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We explain by quantal density functional theory the physics of mapping from any bound nondegenerate
excited state of Schrodinger theory to an S system of noninteracting fermions with equivalent density
and energy. The § system may be in a ground or excited state. In either case, the highest occupied
eigenvalue is the negative of the ionization potential. We demonstrate this physics with examples. The
theory further provides a new framework for calculations of atomic excited states including multiplg.l

structure.

DOI: 10.1103/PhysRevLett.87.113002

In this paper we describe time-independent quantal den-
sity functional theory (Q-DFT) of singly or multiply ex-
cited bound nondegenerate states. This is a description of
the physics of mapping from any such excited state, say
the kth state of Schrodinger theory to that of a system of
noninteracting fermions with equivalent density p;(r) and
energy E;. We shall denote such a noninteracting system
as an S system, § being a mnemonic for “single Slater”
determinant. The rationale for the transformation is that,
in determining electronic structure, it is easier to solve N
equations for particles in a local (multiplicative) poten-
tial than to solve the one N-electron Schrodinger equa-
tion. The understanding of the physics in turn allows for
such calculations to be performed, albeit in an approxi-
mate manner. As in ground state Q-DFT [1], the descrip-
tion of the S system is in terms of fields derived from
quantal sources. These fields are separately representative
of electron correlations due to the Pauli exclusion prin-
ciple, Coulomb repulsion, and correlation-Kinetic effects.
(Correlation-kinetic effects are a consequence of the differ-
ence in kinetic energy between the interacting Schrodinger
and noninteracting S systems.) We prove that the potential
energy v..(r) of the noninteracting fermions, representa-
tive of all the many-body effects, is the work done to move
an electron in the force of a conservative field comprised of
the sum of the individual fields. Further, the total excited
statgenergy £ is also expressed in integral virial form in
terms of these fields.

We begin by (i) presenting the formal rigorous frame-
work of bound excited state Q-DFT. Within this frame-
work, the model reference system is arbitrary in that the
S system of noninteracting termions may either be in (a)
its ground state, or (b) in an excired state with. say, the
same configuration as in Schrodinger theory. The differ-
ence between these reference systems is accounted for en-
tirely by correlation-kinetic effects. In either case, the
highest occupied eigenvalue of the § system differential
equation is the negative of the ionization potential. We
further note that, within this framework, atomic multiplet
structure can also be obtained. We then (ii) demonstrate the
transformation from an excited singlet state of Schrédinger
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theory to that of an § system in its ground state for the
exactly solvable Hooke’s atom [2]. In this manner, the
exact separate contributions of the Pauli, Coulomb, and
correlation-kinetic effects to the total and potential energy
are determined. Next, (iii) we demonstrate the excited §
system representation of Q-DFT, and the use of approxi-
mate wave functions, by performing self-consistent cal-
culations of various excited states of the Li atom within
the Pauli-correlated approximation. In this approximation,
only correlations due to the Pauli exclusion principle are
considered. We then (iv) propose, within beth the ground
and excited S system representations, a new calculational
scheme for going beyond the Pauli correlated approxi-
mation. Finally, (v) we explain via Q-DFT the physics
underlying the bidensity energy functional and functional
derivative of the Kohn-Sham (KS) DFT of excited states
[3], and the differences between the two theories.

The Q-DFT excited state formalism occurs as follows.
The Schrédinger equation for the kth excited state is

[T+ V + U]¥u(X) = Ex Wi (X), ()

T=—35, Vi V=) U=33,1/Irn-rx]
where ¥; and E; are a bound nondegenerate excited state
wave function and energy, respectively, X = x;,..., Xy,
X = ro, with o the spin coordinate. The differential
virial theorem satisfied by this wave function is

Vu(r) = —Fy(r), (2)

where the field Fi(r) = —&..(r) + D(r) + Z(r). The
electron-interaction field &..(r), representative of Pauli
and Coulomb correlations, is obtained via Coulomb’s
law as E.(r) = [dr' gr,v)(r — r)/lr — ¢/]®.  Its
source is the pair-correlation density g(r,xr) =
(Wi e, 1) )/ pilr). where P(re) = 31 8(r -
r;)8(r’ —r;), and the density pi(r) = (‘I’J[)I\Pk),
p =28 —r;). Since g(r.r') = p(r') + py(r,r'),
where p.(r,x') is the dynamic Fermi-Coulomb hole
charge, we can then write £,.(r) as the sum of the Hartree
£n(r) and Pauli-Coulomb &,.(r) fields. The differential
density field D (r) = d(r)/pe(r), d(r) = —;VV2pi(r),
and its source is the density. The kinetic field Z(r) =

© 2001 The American Physical Society 113002-1

wit

Thy
to

ex¢
the

fol
der
is

wh
the
Z
Di
2

wi

wW(
va




2001

r the
, the
and
ergy
ed §
FOXi-
cal-
ithin
tion,
> are
yund
onal
OXi-
ysics
onal
tates

OWS.

