Similar trends are observed for reverse chin-ups, with the supplement group performing slightly more reverse chin-ups than the placebo group in all three sets.

Key:
- Red line with circles: Supplement group
- Gray line with squares: Placebo group

Graph notes:
- Error bars indicate variability within the groups.
- Set labels: Set 1, Set 2, Set 3

Statistical significance is indicated by symbols: * and ▲.
REFERENCES

Figure Legends

Figure 1 – Chin-ups (individual subjects). Set 3 mean is significantly lower (p < 0.01) than Set 1 for both trials. No differences between trials were found.

Figure 2 – Reverse chin-ups (individual subjects). Set 2 mean was significantly higher in the Placebo trial than in the Supplement trial (p < 0.01). Set 2 mean for the Supplement trial and Set 3 mean for both trials were significantly lower (p < 0.01) than Set 1 for both trials.

Figure 3 – Push-ups (individual subjects). Set 2 and 3 means are significantly lower (p < 0.01) than Set 1 for both trials. No differences between trials were found.

Figure 4 - Mean (± standard deviation) total repetitions for exercise and complete trial. * Significantly different (p ≤ 0.05) between trials.

Figure 5 – Systolic blood pressure (individual subjects). No significant differences between trials were found.

Figure 6 – Diastolic blood pressure (individual subjects). No significant differences between trials were found.