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ABSTRACT 

Forecasting volatility is a critical component of asset allocation, risk management, and option 
pricing.  Many different methods and models are used to predict volatility, and many studies have 
examined the efficacy of one method or another. This study investigates whether the abilities of historical 
volatility, GARCH models, and VIX to forecast volatility vary in different market conditions, as 
distinguished by levels of volatility and returns. It is found that market conditions do impact the abilities 
of the variables to forecast volatility. Overall, the forecasts implied by the GARCH models perform best 
according to the various metrics, while the VIX forecast has the worst performance. However, with a 
simple linear correction for the bias, the forecasts implied by VIX and the leverage GARCH model perform 
best. Their relative performance depends on market conditions; the VIX forecast performs best during 
times when volatility is low. These results indicate that practitioners who wish to forecast volatility should 
take current market conditions into account. 
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I. INTRODUCTION 

Forecasting volatility is a crucial component of portfolio management, risk management, asset pricing, 

and option trading. Multiple types of models have been used to predict volatility. Approaches include 

historical volatility, the CBOE S&P 500 VIX model (hereinafter “VIX”), ARCH/GARCH class conditional 

volatility models, and stochastic volatility models such as the Heston model. This study evaluates a 

historical model, two GARCH models: GARCH (1,1) and the leverage GARCH(1,1), and VIX. The forecasts 

provided by these models are compared to actual realized returns of the S&P 500 to determine if the 

models perform differently, both absolutely and relative to each other, in different market conditions, or 

“regimes.” 

The field of finance is fundamentally about risk and uncertainty, and volatility is the most commonly used 

measure of uncertainty. As Campbell, Lo, and MacKinley (1997) state, “The starting point for every 

financial model is the uncertainty facing investors, and the substance of every financial model involves 

the impact of uncertainty on the behavior of investors and, ultimately, on market prices. The very 

existence of financial economics as a discipline is predicated on uncertainty.”  

Since volatility is a common proxy for risk, an ability to predict volatility is a, if not the, critical ability in the 

development of risk management models.  Many risks, liquidity risk, inflation risk, exchange risk, credit, 

market risk etc., can impact portfolio performance. However, if it was known with certainty the direction 

that of any risk, it would be relatively easy to hedge against any risk that was of concern to a particular 

portfolio. The uncertainty of the movement of these factors, which could be described as the volatility in 

these factors, eliminates the ability to directly hedge. Historical volatility is the key input into VAR models, 

but an improvement in the predictability of volatility would result in a direct improvement of risk 

modeling.  

The Sharpe-Lintner Capital Asset Pricing Model (“CAPM”) (Sharpe, 1964, Lintner 1965) was predicated on 

the assumption that all investors should hold mean-variance efficient portfolios, where mean is the 

expected return, and variance is the variance of returns within the portfolio.  Investors try to obtain the 

maximum return for a given level of risk, or alternatively, accept a minimum level of risk for a given 

return. Fama and French (1992) expanded upon this by adding size and value factors, but the risk/return 

trade-off remained the primary component of asset pricing.  These approaches that attempt optimal 

portfolio construction by maximizing risk/return throughout the spectrum are based upon one 

fundamental belief, that the risk in any given investment can in fact be assessed. 

There are a number of ways to trade volatility. The simplest way would be to go long or short, as 

appropriate, a traded volatility proxy, such as the VIX. Option sellers are short volatility, as they are 

betting that the underlying stays within a ban inside of the strike prices. Option buyers, alternatively, are 

long volatility, hoping that the underlying pricing breaks out beyond the strike price. More sophisticated 

derivatives such as variance and volatility swaps are also used both as hedges, and as ways to trade based 

on a belief in the future level of volatility. Clearly it is axiomatic that someone trading volatility would 

want to be able to predict volatility, to understand if the particular traded instrument is appropriately 

priced, and ideally to exploit a pricing inefficiency. 

Numerous variables and methods have been used to forecast market volatility, as measured by realized 

volatility of the S&P 500 index. These variables are constructed from past volatility or are forecasts 

implied from option prices. In particular, the VIX, which is the model-free implied volatility constructed 
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from nearby options on the S&P 500 index, is often used as a forecast of market volatility, as is past 

realized volatility, i.e., historical volatility. Both VIX and historical volatility are likely to be biased forecasts 

of realized volatility. The VIX is constructed from option prices and hence is the risk-adjusted expectation 

of realized volatility; if investors view volatility risk either favorably or unfavorably then the VIX will differ 

from the actual expectation because of the nonzero risk premium. Historical volatility is past realized 

volatility. If volatility followed a random walk, then historical volatility would be an unbiased forecast; 

however, volatility has been shown to display mean reversion and in particular does not appear to follow 

a random walk. 

Generalized autoregressive conditional heteroskedastic, or GARCH, models are a relatively parsimonious 

class of models that allow for many of the stylized features of volatility. Importantly, GARCH models give 

formulas for expected realized volatility and therefore their forecasts of volatility can be computed in 

closed form. Their forecasts can thus be compared with the more naïve VIX and historical volatility 

forecasts.  

While numerous papers have attempted to evaluate which method is the best for predicting volatility, to 

our knowledge what has not been done in the literature is to compare the forecasts in different market 

conditions. This paper investigates two questions, whether the success of these variables for predicting 

volatility is a function of underlying market conditions, as distinguished by levels of returns and volatility, 

and whether different methods of predicting volatility perform relatively better in these different 

conditions. 