(1
l'jL
state

XN
ntial

VOLUME 87, NUMBER 11

PHYSICAL REVIEW LETTERS

10 SEPTEMBER 2001

2(r, [y« ]}/ pi(r), where the field z(r) is defined by its com-
ponent z2a(r) = 223 Ao p(r) /drﬁ with 1.5(r; [y ]) =
4[a Jorborg + & /drﬁdr Nyl v w—po—, the kinetic
energy demlty tensor. Here the source is the spinless single
particle densily matrix 'y;\(r r) = (W X|¥). X =4 +
iB A=3,[8(r; — OTja) + 8(r; — )T, (—a)],

-(i/D)3, [8(r, -r) ,-(a - b(r, - )T;(—a)],
T (a) 15a translatlon operator, and a =r’ — r.

The S system differential equation corresponding to the

kth excited state is

[ 37+ o) + ve0)]ex) = €pix). (3)

with  pr(r) = (Do} [pl1P{e}) = 3, le:(x)1%,  and
D{g;} the single Slater determinant of the orbitals ¢;(x).
The ¢;(x) may be the N lowest lying states corresponding
to a ground state configuration, or they may be in an
excited state with the same configuration as in Schrodinger
theory. In either case, the highest occupied eigenvalue
€m = —Ii, the negative of the ionization potential. This
follows from the known asymptotic structure of the
density. The differential virial theorem satisfied by ®{¢p;}
is

Vu(r) = —F(r), (4)

where the field F,(r) = Vv, (r}) + D(r) + Z,(r), and
the kinetic field Z(r) = z,(r;[ v, ])/ps(r). The field
r;ly,.l) is defined in terms of its source, the
Dlrac demlty matrix ¥, ,(r.r’) = (O{g,}|X|D{e}) =
Zr o @: l‘O’)gp[(l‘ o) as s, a l‘) = ZZB dty aB(r /drﬂa
where teqp(r:[y,4]) = 4[62/0rnar,3 + a2 argar!] x
Vs.k (r', l'M)|r’:r” =f.
Equating Eqs. (2) and (4). we have that v,,.(r) is the
work done to move an electron in the force of the conser-
vative field ‘F, (r):

- f F) - ar, 5)

where Filr) = Ey(r) + €.(r) + Z, (r}, and Z,.(r)=

Z,(r) — Z(r) is the correlation-kinetic ficld. To delin-
eate the separate contributions of Pauli and Coulomb
correlations, we write p..(r.r') = p.(r,x') + p.(r.1'),
where p.(r,r) = =|y(r.e)]?/2p,(r} is the Fermi
hole with  [p.(r,r')dr’ = -1, and p.(r.r') is
the Coulomb hole with [ p.(r.r')dr’ = 0. Thus,
Filr) = Eu(r) + Eu(r) + E.(r) + Z, (r), where E.(r)
and £.(r) are the corresponding Pauli and Coulomb fields.
The fields €,.(r), or &,(r) and £.(r), and Z, (r) are not
necessarily conservative. Their sum always is.

The excited state energy is

Ek =T, + [Pk(l')v(r) dr + Eee + 7., (6)

where T, = (O{@;} |T|®{p;}) is the § system Kinetic en-
ergy. The electron interaction E,,. and correlation-kinetic
T energies are expressed in terms of the fields in integral
virial form as

113002-2

E,., = [ dr p;(r)r - £,.(r} and
| (7N
T(. = 5 [ dr pk(l‘)r . Z;(,(l').

The energy E,, is the sum of its Hartree Ey. Pauli E,,
and Coulomb E. components with each energy expressed
in virial form in terms of the corresponding field.

Equations (3), (5), and (7) define the system of noninter-
acting fermions, either in their ground state or excited state,
that will reproduce the density and energy of any bound
nondegenerate excited state of Schrodinger theory. It fol-
lows that the differences in the corresponding locat po-
tentials are due entirely to correlation-kinetic effects since
it is the field Z,.(r) that is different. In either case, the
ionization potential is the negative of the highest occupied
eigenvalue.

