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Wave-function functionals for the density
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We extend the idea of the constrained-search variational method for the construction of wave-function
functionals ψ[χ ] of functions χ . The search is constrained to those functions χ such that ψ[χ ] reproduces
the density ρ(r) while simultaneously leading to an upper bound to the energy. The functionals are thereby
normalized and automatically satisfy the electron-nucleus coalescence condition. The functionals ψ[χ ] are also
constructed to satisfy the electron-electron coalescence condition. The method is applied to the ground state of the
helium atom to construct functionals ψ[χ ] that reproduce the density as given by the Kinoshita correlated wave
function. The expectation of single-particle operators W = ∑

i r
n
i , n = −2,−1,1,2, W = ∑

i δ(ri) are exact, as
must be the case. The expectations of the kinetic energy operator W = − 1

2

∑
i ∇2

i , the two-particle operators
W = ∑

n un, n = −2,−1,1,2, where u = |ri − rj |, and the energy are accurate. We note that the construction
of such functionals ψ[χ ] is an application of the Levy-Lieb constrained-search definition of density functional
theory. It is thereby possible to rigorously determine which functional ψ[χ ] is closer to the true wave function.

DOI: 10.1103/PhysRevA.84.052504 PACS number(s): 31.10.+z, 03.65.−w, 31.15.E−

I. INTRODUCTION

Variational wave functions ψ that are functionals of
functions χ : ψ = ψ[χ ] expand the space of variations over
those that are simply functions. A search over the functions χ

could, in principle, lead to the exact wave function. The space
over which the search for the functions χ is to be performed
is large which makes the practical implementation of such
a search difficult. In our work [1–4] on the construction of
such variational wave-function functionals, we have therefore
restricted the search for the functions χ over a subset of the
larger space. This subspace is comprised of those functions
χ such that ψ[χ ] satisfies a constraint such as normalization
or that of obtaining a physical observable exactly. Thus, there
can be experimental input to the construction of ψ[χ ]. The
determination of the functions χ requires the solution of an
integral equation that arises from the constraint condition.
There could be many solutions to the integral equation, and
therefore many wave-function functionals, with some of them
not necessarily physical [4]. In this manner it is possible
to determine functions χ such that ψ[χ ] is simultaneously
normalized, obtains the exact expectation of a Hermitian
single- or two-particle operator, and leads to a rigorous upper
bound to the energy which is accurate as a consequence of
the variational principle. The wave-function functionals ψ[χ ]
are thus accurate not only in the region of space contributing
principally to the energy as in standard variational calculations,
but also in the region of the property of interest. What we
have additionally observed is that irrespective of whether the
property of interest samples the exterior of an atom such

*panxiaoyin@nbu.edu.cn
†vsahni@brooklyn.cuny.edu

as the diamagnetic susceptibility, or the deep interior such
as the Fermi contact term, the corresponding wave-function
functionals are accurate throughout space as demonstrated by
the expectations of other operators. The choice of the form of
the functionals ψ[χ ] is also chosen such that it satisfies the
electron-nucleus and electron-electron coalescence conditions
[5]. We refer to this framework as the constrained-search
variational method. The methodology can also be applied to
excited states, and in particular without modification to the
lowest excited states of a given symmetry. The latter is the case
because the variational principle for the energy is applicable
to this lowest excited state provided the choice of the wave
function functional is restricted to reflect this symmetry.

In our previous work, we had determined wave-function
functionals ψ[χ ] for the ground state of two-electron atomic
systems: the helium atom, its positive ions, and the negative
ion of atomic hydrogen. The Hermitian operators for which
the exact expectation values [6] are replicated were the
single-particle operators W = ∑

i r
n
i , n = −2,−1,1,2, W =∑

i δ(ri), W = − 1
2

∑
i ∇2

i , and the two-particle operators
W = ∑

n un, n = −2,−1,1,2, where u = |(ri − rj |. Each
expectation is a single value. Hence, the functionals ψ[χ ]
were constructed so as to be normalized, reproduce the single
value corresponding to the expectation of W , and to be a
variational upper bound to the energy. We had concluded our
work by indicating that we were investigating how to extend
this method to reproduce exactly a function f (r) which is
the expectation of a Hermitian operator while simultaneously
leading to an upper bound to the energy. This paper reports
the extension of the constrained-search variational method
to determine functionals ψ[χ ] that reproduce the ground-
state density ρ(r) of the helium atom while simultaneously
obtaining an upper bound to the energy. The density ρ(r) is the
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expectation of the single-particle operator W = ∑
i δ(ri − r).