It is found that, as expected, neither VIX nor historical volatility are accurate forecasts of realized 

volatility. GARCH-based models, specifically standard GARCH (1,1), and Leveraged GARCH (1,1), 

consistently outperformed the VIX model when evaluated using typical forecast evaluation tools, and the 

Diebold-Mariano model. 

This remainder of this paper is presented as follows: Section II addresses prior research, Section III 

addresses data selection and methodology, Section IV contains findings, and Section V contains the 

conclusion, and recommendations for further research. 

II. Literature Review 

 

Poon and Granger (June 2003), prepared a comprehensive review of 93 papers that dealt with volatility 

forecasting written over the previous two decades (from 1983 through 2003). Note that rather than 

presenting a new approach to volatility forecasting, they focus on summarizing research to date, and, 

from the universe of existing research, attempt to draw conclusions. They look at two overall questions, is 

volatility forecastable; and, which approach is best. They state that “Volatility is not the same as 

risk….(but) A good forecast of the volatility of asset prices over the investment holding period is a good 

starting point for assessing investment risk.” Further they assert the importance of predicting volatility for 

both option pricing and portfolio risk management. They start by defining, and comparing and 

contrasting, key terms, volatility, standard deviation, and risk. Then give brief overviews of the mechanics 

of Time Series (Historical) models, ARCH/GARCH type models Stochastic Models, and Option-Implied 

Models. Similar to this paper, they compare the results of historical volatility approaches to those using 

volatility implied from options. In a summary paper published in the Financial Analysts Journal, Volume 

61, Number 1, 2005, they conclude that “Based on the forecasting results, option implied volatility 
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dominates time-series models because the market option price fully incorporates current information and 

future volatility expectations. Between historical volatility and ARCH models, we found no clear winner, 

but they are both better than the stochastic volatility model. Despite the added flexibility and complexity 

of SV models, we found no clear evidence that they provide superior volatility forecasts. Also, high 

frequency data clearly provide more information and produce better volatility forecasts, particularly over 

short horizons.” 

Brownlees, Engle, and Kelly, (2011) evaluated predictive models, within the ARCH class of models, to 

“identify successful predictive models over multiple horizons and to investigate how predictive ability is 

influenced by choices for estimation window length, innovation distribution, and frequency of parameter 

re-estimation.” As mentioned, in their analysis they used five “ARCH” based models, GARCH (1,1), the 

basic GARCH model, TARCH, Threshold ARCH, which addresses the tendency for volatilities to increase 

when past returns are negative by appending a linear asymmetry adjustment, EGARCH, Exponential 

GARCH, which models the low of the variance, NGARCH, Nonlinear GARCH, addresses negative returns by 

amplifying negative news relative to positive news, and, APARCH, Asymmetric power ARCH. Brownlees, et 

al found that, asymmetric models perform well across all methods, assets, and sub-samples. And that 

models perform best using the longest available data series; and, updating parameters regularly helps 

counteract the adverse effects of parameter drift. 

Bollerslev, T., Marrone, J., Xu, L., and Zhou, H., (June 2014) evaluated the findings or recent research that 

indicates that the variance risk premium predicts aggregate stock market returns. Their findings 

corroborated the view that such predictability exists. Further, they identified a “global” variance risk 

premium, and found that a similar pattern of predictability existed, in markets such as France, Germany, 

Japan, Switzerland, the Netherlands, Belgium, and the United Kingdom. 

Bekaert and Hoerova (2014) attempted to decompose the squared VIX index into two components, the 

conditional variance of stock returns, and the equity variance premium (the difference between the 

squared VIX index, and an estimate of the conditional variance of the stock market). They describe the VIX 

as follows: “The VIX index is the “risk-neutral” expected stock market variance for the US S&P500 contract 

and is computed from a panel of options prices”. They state that VIX, also known as the “fear index” 

(Whaley, 2000), reflects both stock market uncertainty, and a variance risk premium. Measuring the 

variance risk premium is difficult however, because it requires an estimate of the conditional variance of 

stock returns. They concluded that while the variance premium was a “significant predictor of stock 

returns”, the conditional variance was not. 

Brownlees and Gallo, (2010) using Ultra High Frequency Data (“UHFD”) apply different historical volatility 

measures, realized volatility, bi-power realized volatility, two-scales realized volatility, realized kernel, and 

the daily range, to forecast Value at Risk (VaR).  They found that: “Simple benchmarks such as GARCH, 

unconditional variance, historical simulation, and RiskMetrics are clearly outperformed when UHFD 

volatility measures and the range are used, confirming the point that absolute or squared returns are less 

efficient as estimates of the relevant variance. We find that UHFD volatility measures and the daily range 

perform similarly well in terms of VaR forecasting, with the former obtaining the best forecasting results at 

“low” frequencies (20 or 30 minutes).” 

Todorov, (2010) examined the variation over time in the market variance-risk premium. He concluded 

that “jumps play a key role in explaining the variance risk premium”. While port jump spikes in volatility 
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“die out quickly”, there is a persistent increase in the variance risk premium. This finding could imply that, 

as it relates to option pricing, a time series predictor could provide an accurate estimate if the model 

correctly evaluates the impact of recent jumps. 

III. DATA SELECTION AND METHODOLOGY 

The data consist of daily returns on the S&P 500 Index (SPX), computed from daily closing values obtained 

from S&P Capital IQ, and daily observations of the VIX index, obtained from the Chicago Board Options 

Exchange (CBOE) website. The sample period is January 2, 1990, when the VIX data begin, to December 

31, 2016.  