In a similar manner, it is possible by Q-DFT to con-
struct S systems which reproduce the density and energy of
bound nondegenerate excited states as determined within
Hartree-Fock and Hartree theories.

To demonstrate the mapping from an excited state of
Schrodinger theory to a ground state of an § system, we
consider the first excited singlet state of Hooke's atom
which is comprised of two electrons in a harmonic external
potential v(r) = 2 w?r?. The wave function for this state is

\I’](r],rv) C()(’ Wk, —wr /4|: + Cl\/%r + Cz(%)rz

3/2
+ C3(%) r3], (8)

wherer = r; — r;, R = (r; + ry)/2,Cy = 0.026 1005,
C) = 1.146884, C, = —0.561569, C; = —0.489647,
and w = 0.380129. The energy E, = 2.280775 a.u.
The space orbitals of the corresponding singlet ground
state of the § system are ¢;(r) = /p(r)/2, i = 1,2.

As the atom in this excited state is spherically
symmetric, the potential v,.(r) = Wy(r) + W (r) +
We(r) + W, (r), where Wy, W,, W,.. and W,. are,
respectively, the work done in the fields €y, &,, &, and
Z,.. This potential, whose components are plotted
in Fig. |, then generates the same density p,(r)
and energy E; as obtained from Egq.(8). For com-
pleteness, T, =0327471 an., E,. = 0352142 a.u.,

Ey = 0722217 an., E, = —-0361109a.u., E, =
—0.008966 a.u.,and T, = 0.548 791 a.u. Note that T, is
63% of T = (W¥|T|¥). In contrast, in the transformation
[1] from the ground state of Hooke’s atom, 7., is 4% of
T. Hence, correlation-kinetic effects are of much greater
significance in the transformation of excited states to
ground state systems.

To provide further proof that the § system is in its
ground state, we have solved Eq. (3) numerically for
the v,.(r) determined and thereby obtained the ex-
cited state density from the resulting zero node orbitals
generated.  Further, the single eigenvalue determined

113002-2
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FIG. 1. The Pauli W,(r), Coulomb W (r), and correlation-
kinetic W, (r) potentials of the first excited singlet state of
Hooke’s atom.

corresponds to minus the ionization potential: €, =
—I; = 1710582 a.u. Thus, we have demonstrated that it
is possible to transform any nondegenerate excited state
of Schrodinger theory to a ground state of noninteracting
fermions with equivalent density, energy, and ionization
potential.

We next present self-consistent results for excited
states of Li ([He] 34, 4d, 5d, 4f, 5f) within the Pauli-
correlated and central-field approximations in which the
S system is in an excited state with the same configuration
as .t‘hat of the excited state of Schrodinger theory. In this
case v,.(r) = Wy(r) + W,(r), with W,(r) plotied in
Fig. 2 for the Li: [He] 4d, 4f states. The inset shows
the asymptotic structure where the shell corresponding to
the excited state electron is clearly evident. In Table I we
present total energies together with those of Hartree-Fock
(HF) theory. The Q-DFT results constitute an upper
bound, being within 5 ppm of those of the latter. The
results of configuration interaction (CI) calculations [4],
which expectedly are lower, are also quoted. In Table II,
we present the results for the ionization potential as
obtained via the highest occupied eigenvalue €, as well
as by total energy differences, together with experimental
values [5]. The accuracy of these results speaks for itself.
Those of the €,, are because the asymptotic structure of
v..(r) for the fully interacting system is given by the
Pauli potential W, (r) - —1/r.
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FIG. 2. The Pauli potential W,(r) of the excited states of Li:
(He] 4d, 4f.

The Slater determinant of the previous example consti-
tutes an approximate wave function representative only of
Pauli correlations. Coulomb correlations and correlation-
kinetic effects may additionally be incorporated by as-
suming an approximate few-parameter correlated wave
function. One such choice for a nondegenerate excited
state which satisfies the electron-electron cusp condition

is [6]

V(X [pD) = @l [ [ - sl )
i

As in the above example, the excited state is identified
by the Slater determinant ®{¢;} of the solutions of the §
system differential equation [Eq. (3)] in the excited state
configuration. The f(r;,r;;[p]) is a spinless correlation
functional: f(r;,r;;[p]) = exp(—Br?)[1 — x(R) (I +
r/2)], wherer =r; —r;,R=(r; +1;)/2, B = qp‘”(R),
g is a variational parameter and y(R) is determined by

TABLE 1. Total energies of the excited states of Li.

