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Quantal density-functional theory of excited states: The state arbitrariness
of the model noninteracting system
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2The Graduate School of The City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
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The quantal density-functional theory~Q-DFT! of nondegenerate excited-states maps the pure state of the
Schrödinger equation to one of noninteracting fermions such that the equivalent excited state density, energy,
and ionization potential are obtained. The state of the modelSsystem isarbitrary in that it may be in a ground
or excited state. The potential energy of the model fermions differs as a function of this state. The contribution
of correlations due to the Pauli exclusion principle and Coulomb repulsion to the potential and total energy of
these fermions is independent of the state of theS system. The differences aresolely a consequence of
correlation-kinetic effects. Irrespective of the state of theS system, the highest occupied eigenvalue of the
model fermions is the negative of the ionization potential. In this paper we demonstrate the state arbitrariness
of the model system by application of Q-DFT to the firstexcitedsinglet state of the exactly solvable Hookean
atom. We construct two modelS systems: one in a singletgroundstate (1s2), and the other in a singlet first
excitedstate (1s2s). In each case, the density and energy determined are equivalent to those of the excited
state of the atom, with the highest occupied eigenvalues being the negative of the ionization potential. From
these results we determine the corresponding Kohn-Sham density-functional theory~KS-DFT! ‘‘exchange-
correlation’’ potential energy for the two S systems. Further, based on the results of the model calculations,
suggestions for the KS-DFT of excited states are made.

DOI: 10.1103/PhysRevA.68.042504 PACS number~s!: 31.15.Ew, 03.65.2w, 31.10.1z

I. INTRODUCTION

Time-independent ground-state quantal density-functional
theory~Q-DFT! @1–4# is a description of the mapping from a
system of electrons in some external fieldFext(r )5
2“v(r ) as described by Schro¨dinger theory to one ofnon-
interacting fermions such that the equivalent densityr(r ),
energyE, and ionization potentialI are obtained. As the ef-
fective potential energyvs(r ) of these model fermions is the
same, their wave function is a single Slater determinant. The
model of noninteracting fermions is referred to as theS sys-
tem. The potential energyvs(r ) is the sum of the external
v(r ) and electron interactionvee(r ) potential energies, the
latter being representative of the many-body correlations the
S system must account for. These electron correlations are
those due to the Pauli exclusion principle, Coulomb repul-
sion, and correlation-kinetic effects. In Q-DFT, the potential
energyvee(r ) is the work done to move a model fermion in
the force of a conservative ‘‘classical’’ field. The components
of this field are eachseparatelyrepresentative of the Pauli
and Coulomb correlations, and correlation-kinetic effects.
The Pauli ~exchange!, Coulomb ~correlation!, and
correlation-kinetic components of the total energy too are
expressed in terms of the corresponding fields. The sources
of these fields are quantal in that they are quantum-
mechanical expectations of Hermitian operators taken with
respect to the Schro¨dinger andSsystem wave functions. The
highest occupied eigenvalue of theS system differential
equation is the negative of the ionization potential. In this
manner, via Q-DFT, it is then possible to study how the
different electron correlations in a physical system manifest

themselves in the local effective potential-energy framework
described by the modelSsystem. Irrespective of the symme-
try of the interacting system, its energy, density, and ioniza-
tion potential can be determined from the Q-DFT description
of the S system.

The Q-DFT description of the mapping from the ground
state of the interacting to the model noninteractingS system
in terms of classical fields and quantal sources differs from
that of traditional Kohn-Sham density-functional theory~KS-
DFT! @5#. KS-DFT is also a description of theSsystem. This
description, however, is in terms of energy functionals of the
ground-state density, and of their functional derivatives.
Thus, in ground-state KS-DFT, all the many-body correla-
tions are embedded in the KS electron-interaction energy
functionalEee

KS@r# of the ground-state densityr(r ). The cor-
responding local electron-interaction potential energyvee(r )
of the model fermions is then defined as the functional de-
rivative dEee

KS@r#/dr(r ). KS-DFT does not describe how the
various many-body correlations are incorporated in the func-
tional Eee