The volatility to be forecast is the 22-day realized volatility: 

𝑅𝑉𝑡,22 = √
1

22
∑ (𝑅𝑡+𝑛 − 𝑅̅𝑡)222

𝑛=1                 (1) 

where 𝑅𝑠 is the S&P 500 return over day s and 𝑅̅𝑡 is the average daily S&P 500 return over the 22-day 

window. All returns are annualized. Note that today’s realized volatility, 𝑅𝑉𝑡,22, uses data over 

subsequent days and is thus not actually observed until 21 days later. For example, the realized volatility 

on January 1 is not observed until January 21.  

Table 1 - Realized Volatility 

REALIZED VOLATILITY – KEY STATISTICS 

Total Inputs 6805 

Average Daily Volatility - Annualized 15.46% 

Maximum Daily Volatility - Annualized 88.68% 

Minimum Daily Volatility - Annualized 4.64% 

Standard Deviation of Daily Volatility 9.15% 

Percentage of Dates in which VIX Prediction > Realized Volatility 85.8% 

Autocorrelation 0.994 

 

Figure 1 
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This measure of volatility is used for several reasons. First, it is the measure of volatility that is typically 

forecast in related studies1. Second, it can be interpreted as a proxy for the square root of the average 

variance over the subsequent month, which is typically used as the underlying variable in a variance swap 

contract. Third, the model free implied variance, computed from option prices, is closely related to this 

measure as explained in more detail below and can be interpreted as the measure’s risk-adjusted 

forecast. 

If realized volatility were a martingale, for example, if it followed a random walk, then the best forecast of 

future realized volatility would be past realized volatility. As shown in Table 1, RV is highly persistent and 

looks to be very nearly a random walk. Thus a natural candidate to forecast today’s realized volatility is 

the realized volatility that is most recently observed, today’s historical volatility, computed using return 

data over the previous 22 days: 

𝐻𝑉𝑡,22 = √
1

22
∑ (𝑅𝑡−𝑛 − 𝑅̅𝑡)221

𝑛=0                   (2) 

 

Despite the high persistence of realized volatility, theoretical considerations and previous research 

provide strong evidence that volatility tends to mean-revert and that returns are heteroskedastic. If 

returns exhibit heteroskedasticity then an equally weighted average of squared deviations from the 

mean, as defined in Equation (2), may not be optimal. To test the extent of heteroskedasticity within the 

data, the Breusch-Pagan-Godfrey test, the Harvey test, and the Glejser test were run. The results are 

given in Table 2: 

Table 2. Heteroskedasticity Tests 

Breusch-Pagan-Godfrey 

     
     F-statistic 368.9582     Prob. F(1,6803) 0.0000 

Obs*R-squared 350.0802     Prob. Chi-Square(1) 0.0000 

Scaled explained SS 3651.733     Prob. Chi-Square(1) 0.0000 

     
          

Harvey  

     
     F-statistic 685.1546     Prob. F(1,6803) 0.0000 

Obs*R-squared 622.6470     Prob. Chi-Square(1) 0.0000 

Scaled explained SS 709.0051     Prob. Chi-Square(1) 0.0000 

     
                                                           
1 See, for example, Bekaert and Hoerova (2014), Chernov (2001), and Poon and Granger (2003). 
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Glejser  

     
     F-statistic 997.1826     Prob. F(1,6803) 0.0000 

Obs*R-squared 869.9575     Prob. Chi-Square(1) 0.0000 

Scaled explained SS 1452.780     Prob. Chi-Square(1) 0.0000 

     
      

All three tests strongly reject the null hypothesis of homoscedasticity. 

Generalized autoregressive conditional heteroskedasticity (GARCH) models allow for heteroskedasticity, 

as well as volatility clustering and long-run mean-reversion. These models explicitly model the variance of 

daily return innovations as a separate variable whose evolution depends on its past values and on past 

return innovations. In particular, in the GARCH(p,q) model the conditional variance 𝜎𝑡
2 = 𝑣𝑎𝑟𝑡−1(𝑅𝑡) 

evolves according to: 

𝜎𝑡
2 =  𝜔 +  ∑ 𝛼𝑖

𝑞
𝑖=1 𝜀𝑡−𝑖

2 +  ∑ 𝛽𝑖
𝑝
𝑖=1 𝜎𝑡−𝑖

2                         (3) 

where 𝜀𝑡 is the return innovation: 
 
𝑅𝑡 = 𝜇 + 𝜀𝑡                   (4) 
 
To determine the optimal number of lags p and q, the Akaike Information Criterion (AIC) and Schwartz 
Information Criterion (SIC) were calculated for various lags. The results are shown in Table 3. 

 
Table 3.  

Model Akaike Info Criterion 
("AIC") 

Schwarz Criterion 
("SIC") 

GARCH  (1,1) -6.54 -6.54 

GARCH (0,1) -6.24 -6.23 

GARCH (0,2) -6.37 -6.36 

GARCH (0,3) -6.42 -6.41 

GARCH (0,9) -6.53 -6.51 

GARCH  (2,1) -6.54 -6.54 

GARCH  (3,1) -6.54 -6.54 

GARCH  (4,1) -6.54 -6.53 

GARCH  (5,1) -6.54 -6.53 

 
The AIC and SIC both indicate that the more parsimonious GARCH(1,1) model is appropriate: 

𝜎𝑡
2 =  𝜔 +  𝛼𝜀𝑡−1

2 +  𝛽𝜎𝑡−1
2                                (5) 
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The variance 𝜎𝑡
2 in GARCH models is the variance of the return over day t. The average daily variance 

over the subsequent 22 days is approximately equal to the realized variance (the square of the realized 

volatility): 

𝑅𝑉𝑡,22
2 ≈

1

22
∑ 𝜎𝑡+𝑛+1

221
𝑛=0                  (6) 

