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Quantal density-functional theory of excited states: The state arbitrariness
of the model noninteracting system
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(Received 12 May 2003; published 20 October 2003

The quantal density-functional theo(@-DFT) of nondegenerate excited-states maps the pure state of the
Schralinger equation to one of noninteracting fermions such that the equivalent excited state density, energy,
and ionization potential are obtained. The state of the m8dgbtem isarbitrary in that it may be in a ground
or excited state. The potential energy of the model fermions differs as a function of this state. The contribution
of correlations due to the Pauli exclusion principle and Coulomb repulsion to the potential and total energy of
these fermions is independent of the state of $heystem. The differences amsmolely a consequence of
correlation-kinetic effects. Irrespective of the state of Seystem, the highest occupied eigenvalue of the
model fermions is the negative of the ionization potential. In this paper we demonstrate the state arbitrariness
of the model system by application of Q-DFT to the figgtitedsinglet state of the exactly solvable Hookean
atom. We construct two mod@ systems: one in a singlgroundstate (£2), and the other in a singlet first
excitedstate (k2s). In each case, the density and energy determined are equivalent to those of the excited
state of the atom, with the highest occupied eigenvalues being the negative of the ionization potential. From
these results we determine the corresponding Kohn-Sham density-functional tK&BFT) “exchange-
correlation” potential energy for the two S systems. Further, based on the results of the model calculations,
suggestions for the KS-DFT of excited states are made.

DOI: 10.1103/PhysRevA.68.042504 PACS nuntber31.15.Ew, 03.65-w, 31.10:+z

[. INTRODUCTION themselves in the local effective potential-energy framework
described by the modé& system. Irrespective of the symme-
Time-independent ground-state quantal density-functionalry of the interacting system, its energy, density, and ioniza-
theory(Q-DFT) [1-4] is a description of the mapping from a tion potential can be determined from the Q-DFT description
system of electrons in some external fielF*{(r)= of the S system.
—Vu(r) as described by Schdinger theory to one ofion- The Q-DFT description of the mapping from the ground
interacting fermions such that the equivalent densitfr), state of the interacting to the model noninteract@gystem
energyE, and ionization potentiadl are obtained. As the ef- in terms of classical fields and quantal sources differs from
fective potential energy(r) of these model fermions is the that of traditional Kohn-Sham density-functional theGs-
same, their wave function is a single Slater determinant. Th®FT) [5]. KS-DFT is also a description of tH&system. This
model of noninteracting fermions is referred to as 8®ys-  description, however, is in terms of energy functionals of the
tem. The potential energy(r) is the sum of the external ground-state density, and of their functional derivatives.
v(r) and electron interaction.(r) potential energies, the Thus, in ground-state KS-DFT, all the many-body correla-
latter being representative of the many-body correlations théons are embedded in the KS electron-interaction energy
S system must account for. These electron correlations arisinctionalEfg] p] of the ground-state densip(r). The cor-
those due to the Pauli exclusion principle, Coulomb repulfesponding local electron-interaction potential enargy(r)
sion, and correlation-kinetic effects. In Q-DFT, the potentialof the model fermions is then defined as the functional de-
energyv.(r) is the work done to move a model fermion in fivative SESSTp]/8p(r). KS-DFT does not describe how the
the force of a conservative “classical” field. The componentsvarious many-body correlations are incorporated in the func-
of this field are eaclseparatelyrepresentative of the Pauli tional E5Jp], and hence how they are represented in its
and Coulomb correlations, and correlation-kinetic effectsfunctional derivative. In contrast, within Q-DFT, the contri-
The Pauli (exchangg Coulomb (correlation, and butions due to Pauli, Coulomb, and correlation-kinetic ef-
correlation-kinetic components of the total energy too argfects to both the potential energyg(r) and the total energy

expressed in terms of the corresponding fields. The sourcé¥€ separatelydelineated and explicitlydefined (The de-