In contrast to our previous work [4] where different ψ[χ ]
were constructed for each operator W , the present functionals
ψ[χ ] have the advantage that they lead to the exact expectation
of all nondifferential single-particle operators simultaneously.
They also have the advantage that they automatically satisfy
the electron-nucleus coalescence condition. The expectations
of two-particle operators though not exact are reasonably
accurate as is the satisfaction of the virial theorem. The energy
is accurate as a result of the variational principle.

The idea of constructing functionals ψ[χ ] that repro-
duce the ground-state density ρ(r) also falls under the
umbrella of density functional theory [7] within the Levy-
Lieb constrained-search framework [8]. In this constrained
search, one searches over all antisymmetric functions ψρ

that generate the density ρ(r). The true wave function is the
one that minimizes the expectation of the sum of the kinetic
and electron-interaction potential operators. The constrained-
search definition is made possible because [7] there is a
bijective (one-to-one) relationship between the ground-state
density and the external potential operator, thereby proving that
the density is a basic variable. There exist many schemes [9]
for the construction of functions ψρ . It is in this context that
the present work falls within the rubric of density functional
theory. The constrained-search variational method for the
construction of ψ[χ ] that reproduce the density ρ(r) is an
application of the Levy-Lieb definition of density functional
theory. It is thereby possible to determine which functional
ψ[χ ] is closer to the true wave function. We note, however,
that the rationale and ideas underlying the construction of
wave-function functionals ψ[χ ], as described in the opening
paragraph, are more general.

In Sec. II we describe the general framework for the
construction of the functionals ψ[χ ] that reproduce the density
ρ(r) of two-electron atoms and ions. In Sec. III we apply
this framework to the ground state of the helium atom for
the density [10] as obtained from the 38-parameter correlated
wave function of Kinoshita [11] which leads to an energy that
is exact [6] to six decimal places. In this application, we expand
the space of variations for the functions χ beyond those of our
prior work. We end with concluding remarks in Sec. IV.

II. GENERAL FRAMEWORK

The time-independent Schrödinger equation for the nega-
tive ion of atomic hydrogen, the helium atom, and the positive
ions of its isoelectronic sequence is

Ĥψ[χ ] = EEψ[χ ], (1)

where the Hamiltonian in atomic units (e = h̄ = m = 1) is

Ĥ = −1

2
∇2

1 − 1

2
∇2

2 − Z

r1
− Z

r2
+ 1

|r1 − r2| , (2)

with r1 and r2 the coordinates of the two electrons, Z the
atomic number, and EE the exact energy. We assume the
ground-state wave-function functional ψ[χ ] to be of the form

ψ[χ ] = �(α; s)[1 − f (χ ; s,t,u)], (3)

where �(α; s) is a determinantal prefactor of the hydrogenic
form

�(α; s) = N0e
−αs, N0 = α3/π, (4)

with α a parameter and f (χ ; s,t,u) a correlated correction
term of the form

f (χ ; s,t,u) = e−qu(1 + qu)

[
1 − χ (q; s,t)

(
1 + u

2

)]
, (5)

with s = r1 + r2, t = r1 − r2, u = |r1 − r2| the elliptical
coordinates, and q a variational parameter. The functions
χ (q; s,t) are to be determined such that ψ[χ ] generate the
exact density ρE(r). We have expanded the space of variations
beyond our previous work by searching for the functions χ

over (s,t) space rather than restricting the search over only s

space.
The electron density is the expectation

ρ(r) =
∫

ψ	[χ ]

(∑
i

δ(ri − r)

)
ψ[χ ]dτ

= 2
∫

ψ	(r,r′; χ )ψ(r,r′; χ )dr′. (6)

Since [2] ∫
dr′ = 2π

∫ ∞

0

r ′

r
dr ′

∫ r+r ′

|r−r′|
udu, (7)

the expression for the density ρ(r) on substituting for ψ[χ ] of
Eq. (3) is

ρ(r) = 4πN2
0

∫ ∞

0

r ′

r
dr ′e−2αs{A(q; s,t)χ2(q; s,t)

− 2B(q; s,t)χ (q; s,t) + C(q; s,t)}, (8)

where

A(q; s,t) =
∫ s

|t |
duue−2qu(1 + qu)2

(
1 + u

2

)2

, (9)

B(q; s,t) =
∫ s

|t |
duu[e−2qu(1 + qu) − e−qu]

×
(

1 + u

2

)
(1 + qu), (10)

C(q; s,t) =
∫ s

|t |
duu[1 + e−2qu(1 + qu)2 − 2e−qu(1 + qu)].