Therefore the GARCH forecast of realized variance is the sum of expected future variances. Fortunately, 

GARCH models have the very useful property that expected future variance can be written as a linear 

function of current variance. For example, the expected one-step ahead variance is  

𝐸𝑡[𝜎𝑡+2
2 ] = 𝜔 + 𝛼𝐸𝑡[𝜀𝑡+1

2 ] + 𝛽𝐸𝑡[𝜎𝑡+1
2 ] = 𝜔 + (𝛼 + 𝛽)𝜎𝑡+1

2             (7) 

Similarly, the formula for the expected n-step ahead variance is  

𝐸𝑡[𝜎𝑡+𝑛+1
2 ] = 𝜔

1−𝛾𝑛

1−𝛾
+ 𝛾𝑛𝜎𝑡+1

2
,   where 𝛾 = 𝛼 + 𝛽.              (8) 

See, for example, Hull (2015) for details. Making use of the formula for the Nth partial sum of a geometric 

series, the sum of the expected variances for the subsequent N days can also be written as a linear 

function of current variance: 

𝐸𝑡[∑ 𝜎𝑡+𝑛+1
2𝑁−1

𝑛=0 ] =
𝜔

1−𝛾
(𝑁 −

1−𝛾𝑁

1−𝛾
) +

1−𝛾𝑁

1−𝛾
𝜎𝑡+1

2 ≡ 𝐴(𝑁) + 𝐵(𝑁)𝜎𝑡+1
2            (9) 

It follows that expected realized volatility is given by 

𝐸𝑡[𝑅𝑉𝑡,22] = √
1

22
(𝐴(22) + 𝐵(22)𝜎𝑡+1

2 )             (10) 

Today’s expectation of a random variable is the forecast of that variable; therefore the forecast of 

realized volatility according to the GARCH model defined in Equation (5) is the expectation in Equation 

(10).  

The standard GARCH(1,1) model defined in Equation (5) has symmetric response to return innovations 

𝜀𝑡−1: next period’s variance increases by the same value whether the innovation is positive or negative. 

However, much empirical evidence supports the so-called “leverage effect” that return innovations are 

negatively correlated with volatility. For example, with the data sample used in this study, the correlation 

between return innovations and realized volatility is -10.4% and the correlation between return 

innovations and VIX is -11.8%. To account for this effect, the leverage GARCH model is considered. This 

model is defined by 

𝜎𝑡
2 =  𝜔 + 𝛼𝜎𝑡−1

2 (𝜀𝑡̂−1 − 𝜃)2 +  𝛽𝜎𝑡−1
2 ,   where 𝜀𝑡̂−1 = 𝜀𝑡−1/𝜎𝑡−1          (11) 

For positive 𝛼 and 𝜃, a positive return innovation results in a smaller increase in variance next period than 

does a negative return innovation of the same magnitude, and thus volatility will tend to be greater when 

returns are negative.  

The leverage GARCH model defined by Equation (11) also has the property that expected future variance 

is a linear function of current variance, with the same functional form as Equation (8) but with 𝛾 = 𝛼(1 +
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𝜃) + 𝛽, and therefore the forecast of realized volatility for the leverage GARCH model takes the same 

form as Equations (9) and (10).  

The forecasts of realized volatility provided by historical volatility and GARCH models as described above 

are based on past data. In contrast, volatility implied from option prices are forward looking and 

represent risk-adjusted expected future volatility. The Chicago Board Options Exchange Volatility index, 

VIX, is constructed from the highly liquid S&P 500 index options with roughly one month to maturity. Its 

squared value is the model free implied variance and thus is the risk-adjusted forecast of 22-day realized 

variance, 𝑅𝑉𝑡,22
2 .2 It follows that the VIX provides a natural forecast of realized volatility. 

This study evaluates and compares the abilities of these four variables to forecast realized volatility: 

i) HV -- historical volatility  

ii) SGARCH --the standard GARCH(1,1) model forecast defined in Equations (9) and (10) with 𝛾 =

𝛼 + 𝛽 

iii) LGARCH --the leverage GARCH(1,1) model forecast also defined in Equations (9) and (10) but 

with 𝛾 = 𝛼(1 + 𝜃) + 𝛽 

iv) VIX 

The forecasting performances of the variables are measured and compared using standard forecasting 

tests: root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error 

(MAPE), symmetric mean percentage error (SMPE), Theil U1, and a modified Theil U2 (explained below). 

The definitions of these metrics, as provided by the Department of Treasury(2008) are as follows. For 

each variable, let 𝑓𝑡 denote its forecast of 𝑅𝑉𝑡,22. 

𝑅𝑀𝑆𝐸 =  √
1

𝑇
∑ (𝑅𝑉𝑡 −  𝑓𝑡)2𝑇

𝑡=1 
               (12) 

𝑀𝐴𝐸 =  
1

𝑇
∑ |𝑅𝑉𝑡

𝑇
𝑡=1 −  𝑓𝑡|          (13) 

𝑀𝐴𝑃𝐸 =  
1

𝑇
∑

|𝑅𝑉𝑡− 𝑓𝑡| 

𝑅𝑉𝑡

𝑇
𝑡=1            (14) 

𝑆𝑀𝐴𝑃𝐸 =  
2

𝑇
∑

|𝑓𝑡− 𝑅𝑉𝑡|

𝑓𝑡+ 𝑅𝑉𝑡

𝑇
𝑡=1           (15) 