of these fields are quantal in that they are quantumscriptions in the literature on KS-DFT are usually in terms of
mechanical expectations of Hermitian operators taken witlihe KS “exchange-correlation” energy function&] p].
respect to the Schdinger andS system wave functions. The The sum of this functional and that of the known Hartree
highest occupied eigenvalue of tie system differential self-energy functionalEy[p] constitutes the functional
equation is the negative of the ionization potential. In thisEgeS[p]. Our discussion is in terms @‘gg’[p] because it also
manner, via Q-DFT, it is then possible to study how theincludes the Coulomb correlations represented by the Hartree
different electron correlations in a physical system manifestelf-energy).
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In recent works[6,7], we have extended Q-DFT to the at the excited-state density valpg(r). Once again, how the
case of apure nondegenerate excitexate of Schrdinger  different electron correlations are represented in the energy
theory. The excited-state framework is twmeas that of the  pidensity functional is not described. Further, the configura-
ground state, and once again in terms of classical fields angon of the noninteracting system construcedays corre-
quantal sources. In this case, however, we further proved theponds to that of the excited state of the interacting system.
mapping to the noninteracting framework is such that then this approach, there can only bae Ssystem because the
state of theS system isarbitrary. The Ssystem may be in a functional derivative at th&th excited-state density value is
ground or excitedstate. These are different S systenfie g uniquefunction.[Note that the ground-state density of this
fact that thes& systems may be in any arbitrary state and yets system is not the ground-state densigy(r) of the inter-
lead to the density of the excited state of the interactingacting systen.
system was originally stated by (§]. The difference in the A third approach, based on a generalization of the con-
corresponding electron-interaction potential enargyr) of  strained search proceduf#l], is the generalized adiabatic
the model fermions is dusolely to the correlation-kinetic  connection(GAC) KS-DFT [12]. In this framework, an ex-
effects. The Pauli and Coulomb correlation contributions tocjted state of the interacting system is adiabatically con-
the potential energy.¢(r) and the corresponding component nected to a particular state of the noninteracting system. The
of the total energy remain the same. WhetherStsystem is  giate of the noninteracting fermions, howevernig arbi-
in a ground or excited state, the density and total energy.ary hut governed by the adiabatic path. The state could be
equivalent to that of thexcitedstate of Schrdinger theory 5 ground or excited state. The energy functionals in this in-
is obtained. Furthermore, the highest occupied eigenvalue Qance are generalizations of the constrained search formal-

the Ssystem, whether in a ground or excited state, is equivagm for the ground state, and involve an additional parameter
lent to the negative of the ionization potential energy. v. The energy depends upon this parameter, and is a func-

Within KS-DFT, many approaches to excited states havgiona) of \what is referred to as thp-stationary density

been proposed. All these methods involve energy fUﬂCtiOﬂEl',S)stat(r)_ In the KS-DFT version, one then defines an

of a density or bidensity energy functionals, and their fur.]c'electron—interaction energy functiorﬁgf[pStat, v] represen-

tional derivatives, and hence differ from the Q-DFT descrip-,_. . .

. . . tative of all the many-body effects, with the corresponding

tion. For a brief review, we refer the reader to the work by . . . .
electron-interaction potential energy of the noninter-

Dreizler and Gros$8]. Here we note three recent formal- actin fermions  bein the functional  derivative
isms. The first is based on the energy variational principle for ng 9 .
. . SESS pSt 1]/ 8pS' 2 ()| staty— where py(r) is the
ensemble§9] with unequal weights. The ensemble energy as” —¢€! : lpstan =py(r) » K=
constructed with thé/ lowest eigenstates of a system satis-density of thekth excited state. A further generalizatifitB]
fies the variational principle. In other words, the ensembld® account for the symmetry problems of KS-DFT involves
energy calculated witlv approximate wave functions is al- functionals of symmetrized-stationary densities and the pa-
ways greater than or equal to the ensemble energy detefi@meterv. _ _
mined via theM exact eigenstates of the interacting system. In this paper we demonstrate, via Q-DFT, the state arbi-
It is then proved that the ensemble energy is a functional ofrariness of the model noninteracting fermion system. The
the ensemble density®"Yr). Thus, in a manner similar to example we consider is that of the first excited nhondegener-
ground state KS-DFT, an electron-interaction energy funcate singlet state of Hooke's atofh4]. The wave function of
tional of the ensemble densiBLS pe"9] can be defined. The this state of the interacting system is known analytically
corresponding effective potential energy of the noninteractl6,7]. We transform this state described by Scfinger
ing fermions is once again the sum of the extefnalr)] theory totwo Ssystems, one in a singlground state, and