KS@r#, and hence how they are represented in its
functional derivative. In contrast, within Q-DFT, the contri-
butions due to Pauli, Coulomb, and correlation-kinetic ef-
fects to both the potential energyvee(r ) and the total energy
are separatelydelineated and explicitlydefined. ~The de-
scriptions in the literature on KS-DFT are usually in terms of
the KS ‘‘exchange-correlation’’ energy functionalExc

KS@r#.
The sum of this functional and that of the known Hartree
self-energy functionalEH@r# constitutes the functional
Eee

KS@r#. Our discussion is in terms ofEee
KS@r# because it also

includes the Coulomb correlations represented by the Hartree
self-energy.!
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In recent works@6,7#, we have extended Q-DFT to the
case of apure nondegenerate excitedstate of Schro¨dinger
theory. The excited-state framework is thesameas that of the
ground state, and once again in terms of classical fields and
quantal sources. In this case, however, we further proved the
mapping to the noninteracting framework is such that the
state of theS system isarbitrary. TheS system may be in a
ground or excitedstate.These are different S systems. The
fact that theseSsystems may be in any arbitrary state and yet
lead to the density of the excited state of the interacting
system was originally stated by us@6#. The difference in the
corresponding electron-interaction potential energyvee(r ) of
the model fermions is duesolely to the correlation-kinetic
effects. The Pauli and Coulomb correlation contributions to
the potential energyvee(r ) and the corresponding component
of the total energy remain the same. Whether theSsystem is
in a ground or excited state, the density and total energy
equivalent to that of theexcitedstate of Schro¨dinger theory
is obtained. Furthermore, the highest occupied eigenvalue of
theSsystem, whether in a ground or excited state, is equiva-
lent to the negative of the ionization potential energy.

Within KS-DFT, many approaches to excited states have
been proposed. All these methods involve energy functionals
of a density or bidensity energy functionals, and their func-
tional derivatives, and hence differ from the Q-DFT descrip-
tion. For a brief review, we refer the reader to the work by
Dreizler and Gross@8#. Here we note three recent formal-
isms. The first is based on the energy variational principle for
ensembles@9# with unequal weights. The ensemble energy as
constructed with theM lowest eigenstates of a system satis-
fies the variational principle. In other words, the ensemble
energy calculated withM approximate wave functions is al-
ways greater than or equal to the ensemble energy deter-
mined via theM exact eigenstates of the interacting system.
It is then proved that the ensemble energy is a functional of
the ensemble densityrens(r ). Thus, in a manner similar to
ground state KS-DFT, an electron-interaction energy func-
tional of the ensemble densityEee

KS@rens# can be defined. The
corresponding effective potential energy of the noninteract-
ing fermions is once again the sum of the external@vs(r )#
and the electron-interaction@vee(r )# potential energy, where
the latter is defined as the functional derivative
dEee

KS@rens#/drens(r ). The excitation energies can then be
expressed in terms of the eigenvalues of the noninteracting
system differential equation and the functionalEee

KS@rens#.
Again, ensemble KS-DFT of excited states does not describe
how the various electron correlations are incorporated into
the ensemble-density energy functionalEee

KS@rens#.
In a second approach@10#, it has been proved that there

exists a variational KS-DFT with a minimum principle for
the self-consistent determination of an excited state. In this
case, the total energy of thekth excited state is abidensity
energy functional of the excited@rk(r )# and ground-state
@r0(r )# densities. One then defines the corresponding KS
electron-interaction energy bidensity functional
Eee

KS@r,r0#urk
, with the resulting electron-interaction poten-

tial energyvee(r ) of the noninteracting fermions being de-
fined as the functional derivativedEee

KS@r,r0#/dr(r )urk
taken

at the excited-state density valuerk(r ). Once again, how the
different electron correlations are represented in the energy
bidensity functional is not described. Further, the configura-
tion of the noninteracting system constructedalwayscorre-
sponds to that of the excited state of the interacting system.
In this approach, there can only beone Ssystem because the
functional derivative at thekth excited-state density value is
a uniquefunction. @Note that the ground-state density of this
S system is not the ground-state densityr0(r ) of the inter-
acting system.#