𝑈1 =  
√∑ (𝑅𝑉𝑡− 𝑓𝑡)2𝑇

𝑡=1 

√∑ 𝑅𝑉𝑡
2𝑇

𝑡=1 + √∑ 𝑓𝑡
2𝑇

𝑡=1

          (16) 

𝑈2 =  √
∑ (

𝑓𝑡− 𝑅𝑉𝑡
𝐻𝑉𝑡

)
2

𝑇
𝑡=1

∑ (
𝐻𝑉𝑡−𝑅𝑉𝑡

𝐻𝑉𝑡
)

2
𝑇
𝑡=1

           (17) 

For all metrics, smaller values indicate better fits, with a value of zero indicating a perfect fit. The usual 

Theil U2 statistic replaces 𝐻𝑉𝑡 with 𝑅𝑉𝑡−1,22, and compares the given forecast with the most recent value 

                                                           
2 For details please refer to the White Paper on the CBOE website 
(https://www.cboe.com/micro/vix/vixwhite.pdf). 
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of the forecasted variable. A value of unity indicates the forecast is no better than the naïve forecast of 

“no change.” A value greater (less) than unity indicates the forecast is worse (better) than the naïve 

forecast. The reason for the modification in Equation (17) is that 𝑅𝑉𝑡−1,22 is not observed at time 𝑡 − 1, 

and therefore cannot be used to forecast 𝑅𝑉𝑡,22. The most recently observed value of realized volatility 

that can be used to forecast 𝑅𝑉𝑡,22 is 𝐻𝑉𝑡.  

Further, the two predictors with the lowest RMSE are tested using the Diebold-Mariano (“DM”) Test 

(Diebold-Mariano, 1995, Diebold, 2013).  Broadly, the DM Test compares the errors of two different 

forecasts. This comparison is performed by defining an “error” as the difference between the projected 

value, and the actual value realized. 

Determination of the Forecasting Regimes 

Finally, in addition to investigating relative forecasting performances of the four forecasting variables, 

this study also investigates whether the relative performances differ across market conditions. The 

market conditions, or regimes, are distinguished by market returns and market volatility. The goal in 

choosing regimes was to have enough regimes to make for a meaningful analysis, but no so many that 

small quirks or idiosyncrasies within a data set could skew the results.  A simple four regime model, 

which would contain a low-volatility, low-return, low-volatility, high-return, high-volatility low-return, 

and high-volatility, high-return was strongly considered, but the concern was that given the low level of 

regimes, that periods of extremely high volatility might skew the results.  

The use of seven regimes, low-volatility, low-return, low-volatility, high-return, medium volatility, low-

return, medium-volatility, high-return, high-volatility low-return, high-volatility, high-return, and an “all 

data” regime, which covered the entire sample period, was ultimately chosen for simplicity and to 

ensure that each regime had sufficient data to provide meaningful information. See Brownlees, Engle, 

and Kelly, (2011). Historical volatility was separated into the 33rd, 67th, and 100th percentile. Returns 

were separated into the 50th and 100th percentiles. 

Accordingly, the seven regression regimes were created, as shown in Table 4. 

Table 4 

REGIME VOLATILITY RETURN 
1 Low Low 

2 Low High 

3 Middle Low 

4 Middle High 

5 High Low 

6 High High 

7 All Data 

 

IV. RESULTS 

The standard forecasting tests were then run for the four predictors for all seven regimes. The results 

indicate a high level of bias in many Regimes. A linear adjustment, explained on pages 14 and 15, was 

then made to help correct for the bias and the tests were re-run, with results indicating considerably 

less bias.  
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The results follow in Table 5: 

Table 5 

R1- Forecast RMSE MAE MAPE SMAPE Theil U1 Theil U2 

HV 0.042 0.030 27.541 26.606 0.189 2.962 

SGARCH 0.040 0.029 28.322 24.981 0.172 2.968 

LGARCH 0.041 0.034 36.398 29.721 0.170 3.566 

VIX 0.052 0.043 46.992 35.916 0.201 4.557 

       
R2- Forecast RMSE MAE MAPE SMAPE Theil U1 Theil U2 

HV 0.039 0.029 28.349 25.756 0.157 2.805 

SGARCH 0.036 0.028 30.227 25.173 0.143 2.873 

LGARCH 0.043 0.036 39.317 30.865 0.163 3.434 

VIX 0.054 0.045 50.821 36.851 0.191 4.397 

       
R3 - Forecast RMSE MAE MAPE SMAPE Theil U1 Theil U2 

HV 0.069 0.048 30.410 29.672 0.201 2.484 

SGARCH 0.065 0.044 28.621 26.520 0.188 2.437 

LGARCH 0.059 0.043 30.397 26.755 0.168 2.478 

VIX 0.072 0.059 46.578 35.502 0.185 3.579 

       
R4 - Forecast RMSE MAE MAPE SMAPE Theil U1 Theil U2 

HV 0.065 0.045 30.116 28.139 0.196 2.922 

SGARCH 0.061 0.042 29.580 26.814 0.184 2.874 

LGARCH 0.060 0.043 31.406 27.369 0.181 3.040 

VIX 0.069 0.056 44.584 34.443 0.191 4.064 

       
R5 - Forecast RMSE MAE MAPE SMAPE Theil U1 Theil U2 

HV 0.086 0.059 31.164 27.393 0.181 3.118 

SGARCH 0.080 0.053 28.360 25.323 0.171 2.720 

LGARCH 0.071 0.045 24.863 22.697 0.152 2.382 

VIX 0.093 0.072 42.619 33.387 0.184 3.575 

       
R6 - Forecast RMSE MAE MAPE SMAPE Theil U1 Theil U2 

HV 0.087 0.058 30.470 29.680 0.192 3.019 

SGARCH 0.077 0.051 27.275 25.994 0.174 2.688 

LGARCH 0.068 0.044 22.938 22.025 0.155 2.327 

VIX 0.086 0.068 41.234 32.597 0.179 3.873 

       
R7 - Forecast RMSE MAE MAPE SMAPE Theil U1 Theil U2 

HV 0.068 0.045 29.757 27.927 0.188 6.252 

SGARCH 0.062 0.042 28.819 25.879 0.175 6.005 

LGARCH 0.058 0.041 30.889 26.589 0.163 6.286 

VIX 0.073 0.057 45.522 34.789 0.186 8.781 
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The Diebold Mariano Test was run using the two Predictors that had the highest R2 (as shown in the 

regression in Table 7 on page 14.)  The results follow in Table 6: 