and the electron-interactidw.(r)] potential energy, where the other in a singleexcitedstate. In each case, the self-
the latter is defined as the functional derivative COnsistently determined orbitals lead to the density of the

interacting system. The corresponding highest occupied ei-

SEKT p®"S]/ 5p®"Y(r). The excitation energies can then be ) . SR
el 6" ) d envalues are equivalent to the negative of the ionization

expressed in terms of the eigenvalues of the noninteracting tential of this state. In addition. althouah the noninteract
system differential equation and the functiorﬁﬂg‘[p g in0 ekin:tig andsczr?e?étiona}kinegc ,eieroilég of tfle ?@8 g_ac
Again, ensemble KS-DFT of excited states does not describ 9 g 4

: X . N ms are different, the equivalent total energy of the interact-
how the various electron correlations are incorporated into

) . S en ing system is obtained in each case. The example further
the ensemble-density energy functloﬁiie[p . demonstrates how the different many-body correlations—
In a second approadii 0], it has been proved that there

. . . - o Pauli, Coulomb, and correlation-kinetic—contribute to the
exists a variational KS-DFT with a minimum principle for

th it istent determinai f ited state. | th.structure of these differer8 systems.
€ sefi-consistent determination ot an excited state. n s aq the energy functionals of the different excited-state
case, the total energy of theh excited state is &idensity

) . formalisms within KS-DFT are unknown, one cannot apply
energy funct!qnal of the excne[j_pk(r)] and ground—s_tate these approaches to the solution of the exactly solvable
[po(r)] densities. One then defines the corresponding K344 e's atom model. However, from the results obtained via
electron-interaction energy bidensity functional Q-DFT, we determine the KS-DFT “exchange-correlation”
Egelp.polly,, With the resulting electron-interaction poten- potential energy for the two S systems, and arrive at conclu-
tial energyve(r) of the noninteracting fermions being de- sions with regard to the KS-DFT of excited states. For the

fined as the functional derivativﬁges[p,po]lép(r)|pk taken  paper to be self-contained, we briefly describe bound nonde-
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generate excited state Q-DFT in Sec. Il. The results of transation, or they may be in an excited-state configuration. The
formation to the twoS systems are described in Sec. lll. corresponding spinless Dirac density matrix is the expecta-
These results are then expressed in the language of KS-DRibn

in Sec. IV. We end with concluding remarks in Sec. V.

For the application to excited states of Q-DFT in both the , - * ,
Pauli-correlated approximation and with the use of an ap- sk ):<¢{¢i}|x|®{¢i}>:2i ; éi (1) (1’ o).
proximate correlation energy functional, we refer the reader (6)
to Ref.[15]. For a description of the Q-DFT afegenerate
states, botlygroundandexcitedstates, and for bothurestate  Further, whether th& system is in a ground- or excited-state
and ensembledensities, we refer the reader to our more re-configuration, the highest occupied eigenvakje= —1I, is

cent work[16]. the negative of the ionization potential.
The potential energy..(r) is the work done to move the
Il. Q-DFT OF NONDEGENERATE EXCITED STATES model fermion from a reference point at infinity to its posi-

) tion at r in the force of aconservativeeffective field
The Schrdinger equation for thekth nondegenerate fﬁ”(r):

bound excited state of a systemMfelectrons in an external
field F&*{(r)=—Vu(r) is et

Uee(r):_J Fe(r)-dl’. 7
[T+V+0]%(X)=EcPi(X), (1)

C e o . The field 7¢'(r) is the sum of an electron-interaction field
where T=—33;V? V=Zu(rj), andU=33{;(1ri=rjl)  £_(r) representative of Pauli and Coulomb correlations, and

are the kinetic energy, local external potential-energy, ang correlation-kinetic fieldZ, (r) representative of this effect:
electron-interaction potential energy operatos,(X) and ¢

E\ are the excited-state wave function and energy, \¥th F =g (N + 2 (r 8
=X;,X, ... Xy, X=Fco, and o the spin coordinate. The i (N=Eed 1) Z¢,(1). ®

electronic density of this state is the expectation The field £,(r) is obtained via Coulomb’s law from the

pair-correlation densitg(rr’) which constitutes its quantal

pi(1) = (Wl p| W), @ source. Thus,
where;)=2i6(r—ri) is the density operator. The corre- g(rr)(r=r")
sponding spinless single-particle density matrix is the expec- Eodr)= f —,3dr’, 9
tation Ir—r'|