(11)

Notice that the coefficients A(q; s,t), B(q; s,t), and C(q; s,t)
are symmetric in an interchange of r and r′.

Next we assume that the exact density ρE(r) is known from
an exact wave function ψE(s,t,u) which is of the Hylleraas
form

�E(s,t,u) = Ne−Zeffs
∑
l,m,n

cl,m,ns
l t2mun, (12)

where N is the normalization constant. The corresponding
expression for the density is

ρE(r) = 4πN2
∫ ∞

0

r ′

r
dr ′e−2Zeffsg(s,t), (13)
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where

g(s,t) =
∑

l1,m1,n1

l2,m2,n2

cl1,m1,n1cl2,m2,n2s
l1+l2 t2(m1+m2)

× sn1+n2+2 − |t |n1+n2+2

n1 + n2 + 2
. (14)

To determine the ψ[χ ], we next apply the constraint that
the density ρ(r) of Eq. (8) obtained from this functional is
equivalent to the exact density ρE(r) of Eq. (13):

ρ(r) = ρE(r). (15)

With the choice α = Zeff , this equivalence reduces to the
quadratic equation

A(q; s,t)χ2(q; s,t) − 2B(q; s,t)χ (q; s,t) + C ′(q; s,t) = 0,

(16)

with

C ′(q; s,t) = C(q; s,t) − N2

N2
0

g(s,t). (17)

Thus, the constrained search in the (s,t) subspace for the
functions χ such that ψ[χ ] reproduces the exact density shows
that there exist two functions χ1(q; s,t) and χ2(q; s,t) and
therefore two functionals ψ[χ1] and ψ[χ2] for which this is
the case. The solution to the quadratic equation for the χ (q; s,t)
and hence the expressions for the functionals ψ[χ1] and ψ[χ2]
are analytical.

The procedure for obtaining the functional ψ[χ ] is the
following. For each value of the parameter q, the functional
ψ[χ ] is determined for a solution χ (q; s,t) of the quadratic
equation (16). The value of q is then varied till an upper bound
to the energy E[ψ[χ ]] is obtained. The expression for the
energy is the expectation

E[ψ[χ ]] =
∫

ψ	[χ ]Ĥψ[χ ]dτ

/∫
ψ	[χ ]ψ[χ ]dτ

= 2π2∫
ψ	ψdτ

∫ ∞

0
ds

∫ s

0
du

∫ u

0
dt

{
u(s2 − t2)

×
[(

∂ψ

∂s

)2

+
(

∂ψ

∂t

)2

+
(

∂ψ

∂u

)2]

+ 2
∂ψ

∂u

[
s(u2 − t2)

∂ψ

∂s
+ t(s2 − u2)

∂ψ

∂t

]

− [4Zsu − (s2 − t2)]ψ2

}
. (18)

The energy thus obtained is an upper bound because al-
though the densities are equivalent [see Eq. (15)], the
ψ[χ ] �= ψE .

We note that the functionals ψ[χ ] satisfy both the electron-
electron coalescence [5] condition which is

ψ(r1,r2, . . . ,rN ) = ψ(r2,r2, . . . ,rN )

(
1 + u

2

)
+ (r1 − r2) · C(r2,r3, . . . ,rN ), (19)

where C(r2,r3, . . . ,rN ) is an unknown vector, and the

electron-nucleus coalescence condition [5] which is

ψ(r,r2, . . . ,rN ) = ψ(0,r2, . . . ,rN )(1 − Zr)

+ r · a(r2, . . . ,rN ), (20)

where a(r2, . . . ,rN ) is unknown. The satisfaction of the latter
condition is more readily seen when written in differential
form in terms of the density as [5]

lim
r→0

dρ(r)

dr
= −2Zρ (r = 0), (21)

where ρ(r) is the spherical average of ρ(r). As the ψ[χ ]
reproduce the exact density, its value and slope at the nucleus
are also reproduced exactly.

With the wave-function functionals ψ[χ ], the expectations
of single-particle and two-particle operators can then be
obtained. We refer the reader to [12] for a general expression
for the expectation value of Hermitian operators W in elliptical
coordinates.

Since both functionals ψ[χ1] and ψ[χ2] reproduce the den-
sity ρE(r), the value of the external potential energy component
of the total energy is the same for both functionals. [In terms
of the density ρE(r), this component term is

∫
ρE(r)v(r)dr,

where v(r) = −Z/r .] Then employing the constrained-search
definition of density functional theory [8], viz., that the exact
wave function is the one which minimizes the expectation of
the kinetic and electron-interaction operators, it is possible to
determine which of the two functionals is closer to the true
wave function. This way of determining which wave-function
functional ψ[χ ] is superior differs from that of the standard
variational method. In the latter, it is solely the value of
the energy upper bound that distinguishes between the wave
functions. The Levy-Lieb constrained-search approach also
employs the energy upper bound value condition, but in
addition requires the wave functions to reproduce the true
density.