Table 6 

Regime 1 - Diebold-Mariano test (HLN adjusted) 

VIX | LGARCH Null hypothesis: Both forecasts have the same accuracy 

Accuracy Statistic <> prob > prog < prob 

Abs Error 15.07275 0.00 1.00 0.00 

Sq Error 12.38521 0.00 1.00 0.00 

     
Regime 2 - Diebold-Mariano test (HLN adjusted) 

VIX | SGARCH Null hypothesis: Both forecasts have the same accuracy 

Accuracy Statistic <> prob > prog < prob 

Abs Error 22.03 0.00 1.00 0.00 

Sq Error 18.25 0.00 1.00 0.00 

     
Regime 3 - Diebold-Mariano test (HLN adjusted) 

VIX | LGARCH Null hypothesis: Both forecasts have the same accuracy 

Accuracy Statistic <> prob > prog < prob 

Abs Error 14.269 0.000 1.000 0.000 

Sq Error 8.732 0.000 1.000 0.000 

     
Regime 4 - Diebold-Mariano test (HLN adjusted) 

VIX | SGARCH Null hypothesis: Both forecasts have the same accuracy 

Accuracy Statistic <> prob > prog < prob 

Abs Error 12.962 0.000 1.000 0.000 

Sq Error 5.486 0.000 1.000 0.000 

     
Regime 5 - Diebold-Mariano test (HLN adjusted) 

SGARCH | LGARCH Null hypothesis: Both forecasts have the same accuracy 

Accuracy Statistic <> prob > prog < prob 

Abs Error 7.722 0.000 1.000 0.000 

Sq Error 5.633 0.000 1.000 0.000 

     
Regime 6 - Diebold-Mariano test (HLN adjusted) 

VIX | LGARCH Null hypothesis: Both forecasts have the same accuracy 

Accuracy Statistic <> prob > prog < prob 

Abs Error 20.744 0.000 1.000 0.000 

Sq Error 14.727 0.000 1.000 0.000 

     
Regime 7 - Diebold-Mariano test (HLN adjusted) 

VIX | LGARCH Null hypothesis: Both forecasts have the same accuracy 

Accuracy Statistic <> prob > prog < prob 

Abs Error 39.454 0.000 1.000 0.000 

Sq Error 25.499 0.000 1.000 0.000 
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In all Regimes, it appears that GARCH-based models outperform both historical volatility and VIX, as both, 
in all regimes, perform very poorly as forecasters of realized volatility. As shown in Figure 1, VIX very often 
overestimates realized volatility, and our data showed that VIX exceeded realized volatility over 85.0% of 
the time (Ge, 2016 found 84%).  Thus VIX is an upwardly biased forecast of RV. This is further 
demonstrated by the regression of RV on VIX (See Table 7). These results might be puzzling at first glance, 
because the VIX is often thought of as the market’s expectation of RV. Bekaert and Hoerova (2014) 
describe the VIX as follows: “The VIX index is the ‘risk-neutral’ expected stock market variance for the US 
S&P500 contract and is computed from a panel of options prices”. However, the VIX is the risk-adjusted 
expectation of RV, not the actual expectation. Therefore these results are compatible with a negative 
volatility risk premium and are consistent with the findings of previous research (See Bakshi, Kapadia, 
2003, Da, Schaumberg, November 21, 2011).  

The extent of the bias can be measured by the coefficient on VIX; if this coefficient is equal to one, then 
VIX is an unbiased estimate. On the other hand, if this coefficient is much smaller than unity, VIX is more 
upwardly biased. Table 7 shows that in the entire sample, the coefficient is 0.893.  In lower volatility 
regimes, the coefficient is as low as 0.52, showing a high level of upward bias. Interestingly, in the two 
high volatility regimes, the VIX coefficient as 1.10 and 0.90 respectively.   

Specifically, In Regime 1, the low volatility, low return Regime, the standard GARCH model performed 
best, while historical volatility proved to be the best forecaster by two metrics the MAPE and the Theil 
U2. LGARCH significantly outperformed VIX in the Diebold-Mariano. In Regime 2, the SGARCH was again 
the best performer, but again the historical volatility outperformed in both the MAPE, and the Theil U2. 
GARCH models dominated the middle volatility regimes, and the LGARCH and SGARCH respectively 
outperformed the VIX via the Diebold-Mariano tests. LGARCH was also the strongest forecaster in the 
high volatility Regimes, outperforming all other Predictors in the standard tests, and outperforming the 
SGARCH and LGARCH respectively in the Diebold-Mariano. Consistent with expectations, the Theil U2 was 
exactly 1.00 for the Historical Volatility predictor. 

The Diebold Mariano test further confirmed the weakness in using VIX as a Predictor of Realized volatility.  