(1) =(W X[, 3 Where g(rr)=(W,|P(rr )| ¥)/p(r) and P(rr’)

=Ei"j5(ri—r)5(rj—r’) is the pair-correlation operator. The

where the Hermitian operatdt=A+iB, A=(1/2)%[ &(r, pair-correlation density may further be separated into its lo-
—N)T,(@)+8(r— 1) T(~a)], B=—(i12)=,[ &(r, cal and nonloca{dynamig components as
—nNTi@—48(rj—r")T;(—a)], T;(a) is a translation opera- ) =pu(r’)+ r 10
tor, anda=r'—r. The ionization potential for this state is 9lrr ) =pdr)+ pxe() (10

__pion__ ion . .
l«=E"—Eg, whereE," is the energy of the r.esfulltlng ion = p(F) 4 pu(Ir )+ pe(rr '), (11)
when the least bound electron is removed to infinity.

The Ssystem differential equation corresponding to thewhere p,(11'), py(rr’), and pc(rr’) are the Fermi-

kth nondegenerate bound excited state is Coulomb, Fermi, and Coulomb hole charge distributions.
1 The  Fermi hole is defined as p,(rr')=
7 2 . . .
_Tvy2y i (0=ed(x): i=1,...N, —|vsx(rr ")|?12py(r), and the Coulomb hole is defined via
2 v(N)+vedr)| i) =€di00; | Egs.(10) and (11). The sum rules satisfied by these charge

(4 distributions are [py(rr')dr'=—1, [p,(rr")dr'=—1,
. . . px(rr")=<0, and p,(11)=—py(r)/2, and [pc(rr")dr’=0.
where thelocal electron-interaction potential energy«(r),  The electron-interaction field may then be written in terms of
in which all the many-body effects are incorporated, is suchjg components as

that the density,(r) is obtained as the expectation
Eed 1) =E(r)+E(r) (12

Pk(r):<®{¢i}|;k|q){¢i}>:§i: 2(;: |pi(ro)|?,  (5) £ (1) E(1)+ET) 13

where®{¢;} is the Slater determinant of the orbitalg(x). = where the Hartre¢E,(r)], Pauli-Coulomi E,.(r)], Pauli

The occupation of the orbitalg;(x) may either be theN  [&,(r)], and Coulomld £.(r)] fields are due to their respec-
lowest-lying states corresponding to a ground-state configuive quantal sourcegy(r), pxc(rr’), py(rr'), andp.(rr’).
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The correlation-kinetic fieldZ, (r) is the difference of trons whose external potential energy is harmoni¢r)
the kinetic fieldsZ(r) and Z(r), =3kr2. The solution of the Schdinger equation for this
state withk=0.144 498 is

Z, (r)=2Z4r)— Z(r), (14
where  Z(M=zriind)lpdr)  and  Z(r) e oRor?d \E ),
=2zs(r;[ vsk])/pk(r). The quantal sources of the field(r) Woy(rirp)=Coe e 1+Cy 2r+C2 Z)r
and Z((r) are the single-particle and Dirac density matrices, 3
respectively. The force(r;[ v«]) is defined in terms of its iC (2) r3} (20)
components ag,(r;[ yl) =22 gt z(r;[ v1)/dr g, where 312 '
tap(riLyid) = G001 or [ or o+ 021 ar par Iy 1") | ==y IS

the kinetic-energy tensor. The field(r;[ ysk]) is similarly . _ .
defined in terms of th&system tensot, o(r;[ vsl)- Vi’%ecr)zé Igcl) c rCZ:’ —ﬁ_lgé;gi)g,—w—_o\gi%ggo 123;: Co
For systems of symmetry such that the component fields - it 2 , andug=

. .—0.489647. The total energy of this state By,
E.r) and Ztc(r) are separately conservative, the potentlaIIZ.280 775 au., and its ionization potential k=

energyvee(r) may be expressed as the sum of the separate j 710582 a.u.. The atom in this first excited state is
work done in these fields. Thus spherically symmetric.