A third approach, based on a generalization of the con-
strained search procedure@11#, is the generalized adiabatic
connection~GAC! KS-DFT @12#. In this framework, an ex-
cited state of the interacting system is adiabatically con-
nected to a particular state of the noninteracting system. The
state of the noninteracting fermions, however, isnot arbi-
trary, but governed by the adiabatic path. The state could be
a ground or excited state. The energy functionals in this in-
stance are generalizations of the constrained search formal-
ism for the ground state, and involve an additional parameter
n. The energy depends upon this parameter, and is a func-
tional of what is referred to as ther-stationary density
rstat(r ). In the KS-DFT version, one then defines an
electron-interaction energy functionalEee

KS@rstat,n# represen-
tative of all the many-body effects, with the corresponding
electron-interaction potential energy of the noninter-
acting fermions being the functional derivative
dEee

KS@rstat,n#/drstat(r )urstat(r )5rk(r ) , where rk(r ) is the

density of thekth excited state. A further generalization@13#
to account for the symmetry problems of KS-DFT involves
functionals of symmetrizedr-stationary densities and the pa-
rametern.

In this paper we demonstrate, via Q-DFT, the state arbi-
trariness of the model noninteracting fermion system. The
example we consider is that of the first excited nondegener-
ate singlet state of Hooke’s atom@14#. The wave function of
this state of the interacting system is known analytically
@6,7#. We transform this state described by Schro¨dinger
theory to two Ssystems, one in a singletground state, and
the other in a singletexcitedstate. In each case, the self-
consistently determined orbitals lead to the density of the
interacting system. The corresponding highest occupied ei-
genvalues are equivalent to the negative of the ionization
potential of this state. In addition, although the noninteract-
ing kinetic and correlation-kinetic energies of the twoS sys-
tems are different, the equivalent total energy of the interact-
ing system is obtained in each case. The example further
demonstrates how the different many-body correlations—
Pauli, Coulomb, and correlation-kinetic—contribute to the
structure of these differentS systems.

As the energy functionals of the different excited-state
formalisms within KS-DFT are unknown, one cannot apply
these approaches to the solution of the exactly solvable
Hooke’s atom model. However, from the results obtained via
Q-DFT, we determine the KS-DFT ‘‘exchange-correlation’’
potential energy for the two S systems, and arrive at conclu-
sions with regard to the KS-DFT of excited states. For the
paper to be self-contained, we briefly describe bound nonde-
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generate excited state Q-DFT in Sec. II. The results of trans-
formation to the twoS systems are described in Sec. III.
These results are then expressed in the language of KS-DFT
in Sec. IV. We end with concluding remarks in Sec. V.

For the application to excited states of Q-DFT in both the
Pauli-correlated approximation and with the use of an ap-
proximate correlation energy functional, we refer the reader
to Ref. @15#. For a description of the Q-DFT ofdegenerate
states, bothgroundandexcitedstates, and for bothpurestate
and ensembledensities, we refer the reader to our more re-
cent work@16#.

II. Q-DFT OF NONDEGENERATE EXCITED STATES

The Schro¨dinger equation for thekth nondegenerate
bound excited state of a system ofN electrons in an external
field Fext(r )52“v(r ) is

@ T̂1V̂1Û#Ck~X!5EkCk~X!, ~1!

where T̂52 1
2 ( i¹

2, V̂5( iv(r i), and Û5 1
2 ( i , j8 (1/ur i2r j u)

are the kinetic energy, local external potential-energy, and
electron-interaction potential energy operators,Ck(X) and
Ek are the excited-state wave function and energy, withX
5x1 ,x2 , . . . ,xN , x5rs, and s the spin coordinate. The
electronic density of this state is the expectation

rk~r !5^Ckur̂uCk&, ~2!

where r̂5( id(r2r i) is the density operator. The corre-
sponding spinless single-particle density matrix is the expec-
tation

gk~rr 8!5^CkuX̂uCk&, ~3!