In all instances comparing a VIX model to a GARCH based model, the results from both absolute error, 

and squared error showed positive values of a high magnitude, indicating the relative weakness in the VIX 

model. Specifically note that the probability that an alternative to VIX is a better predictor is at or close to 

one. 

In an attempt to account for the bias in the forecasts, a series of linear adjustments were made to the 

Predictors. The first step was to run regressions on all predictors in all regimes, and use the results of 

these regressions as the basis for creating adjusted series.   
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The following are the results of the regressions run on the sample data. 

Table 7 

Ind. 
Variable 

HV SGARCH (1,1) LGARCH(1,1) VIX  

Regime b0 b1 R2 b0 b1 R2 b0 b1 R2 b0 b1 R2 

1 0.06 0.40 0.14 0.05 0.49 0.13 0.02 0.74 0.20 0.03 0.52 0.16 

2 0.01 0.66 0.49 0.01 0.83 0.53 -0.01 0.88 0.46 0.00 0.76 0.57 

3 0.06 0.67 0.39 0.04 0.79 0.40 0.00 0.95 0.49 -0.01 0.84 0.52 

4 0.06 0.56 0.34 0.05 0.66 0.34 0.03 0.72 0.33 0.01 0.73 0.40 

5 0.03 0.86 0.51 0.00 1.01 0.57 -0.01 1.06 0.66 -0.07 1.10 0.56 

6 0.07 0.64 0.54 0.05 0.75 0.56 0.03 0.84 0.64 -0.02 0.90 0.57 

7 0.04 0.73 0.53 0.02 0.86 0.55 0.00 0.96 0.60 -0.02 0.89 0.59 

The regressions were then used to create the adjusted projection series for each Regime. The 
adjusted series were used to compute the “Adjusted Forecast” evaluation. For the adjusted 
forecasts, the results were adjusted linearly as follows: 

𝑅𝑉𝐴𝑡 =  𝑏0 +  𝑏1𝐼𝑛𝑑𝑉𝑎𝑟𝑡 +  𝜀𝑡 

As an example, for VIX Regime 1, day 11, the following adjustment calculation was made: 

𝑅𝑉𝑡 =  0.0320 + (0.5234) ∗ ( 0.225) = 14.96% 

The adjustments created four new series, as seen in Table 8: 

Table 8   

HV-A Historical Volatility – Adjusted 

SGARCH – A Standard GARCH – Adjusted 

LGARCH – A Leverage GARCH – Adjusted 

VIX – A  VIX – Adjusted 

 

Then, the same standard forecasting tests were then run for the four predictors for all seven regimes. The 

results appear on the following page.  
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The following are the results using the adjusted variables: 

Table 9 

Regime 1 RMSE MAE MAPE SMAPE Theil U1 Theil U2 

HV-A 0.036 0.025 23.617 22.263 0.162 0.813 

SGARCH-A 0.036 0.025 23.734 22.497 0.163 0.797 

LGARCH-A 0.034 0.024 22.213 21.130 0.156 0.806 

VIX-A 0.035 0.024 22.456 21.327 0.160 0.769 

        

Regime 2 RMSE MAE MAPE SMAPE Theil U1 Theil U2 

HV-A 0.035 0.026 25.610 23.227 0.145 0.842 

SGARCH-A 0.033 0.025 25.127 22.934 0.140 0.834 

LGARCH-A 0.035 0.027 26.010 24.022 0.149 0.850 

VIX-A 0.032 0.024 24.250 22.254 0.132 0.793 

        
Regime 3 RMSE MAE MAPE SMAPE Theil U1 Theil U2 

HV-A 0.064 0.045 30.931 27.850 0.188 0.983 

SGARCH-A 0.063 0.044 30.245 27.175 0.185 0.957 

LGARCH-A 0.058 0.042 28.996 26.265 0.170 0.962 

VIX-A 0.057 0.040 26.802 24.847 0.165 0.903 

        
Regime 4 RMSE MAE MAPE SMAPE Theil U1 Theil U2 

HV-A 0.057 0.039 28.292 25.779 0.179 0.992 

SGARCH-A 0.057 0.039 28.265 25.829 0.179 0.972 

LGARCH-A 0.057 0.039 28.115 25.607 0.180 0.985 

VIX-A 0.054 0.037 26.004 24.118 0.170 0.875 

        

Regime 5 RMSE MAE MAPE SMAPE Theil U1 Theil U2 

HV-A 0.085 0.057 30.352 26.555 0.182 0.985 

SGARCH-A 0.080 0.053 28.326 25.359 0.171 0.906 

LGARCH-A 0.071 0.046 25.128 22.899 0.150 0.857 

VIX-A 0.081 0.047 22.425 21.187 0.173 0.906 

        
Regime 6 RMSE MAE MAPE SMAPE Theil U1 Theil U2 

HV-A 0.074 0.049 27.219 25.135 0.173 0.931 

SGARCH-A 0.072 0.048 26.099 24.202 0.168 0.893 

LGARCH-A 0.066 0.042 23.048 21.349 0.152 0.842 

VIX-A 0.072 0.045 23.614 22.371 0.166 0.869 

        
Regime 7 RMSE MAE MAPE SMAPE Theil U1 Theil U2 

HV-A 0.063 0.042 28.956 26.162 0.181 0.913 

SGARCH-A 0.061 0.040 28.113 25.540 0.175 0.885 

LGARCH-A 0.058 0.039 27.674 25.208 0.165 0.890 

VIX-A 0.059 0.037 24.738 23.093 0.168 0.849 
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For the adjusted Forecasts, the Diebold Mariano Test was run for the two predictors with the lowest 
RMSE results. The results are as follows: 