—Total energy (a.u.)

Q-DFT Cl

Li (Pauli approx.) HF (Ref. [4])
[Hel3d 7.291 94 7.29198 7.33552
[Heldd 7.267 64 7.26767 7.31119
[Hel5d 7.256 40 7.25642 7.29693
[Heldf 7.267 66 7.26767 7.31117
[Hel5f 7.25641 725642 7.29992
113002-3
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TABLE II. Ionization potentials of the excited states of Li.

Tonization potential (a.u.)

—Eun Ek - E}i{Uﬂ
Q-DFT CI Expt.
Li {Pauli approx.) (Ref. {4]) (Ref. [5])
[Hel3d 0.05572 0.05554 0.05561 0.05561

{He]4d 0.03137 0.03124 0.03128 0.03127
[Hel5d 0.02008 0.02000 0.02002 0.02001
[Heldf 0.03125 0.03126 0.03126 0.03124
[Hel5f 0.02000 0.02001 0.020 00 0.01997

the Coulomb hole sum rule. The products of the corre-
lation functional are limited to lowes! order since higher-
order products of these factors are of less significance. If a
ground state S system is constructed, then the excited state
is identified in the Skater determinant of Eq. (9) by the cor-
responding excited but unoccupied orbitals of the § system
differential equation. For atomic multiplet structure, the
appropriate linear combination of Slater determinants is
employed in Eq. (9). We are presently applying this wave
function for Q-DFT calculations of excited states.

The origin of the mathematically rigorous framework of
Q-DFT of bound excited states presented here harks back
to the work of Harbola and Sahni [7], whose ideas were
based on physical considerations. The framework, there-
fore, provides both a justification for, as well as explains,
the accuracy of the numerous [8] excited state calculations
including singly and multply excited multiplet structure
[8] performed on the basis of these ideas.

Q-DFT and KS DFT differ fundamentally in their de-
scription of the S system. In Q-DFT, the total and po-
tential energy of the noninteracting termions are defined
in terms of fields and quantal sources. Within KS DFT,
on the other hand, these properties are described, respec-
tively, in terms of an energy functional of the density and
of its functional derivative. More recently, KS DFT has
been extended [3] to the individually excited state. In
the corresponding KS DFT representation of the § sys-
tem, all the many-body effects are incorporated in a biden-
sity electron-interaction functional EXS[p, po]l,,, where
polr) is the ground and pp(r) the excited state density.
(This functional is different from the KS DFT ground state
functional EX3[p]],,.) The corresponding local electron-
interaction potential is defined as the functional derivative
SEXS[p,pol/8p(r)l,,. The S system is assumed to be in
an excited state. Now, since within Q-DFT it is also pos-
sible to obtain the excited state density and energy from
an § system in its ground state, its scope is broader. The
remarkable fact that such an S system can be constructed
was previously unknown [9], and provides new mathemati-
cal and physical insight into the excited state problem.
In particular, we now understand that the arbitrary na-
ture of the reference S system is governed entirely by the

113002-4

correlation-kinetic effect. Further, Q-DFT provides the
physical meaning of the functional EXS[p, po]|,, and of
its derivative. The functional is the sum of E,, and T,
of Eq. (7) as expressed in terms of the electron-interaction
Eee(r) and correlation-kinetic Z,.(r) fields, and the func-
tional derivative is the work done in the conservative field
Fi(r) as defined by Eq. (5).

In conclusion, we have explained and demonstrated the
physics of mapping from any nondegenerate excited state
of Schrodinger theory to an § system of noninteracting
fermions with equivalent density and energy. The § sys-
tem may either be in a ground *state or gn excited state.
In turn, these ideas have led to new methodology for per-
forming excited state calculations including atomic multi-
plet structure. To further emphasize the arbitrary nature of
the reference system, we note that it is also possible within
Q-DFT to transform an excited state of Schrodinger theory
to a ground state of noninteracting bosons with equivalent
excited state density, energy, and ionization potential. We
discuss the physics of this transformation elsewhere. How-
ever, for two electrons, the differential equations for non-
interacting fermions and bosons in their ground state are
the same, so that the demonstration above of the Hooke’s
atom is equally an example of the transformation to the
system of noninteracting bosons.

V.S. and L. M. are grateful to RF-CUNY. L.M. also
acknowledges IBM-SUR and NIH-SCORE.
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