The results of transformation via Q-DFT of this excited

vee(r)=Wee(r)+WtC(r) (15 state of the interacting system to two model noninteracting
_ fermion systems, one in a singlgtoundstate (%) and the
_WH(r)+WXC(r)+Wtc(r) (16) other in a singlet firsexcitedstate (k2s), are described

below. The calculations for the transformation toSsystem
=Wy (r) +Wy(r) +We(r)+W, (r),  (17)  inits ground state are principally analytical since each orbital
P1s2(r)=p(r)/2, andp(r) is known analytically. However,
whereWee(r), Wiy(r), Wie(r), Wi(r), We(r), andW, (r)  the orbitals and the singlet eigenvaleg. have also been
are the work done in the field€.(r), Ex(r), Ey(r), determined independently by numerical solution of the
E,(r), E(1), andztc(r), respectively. S-system differential equation. Additionally, the valueeqf.

The excited-state energy is has been reconfirmed by taking the expectation value of the
S-system Hamiltonian. The orbitals;4(r), ¢.-(r), and the
corresponding eigenvaluess, €, for transformation to the
Ssystem in its excited state are determined by numerical
self-consistent solution of th&system differential equation.
where Ts=(®{;}|T|®{¢;}) is the kinetic energy of the In this equation, the potential-energy compon@ni(r) of
noninteracting fermions. The electron-interactidf,{ and the electron-interaction potential energy(r) [see Eq.
correlation-kinetic T.) energies are expressed in terms of (15)], which is the same as for the ground-state calculation,
the fields&.(r) and Z, (r), respectively, in integral virial remains fixed for each iteration. It is the correlation-kinetic
form as ¢ componenl\lvtc(r), which depends upon the orbitads ((r)

and ¢,(r) through the Dirac density matrix, which changes
1 in each iteration and is determined self-consistently together
Eee:f drp(r)r- Eedr) andTC:EJ drpk(nr- 2, (r). with the orbitals and eigenvalues. The input potential energy
(199  employed to initiate the self-consistency procedure was that
of the ground-state calculation. The self-consistency code

In our previous work{6] we had proved that the state was designed to converge for solutions with positive eigen-
arbitrariness of thés system is reflected entirely through its value for each orbital. Following self-consistency, the eigen-
kinetic field Z4(r) or equivalently the correlation-kinetic valuese; ¢ and e,5 were independently confirmed by taking
field 2 (r). The electron-interaction component field the expectation of th&system Hamiltonian with the appro-
E.(r) remains the same. Thus, it is the fieﬂc(r) that is  priate self-consistently determined orbitals.

adjusted to ensure that the density, energy, and ionization !N Fig. 1 we plot the ground-statsystem orbitatp;s>(r)
potential of the interacting system are achieviddote that ~@nd the excited-stat&system orbitalspy4(r) and ¢o(r).
although the fieldE.4(r) remains unchanged, its Pauli The node of¢y(r) is at 2.4 a.u. The orbita;>(r) and
[£,(r)] and CoulomH £,(r)] components will each be dif- orbitals ¢14(r), ¢o4(r) lead to the same densip(r) as that

ferent depending upon the state ®system is i} of the singlet excited state of Hooke's atom. _
In Fig. 2 the radial probability density of each orbital

[r2p1s2(r), r2p1s(r), r2p,s(r)] is plotted. The ground-state
S system radial probability density’p,2(r) is equal to the
sum of the excited-stat® system radial probability densities
The interacting system we consider is Hooke’s atom in itsr?[ p;5(r) + p,s(r)]. Each in turn is equivalent to the radial
first excited singlet state. Hooke’s atom comprises two elecprobability densityr?p(r) of the interacting system. The

Ek=TS+f p(No(r)dr+Eget+Te, (18

Ill. CONSTRUCTION OF MODEL NONINTERACTING
FERMION SYSTEMS

042504-4
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TABLE I. The components of the total energy and eigenvalues
for the transformation from a singlet first excited state of Hooke’s
atom to S systems in the singlet ground §3) and first excited
singlet (1s2s) states.

S systems

Property(a.u)

Ground state &2

Excited state §2s

0.25
0.20
State of S system:
Ground @, «weueee
0.5 Excited @, ===
¢25 h—
=
o 0.10
hd 3
<
=
2 0.05 '\\
o \
.\\\\
0.00 —
-0.05F
_0.10 1 1 1 ] 1 1
0 1 2 3 4 5 6 7

FIG. 1. The orbitals of th& system in its singlet ground state

r (a.u.)