Table 10 

Regime 1 - A Diebold-Mariano test (HLN adjusted)     

VIX - A | LGARCH - A  Null hypothesis: Both forecasts have the same accuracy 

Accuracy Statistic <> prob > prog < prob 

Abs Error 0.804 0.422 0.789 0.211 

Sq Error 1.709 0.088 0.956 0.044 

     

Regime 2 - A Diebold-Mariano test (HLN adjusted)     

VIX - A | GARCH -A   Null hypothesis: Both forecasts have the same accuracy 

Accuracy Statistic <> prob > prog < prob 

Abs Error -2.414 0.016 0.008 0.992 

Sq Error -3.434 0.001 0.000 1.000 

     

Regime 3 - A Diebold-Mariano test (HLN adjusted)     

VIX - A | LGARCH - A Null hypothesis: Both forecasts have the same accuracy 

Accuracy Statistic <> prob > prog < prob 

Abs Error -2.671 0.008 0.004 0.996 

Sq Error -1.874 0.061 0.031 0.969 

     

Regime 4 - A Diebold-Mariano test (HLN adjusted)     

VIX - A | LGARCH - A Null hypothesis: Both forecasts have the same accuracy 

Accuracy Statistic <> prob > prog < prob 

Abs Error -3.245 0.001 0.001 0.999 

Sq Error -4.357 0.000 0.000 1.000 

 
     

Regime 5 - A Diebold-Mariano test (HLN adjusted)     

VIX - A | LGARCH - A Null hypothesis: Both forecasts have the same accuracy 

Accuracy Statistic <> prob > prog < prob 

Abs Error 7.014 0.000 1.000 0.000 

Sq Error 5.569 0.000 1.000 0.000 

     

Regime 6 - A Diebold-Mariano test (HLN adjusted)     

VIX - A | LGARCH - A Null hypothesis: Both forecasts have the same accuracy 

Accuracy Statistic <> prob > prog < prob 

Abs Error 3.893 0.000 1.000 0.000 

Sq Error 4.456 0.000 1.000 0.000 

     

Regime 7 - A Diebold-Mariano test (HLN adjusted)     

VIX-A | LGARCH - A  Null hypothesis: Both forecasts have the same accuracy 

Accuracy Statistic <> prob > prog < prob 

Abs Error -6.063 0.000 0.000 1.000 

Sq Error 1.641 0.101 0.950 0.050 
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Discussion of Adjusted Regimes. 

In the adjusted scenarios, the VIX performs much better relative to the other Predictors than in the base 
analysis, owing to the minimization of the impact of the variance risk premium. In Regime 1A LGARCH is 
minimally better via the standard tests, as well as per the Diebold-Mariano. In Regime 2A the VIX 
outperforms the LGARCH in both standard tests and in the Diebold-Mariano. In Regime 3A VIX has a di-
minimis edge in the standard tests, and outperformed LGARCH by a low magnitude in the Diebold-
Mariano. In Regime 4A VIX outperformed LGARCH by a slightly greater level in both standard tests and 
the Diebold-Mariano. In the higher volatility regimes, Regime 5 and Regime 6, the leverage GARCH was a 
stronger predictor. In Regime 5, LGARCH strongly outperformed SGARCH in all tests, including the 
Diebold-Mariano. Note too, that although the SGARCH was chosen over the VIX based upon the lower 
RMSE, the VIX actually outperformed the LGARCH in the MAPE, the SMAPE, and the Theil U2, and 
performed relatively better than the SGARCH when compared to the LGARCH in the Diebold-Mariano. In 
Regime 6, LGARCH was a stronger predictor in all but the Thiel U2. Interestingly, in Regime 7, The LGARCH 
outperformed the VIX in squared statistics, including the squared error in the Diebold-Mariano, but was 
outperformed by the VIX in the other statistics. 

V. CONCLUSION 

There seems to be some indication that the Volatility/Return regime, as defined herein, does impact the 

efficacy of methods used to predict volatility. Notably none of the methods appeared to be particularly 

effective in predicting volatility in low-volatility, low-return periods. It was noted that the leveraged 

GARCH demonstrated significantly less bias than VIX models in low volatility periods, perhaps owing to a 

much higher volatility risk premium in low volatility environments, however the VIX model appears 

marginally less biased in the high volatility regimes.  

It is less clear that the Predictors have different relative capabilities in different regimes, however the 

results from Regimes 5 and 6 appear to indicate that in a high-volatility environments the leveraged 

GARCH model may be a superior predictor. 

The volatility risk premium also seems to be impacted by the regime. In the two low volatility regimes, the 

coefficient was at 0.52 and 0.76, while in the high volatility regimes, was at 1.1 (indicating a negative 

volatility risk premium), and 0.90 

Further work will involve the use of an out of sample study, an attempt to determine other factors that 

might contribute to creating  better predictors while in low volatility scenarios, and an attempt to better 

identify the impact of the volatility risk premium in preparing this predictive analysis.  It also would be 

useful to expand the number of regimes, likely expanding the number of volatility cutoffs, rather than 

return cutoffs, given the apparent lesser impact of the return component.  

Further development of a more definitive understanding of how various regimes impact the efficacy of 

various predictors could meaningfully alter the approach taken by portfolio managers, risk managers, and 

volatility traders in predicting volatility. Managers may start to use different models in different regimes, 

or possibly more heavily weight one approach over the other in constructing their volatility models based 

upon the regime. One of the key burdens in any attempt to use this finding will be the difficulty in 

identifying precisely what volatility return regime we are a priori at any particular time.  
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