Finally, it is evident that with the appropriate choice for the
prefactor to reflect a certain symmetry, the above framework
for the construction of wave-function functionals ψ[χ ] can be

χ1 (s, t)

q = 0.4959

FIG. 1. Graph of the function χ1(q; s,t) as a function of the
coordinates s and t , at the value of the parameter q that leads to
the minimum of the energy.
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χ2 (s, t)

q = 0.2542

FIG. 2. Graph of the function χ2(q; s,t) as a function of coordi-
nates s and t , at the value of the parameter q that leads to the minimum
of the energy.

applied without modification to the lowest excited state of that
symmetry.

III. APPLICATION TO THE GROUND STATE OF HELIUM

We next apply the above framework to the ground state of
the helium atom. For the exact density ρE(r) we employ that
obtained from the 38-parameter correlated wave function of
Kinoshita [11] which is

ψE(s,t,u) = 1.364931021e−1.860556s

38∑
i=1

yi(s,t,u). (22)

A comparison with Eq. (12) shows that N = 1.364931021
and Zeff = 1.860556. The analytical expression for the cor-
responding exact density ρE(r) [together with the functions
yi(s,t,u)] is given in [10]. The total energy due to this wave
function is −2.903724 a.u., and is exact to six decimal places.

On substituting this expression for ρE(r) in Eq. (15) and
solving the quadratic equation Eq. (16) for the two solutions
χ1(q; s,t) and χ2(q; s,t), two wave function functionals ψ[χ1]
and ψ[χ2] are obtained for each value of the parameter q. This
process is repeated for different values of q till the total energy
is minimized. Thus, each wave-function functional leads to an
upper bound to the energy while simultaneously reproducing
the exact density.

The three-dimensional plots of the functions χ1(q; s,t) and
χ2(q; s,t) for the energy-minimized values of q are given in
Figs. 1 and 2, respectively. Note how different these functions
are as are the corresponding q values. As such the wave-
function functionals ψ[χ1] and ψ[χ2] are different. Yet they
both lead to the same exact density ρE(r).

To demonstrate the accuracy of the methodology, we
present in Table I the exact densities ρE(r) due to the
Kinoshita wave function, and the densities obtained by
the wave-function functionals ψ[χ1] and ψ[χ2]. Observe that
the three are identical to 14 or 15 decimal places for any
electron position. It is evident that ψ[χ1] and ψ[χ2] both
satisfy the electron-nucleus coalescence condition.

In Table II we present the expectation values of single- and
two-particle operators W as determined by the Kinoshita wave
function and the wave-function functionals ψ[χ1] and ψ[χ2],
and the percentage difference of the latter. Notice in the first
row, the ψ[χ1] and ψ[χ2] are normalized as the density is
obtained exactly. For the same reason, all the single-particle
expectations for both functionals are the same and exact.

TABLE I. Electron densities ρ(r) for the ground state of the helium atom as obtained from the Kinoshita wave function and the wave-function
functionals ψ[χ1] and ψ[χ2].

r (a.u.) Electron density ρ(r) (a.u.)

Kinoshita ψ[χ1] ψ[χ2]

0.0 3.621087819437064 3.621087819437064 3.621087819437064
0.1 2.436381500340967 2.436381500340965 2.436381500340966
0.2 1.652615187755789 1.652615187755788 1.652615187755788
0.3 1.130666655877191 1.130666655877190 1.130666655877191
0.4 0.780305411838685 0.780305411838685 0.780305411838685
0.5 0.543063013298303 0.543063013298303 0.543063013298303
0.6 0.380966113263468 0.380966113263468 0.380966113263468
0.7 0.269224394323850 0.269224394323850 0.269224394323850
0.8 0.191536789191938 0.191536789191938 0.191536789191938
0.9 0.137092890184766 0.137092890184766 0.137092890184766
1.0 0.098657244532206 0.098657244532206 0.098657244532206
2.0 0.004466660947059 0.004466660947059 0.004466660947059
3.0 0.000241398997714 0.000241398997714 0.000241398997714
4.0 0.000013928181762 0.000013928181762 0.000013928181762
5.0 0.000000824486862 0.000000824486862 0.000000824486862
6.0 0.000000049656225 0.000000049656225 0.000000049656225
7.0 0.000000003052641 0.000000003052641 0.000000003052641
8.0 0.000000000191672 0.000000000191672 0.000000000191672
9.0 0.000000000012199 0.000000000012199 0.000000000012199
10.0 0.000000000000776 0.000000000000776 0.000000000000776
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TABLE II. Expectation values of operators W obtained from the
Kinoshita and the wave-function functionals ψ[χ1] and ψ[χ2] that
possess the same density. The percentage difference of the latter with
respect to the former is also given.