$152(r), and its singlet first excited states(r) and ¢,4(r).

Ey 0.722217 0.722217
E, —0.361109 —0.361109
E. —0.008966 —0.008966
Eee 0.352142 0.352142
Ts 0.327471 1.015505
Te 0.548791 —0.139243
Eext 1.052371 1.052371
E 2.280775 2.280775
Eigenvalues €,2=1.711 €,s=0.573

€s=1.711

In Fig. 3, the electron-interaction fiel&.(r), and its
Hartree[ E4(r)], Pauli[ E,(r)], and Couloml E.(r)] field
components are plottedNote that for two electrons in a
singlet state within local effective potential-energy theory,
one defineg,(rr )= —p(r')/2, so thate,(r)=—Ey(r)/2.]
The corresponding potential enerly.«(r), and its Hartree
[Wq(r)], Pauli [W,(r)], and Coulomb[W,(r)] compo-
nents are plotted in Fig. 4. The contribution of these potential
energies to the electron-interaction potential energyr) of
Eq. (17) remains unchanged irrespective of the state $he

probability densityr2p,4(r) has two maxima, and a mini-
mum at the node. The maximum ofp,(r) occurs at the
minimum of r2p,4(r), indicating that the region the first
model fermion is most likely to be found coincides with the

system is in(The fact that the Pau[iw,(r)] and Coulomb
W,(r) potential energies remain the same is particular to the

region where the second fermion is least likely to be. Note ozl
that r?p,(r) is negligible for r>5 a.u.. As such, the ’
asymptotic structure of the radial probability density, and 4N
hence the density, is that ofp,4(r), and that it coincides “\ P
with r2p,2(r). This is the reason why the eigenvalugs: ‘\\H
and e, are equivalentsee Table)l \

\\

0.06 01 N
ay N AN
~ = Fon & ™.
3 0.05 State of f system: 3 ,-/ ‘.\\ ee \\\‘
b Ground 1, ; (1) w-eeseeee o / \ . U2 op2
2 Excited rzp“(r) -------- E ,.' ‘\ el —
F 004 7P, 1) —— L ki \&c -y,
g B \
A Tk i
2 o003 \ N T
= - O(l/%) 142
-C% (g: ’,”f
S 002 yr P
il LY o
A M g
= 4/ /7 \ /v % 1 e
8 o0l 01F
]
M L L L L L L L L L
0.00 0 1 2 3 4 5 6 7 8 9 10

FIG. 2. The radial probability densitie$p,s(r), r?p;1s(r), and

I’2p25(l’)

r (a.u.)

FIG. 3. The electron-interaction fiel&.¢(r) and its Hartree
[E4(r)], Pauli[€,(r)], and CoulomH £,(r)] field components.
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0.03
ey
1\
I /3
0.02 ,' “ State of S system:
~ ) .’ 1 Ground Z()],;  -eveeer
= - | ! Excited 2 0)|, .
< 3 I~ A
- : B AR .
2 s ,' ' % |l Interacting system:
g Y oy 2(r) -
4 ) ifi iy
=) o 0.01 | % ‘.‘
= '-.
3 g
A~ 15 :
: : -
Z 0.00
-08 L L L L Il Il Il Il 1 —0.01 B
0 1 2 3 4 5 6 7 8 9 10
I’ a.u. L Il L L L
( ) 0 1 2 3 4 5 6
FIG. 4. The potential energW,(r), and its Hartreg Wy, (r)], I (a.u.)

