Document Type

Article

Publication Date

11-2003

Abstract

Intrinsic complexity is used to measure the complexity of learning areas limited by broken-straight lines (called open semi-hulls) and intersections of such areas. Any strategy learning such geometrical concepts can be viewed as a sequence of primitive basic strategies. Thus, the length of such a sequence together with the complexities of the primitive strategies used can be regarded as the complexity of learning the concepts in question. We obtained the best possible lower and upper bounds on learning open semi-hulls, as well as matching upper and lower bounds on the complexity of learning intersections of such areas. Surprisingly, upper bounds in both cases turn out to be much lower than those provided by natural learning strategies. Another surprising result is that learning intersections of open semi-hulls turns out to be easier than learning open semi-hulls themselves.

DOI

doi:10.1016/S0022-0000(03)00067-9

Recommended Citation

Jain, S., & Kinber, E. (2001). Intrinsic Complexity of Learning Geometrical Concepts from Positive Data. Lecture Notes in Computer Science Computational Learning Theory, 177-193. doi:10.1007/3-540-44581-1_12

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.