Operator W Expectation Values (a.u.) %Difference

ψ[χ1] ψ[χ1]
Kinoshita ψ[χ2] ψ[χ2]

1.000002 0.00021 1.000000 1.000002 0.0002
3.621088 0

δ(r1) + δ(r2) 3.621088 3.621088 0
3.376628 01

r1
+ 1

r2
3.376628

3.376628 0
12.034989 01

r2
1

+ 1
r2
2

12.034989
12.034989 0

1.858933 0
r1 + r2 1.858933 1.858933 0

2.386808 0
r2

1 + r2
2 2.386808 2.386808 0

2.922169 0.6352
−∇2

1
2 − ∇2

2
2 2.903724 2.906672 0.1015

2.526643 0.4096|r1 − r2|2 2.516337 2.500373 0.6344
1.430460 0.5906|r1 − r2| 1.422062 1.419573 0.1750
0.931462 1.51821

|r1−r2| 0.945821
0.943714 0.2228
1.403079 4.22071

|r1−r2|2 1.464909
1.449604 1.0448

−2.899625 0.1412
H −2.903724 −2.902870 0.0294

1.007775 0.7775T

−E
1.000000

1.001310 0.1310

The expectation of the kinetic energy and two-particle
operators are, of course, not expected to be exact. Nevertheless,
these values are relatively accurate, with those due to ψ[χ2]
being generally superior to those of ψ[χ1]. The kinetic
energy for ψ[χ2] differs from the exact value by 0.1%. The
corresponding expectation of two-particle operators differs by
1% or less. The total energies of ψ[χ1] and ψ[χ2] are within
15/100 and 3/100, respectively, of the exact value. The last
row shows the satisfaction of the virial theorem. It is evident
from the constrained-search definition of density functional
theory that ψ[χ2] is closer to the exact wave function.

The results of the various expectations demonstrate, as in
our previous work, that the construction of wave-function
functionals leads to functions that are accurate throughout
space. And that greater accuracy can be achieved with fewer
parameters. The present results are obtained from an essen-
tially one-parameter variational wave-function functional. Still

more accurate results for the energy and the two-particle
expectations could be achieved with a better prefactor [3] or a
superior density.

IV. CONCLUDING REMARKS

In this work we have extended the idea of the constrained-
search variational method for the construction of wave-
function functionals ψ[χ ]. In the present case, the search for
the functions χ is constrained such that ψ[χ ] reproduces the
density ρ(r) while simultaneously leading to an upper bound
to the energy. The functionals ψ[χ ] are thus automatically
normalized and also satisfy the electron-nucleus coalescence
condition. They are also constructed so as to satisfy the
electron-electron coalescence condition. In our prior work,
the search was constrained to functions χ such that ψ[χ ]
was either normalized, or ψ[χ ] was both normalized and
reproduced the exact expectation of a Hermitian operator,
while also simultaneously leading to a rigorous upper bound to
the energy. The search for the functions χ in each case requires
the solution of an integral equation. As noted previously, some
of these solutions can be unphysical. A key conclusion arrived
at from these calculations is that these constrained-search
variational wave-function functionals are accurate throughout
space. Additionally, with fewer parameters, a high degree
of accuracy is achieved for the energy as a result of the
variational principle while other physical observables are
obtained exactly [4]. In the present work, for example, a
one-parameter wave-function functional leads to an energy
correct to three decimal places while simultaneously the
density and hence all single-particle operator expectations
are exact. Based on our results thus far, we believe the
further development of the idea of constructing wave-function
functionals to be an important research path. In that vein,
we are now investigating the construction of functionals that
while leading to upper bounds to the energy, also reproduce
the reduced single-particle density matrix. The latter is [10]
the expectation of a complex sum of Hermitian operators that
involve the product of the density and translation operators.
Finally, we reiterate, that in addition to all the advantages
of constructing wave-function functionals that reproduce the
density, it is as a consequence also possible via the constrained-
search definition of density functional theory to differentiate
between them as to which is closer to the exact wave function.
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