PaulilW,(r)], and Coulomi W(r) ] potential-energy components FIG. 5. The kinetic forceg(r) of the interacting system, and
. ) those of theS systemzy(r)|1¢2, z(r)|1s2s in the ground (%?) and
two-electron cage The electron-interaction ener@i., and  excited (152s) states, respectively.
its Hartree Ey), Pauli (E,), and Coulomb E.) energy
component values which remain the same are given in Table
L energies are also the sartfég. 7). Therefore, the effective
It is the kinetic-energy fieldZ,(r) of the noninteracting fields FL(r), F5iy(r) of Eq. (8), and consequently, the
fermions or equivalently the correlation-kinetic fiefgh (r) ~ Ssystem electron-interaction potential energies(r)|s2
that differs as a function of the state of tBeystem. In Fig.  Vee(r)|1s2s, @s obtained via Eq7) or Eq.(17), are the same
5 we plot the interacting system kinetic “force®(r), and  (Fig. 8), decaying asymptotically asrl/This ensures that
ground- and excited-stat® system kinetic forcegy(r)|,s2, the corresponding highest occupied eigenvakigsand e,
z,(r)| 1525 . Observe that the forcg(r)|,s,s has an additional are the samésee Table )l Observe that both the.((r) are
structure when compared tay(r)|,s2, because both a finite at the nucleus as must be the cf%é|. The two po-
ground- and an excited-state orbital contribute to it. All thetential energies .(r) of Fig. 8, one corresponding to ti&
three forces vanish at the nucleus. They also all merge asystem in the & state and the other to @isystem in the
ymptotically. The differences [z(r)|;2—2z(r)] and 1s2s state, generate the same dengily) as that of the
[Z4(r)|1s2s— 2(r)] between the kinetic forces required for the interacting system.
determination of the corresponding correlation-kinetic fields The noninteracting kinetic enerdy, of the twoS systems
Z (r)]1s2 and Z, (r)|1s25, Vanish in this region. This can- in the different states as quoted in Table | differ significantly.
ceIIat|on is |mportant because the fie (r) is also propor- So do the correlation-kinetic energids determined from
tional to 1p,(r). Asymptotically, for large, the contribution Lhir?elgg of Ft'g tﬁ VII? E?(lg) (see T%bge;é ?gﬁN ever, Echfhy
of 1/p,(r) is singular. The exact cancellation of the kinetic . oth add up to the kinetic energy= a.u. of the
forces then prevents the correlation-kinetic fields from bein |nteracting system. The fact tha for_ the S system in the
. ; - - s2s state is greater than the one in the? Istate follows
singular in the asymptotic region. f he virial th The @elect is further f th
The correlation-kinetic fields2Z, (r)[1s2, 2 (r)]1ss are rom the virial theorem. The Zelectron Is further from the

i _ ) ] nucleus(see Fig. 2 and consequently hasgher external
plotted in Fig. 6, and the potential energi&¥, (r)|1sz,

potential energy since(r) is harmonic. Therefore, via the
W, (r)|1s2s in Fig. 7. As expected, the field and potential virial theorem its contribution td is large.

energy of the system in its excited state have more structure For theS system in the groundsf state,T.>T¢s>0. In
than when in its ground state. The correlation-kinetic fieldsfact, T, is large and 63% off. For the S system in the
both vanish at the nucleus, and therefore the potential eneexcited I2s state, T,<<Tg andT.<0. The fact thafl .. is
gies have a zero slope there. Observe that asymptotically theegative is consistent with the structure of the field
fields are the sam@-ig. 6). Thus, in this region, the potential Ztc(r)|152S of Fig. 6. The field is negative in two regions of
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FIG. 7. The correlation-kinetic potential energW@c(r) for the
Ssystems in the ground §%) and excited ($2s) states.
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FIG. 8. The electron-interaction potential energiggr) for the
Ssystems in the ground &%) and excited ($2s) states.

space where the density is also higfig. 2). [We have be-
come aware of a recent wof8] on the He atom whereby
an S system in a $2s excited state is constructed to repro-
duce the density of the corresponding state of the interacting
system. In this calculation, an accurate albeit approximate
density is assumed, and tlsesystem effective potential en-
ergy vg(r) determined indirectly by one of the standard
density-based method49]. For this case too the difference
T-T=T.<0.]

IV. RESULTS EXPRESSED IN KOHN-SHAM THEORY
TERMS

The results derived via Q-DFT can be expressed in the
language of KS-DFT. For the transformation from tkih
excited state of the interacting system to &Bystem in an
excited state, the KS-DFT electron-interaction bidensity en-
ergy functional is writterj10] as

Eeel p:Pollp=p,= EnlP1lp=p, + EXclo:p0llp=p (2D

wherep(r), py(r) are the ground- and excited-state densi-
ties, andEy[ p] is the Hartree energy functional:

1 p(r)p(r’) )
EH[P]:EJJ Wdfdr,

and EXp,po] the unknown-excited-state KS “exchange-
correlation” energy bidensity functional. The corresponding
electron-interaction potential energy is

(22)

042504-7



SLAMET et al. PHYSICAL REVIEW A 68, 042504 (2003

that allows one within the context of KS-DFT to transform
an excited state of the interacting system td&aystem in its

ground state. One may then define a corresponding KS
05 SN . i i S(e—0)
; ' State of S system: exchange-correlation energy functiofiz]; [p.poll,- Pr
5 Ground 18> - and the potential energy Uye(r)

Excited 1s 2s

=SB 9 p,pol/ 3p(r)| )=, Again, as thever) and
vy (r) potential energies of th system in the ground &)
state are known via Q-DFTFigs. 8 and 4 the function
vye(r) may be determined, and is plotted in Fig. 9. It too
decays as—1/r asymptotically, and is also finite at the
nucleus. The value(from Table ) of the energy
EXSC=9 py,pe]=0.178 716 a.u.

YV, (0 (a.u)

V. CONCLUDING REMARKS

In the Q-DFT of excited states, the mapping from a pure
nondegenerate excited state of Sclinger theory to one of
noninteracting fermions with the same density is such that
the state of the moded system is arbitrary. It may be in a
ground state or in an excited state with the same or different
configuration from that of the interacting system. In this pa-
per we have demonstrated the state arbitrariness ofSthe
system by transforming the firsxcited state of Hooke’s
0 2 4 6 3 atom to S systems in a singleground state (k%) and a

r (a.u.) singlet firstexcitedstate (k2s). As expected, the kinetic
energyT, of the S system in its excited state is closer to the

FIG. 9. The KS-DFT “exchange-correlation” potential energies kinetic energyT of the interacting system. Equivalently, the
vx(r) for the S systems in the ground &%) and excited ($2s) ~ magnitude of the correlation-kinetic enerdy for the ex-

states. cited stateS system is less. This is of relevance to the con-
struction of the bidensity energy function&] p,pq] of KS-
SEXI p.pol DFT. In ground-state KS-DFT, the correlation-kinetic energy
Veelr ST s =vu(N+ox(r), (23 T, contribution is small[3] compared toTs. For excited
P=Pk state KS-DFT, it is then best to construct tBeystem to be

, , , in the same configuration as that of the interacting system.
wherevy(r) = 6En[ p1/ 9p(r) |-, = Jdr’ pi(r')/r —r'[ and An important property of the noninteracting systems is
vye(r)= 5EX'<CS[p,pO]/6p(r)|p=pk the KS “exchange- that their highest occupied eigenvalue is the negative of the
correlation” potential energy. As.(r) andvy(r)=Wy(r) ionization potential irrespective of the state Baystem is

are known via Q-DFT(Figs. 8 and 4 we plot in Fig. 9 in. This implies that the effective potential energy(r) of
vye(r) for the Ssystem in the §2s state. Note that this is the theseSsystems must vanish asymptotically in the classically
exactfunctional derivative for this excited state. It decays asforbidden region in the same manner. As the Pauli and Cou-
—1/r, and is finite at the nucleus. The val(ieom Table ) of ~ lomb correlation contribution to the electron-interaction po-
the KS energy E>'ch[P,Po]|p:pk=Ex+ Ect+T.= tential energwee(r) rgmqins unghanged, this further means
—0.509318 a.u. that the correlation-kinetic contribution must asymptotically

The answer to the question of how one transforms alpe the same for each S system. This is explicidy demon-
excited state of the interacting system to one of noninterac strated in the example stud|ed_|n th_e Paper. Over the rest of
ing fermions in agroundstate with equivalent density within he atom, h_owe"‘?“ t_h_e correlation-kinetic fields and potential
the framework of KS-DFT is unknown. The GAC formula- SN€r9'es dn‘f_er §|gn|f|cantly. It fOHOWS.’ therefore, that the
tion [12] depends explicitly on the adiabatic path. The endcorrglanon—kmenc component is crm_cal to ensuring the
point is not necessarily a ground state. One cannot emplo qualepce of the h.|ghes.t occupied eigenvalue of3bgs-
the KS ground-state energy functional since it represents th m in different configurations.
ground state of the interacting system and not an excited
state. Neither can one employ the excited-state bidensity en-
ergy functional because its functional derivative is unique to This work was supported in part by the Research Foun-
an S system in an excited state. Hence, letassumethat  dation of CUNY. L.M. thanks the NSF for CREST grant
there exists an energy functional of the excited-state densitgupport.
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