where the Hermitian operatorX̂5Â1 iB̂, Â5(1/2)( j@d(r j

2r )Tj (a)1d(r j2r 8)Tj (2a)#, B̂52( i /2)( j@d(r j
2r )Tj (a)2d(r j2r 8)Tj (2a)#, Tj (a) is a translation opera-
tor, anda5r 82r . The ionization potential for this state is
I k5Ek

ion2Ek , whereEk
ion is the energy of the resulting ion

when the least bound electron is removed to infinity.
The S-system differential equation corresponding to the

kth nondegenerate bound excited state is

F2
1

2
¹21v~r !1vee~r !Gf i~x!5e if i~x!; i 51, . . . ,N,

~4!

where thelocal electron-interaction potential energyvee(r ),
in which all the many-body effects are incorporated, is such
that the densityrk(r ) is obtained as the expectation

rk~r !5^F$f i%ur k̂uF$f i%&5(
i

(
s

uf i~rs!u2, ~5!

whereF$f i% is the Slater determinant of the orbitalsf i(x).
The occupation of the orbitalsf i(x) may either be theN
lowest-lying states corresponding to a ground-state configu-

ration, or they may be in an excited-state configuration. The
corresponding spinless Dirac density matrix is the expecta-
tion

gs,k~rr 8!5^F$f i%uX̂uF$f i%&5(
i

(
s

f i* ~rs!f i~r 8s!.

~6!

Further, whether theSsystem is in a ground- or excited-state
configuration, the highest occupied eigenvalueem52I k is
the negative of the ionization potential.

The potential energyvee(r ) is the work done to move the
model fermion from a reference point at infinity to its posi-
tion at r in the force of a conservativeeffective field
Fk

e f f(r ):

vee~r !52 È r
Fk

e f f~r 8!•dl8. ~7!

The fieldFk
e f f(r ) is the sum of an electron-interaction field

Eee(r ) representative of Pauli and Coulomb correlations, and
a correlation-kinetic fieldZtc

(r ) representative of this effect:

Fk
e f f~r !5Eee~r !1Ztc

~r !. ~8!

The fieldEee(r ) is obtained via Coulomb’s law from the
pair-correlation densityg(rr 8) which constitutes its quantal
source. Thus,

Eee~r !5E g~rr 8!~r2r 8!

ur2r 8u3
dr 8, ~9!

where g(rr 8)5^CkuP̂(rr 8)uCk&/rk(r ) and P̂(rr 8)
5( i , j8 d(r i2r )d(r j2r 8) is the pair-correlation operator. The
pair-correlation density may further be separated into its lo-
cal and nonlocal~dynamic! components as

g~rr 8!5rk~r 8!1rxc~rr 8! ~10!

5rk~r 8!1rx~rr 8!1rc~rr 8!, ~11!

where rxc(rr 8), rx(rr 8), and rc(rr 8) are the Fermi-
Coulomb, Fermi, and Coulomb hole charge distributions.
The Fermi hole is defined as rx(rr 8)5
2ugs,k(rr 8)u2/2rk(r ), and the Coulomb hole is defined via
Eqs. ~10! and ~11!. The sum rules satisfied by these charge
distributions are *rxc(rr 8)dr 8521, *rx(rr 8)dr 8521,
rx(rr 8)<0, and rx(rr )52rk(r )/2, and *rc(rr 8)dr 850.
The electron-interaction field may then be written in terms of
its components as

Eee~r !5EH~r !1Exc~r ! ~12!

5EH~r !1Ex~r !1Ec~r !, ~13!

where the Hartree@EH(r )#, Pauli-Coulomb@Exc(r )#, Pauli
@Ex(r )#, and Coulomb@Ec(r )# fields are due to their respec-
tive quantal sourcesrk(r ), rxc(rr 8), rx(rr 8), andrc(rr 8).
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The correlation-kinetic fieldZtc
(r ) is the difference of

the kinetic fieldsZ(r ) andZs(r ),

Ztc
~r !5Zs~r !2Z~r !, ~14!

where Z(r )5z(r ;@gk#)/rk(r ) and Zs(r )
5zs(r ;@gs,k#)/rk(r ). The quantal sources of the fieldsZ(r )
andZs(r ) are the single-particle and Dirac density matrices,
respectively. The forcez(r ;@gk#) is defined in terms of its
components asza(r ;@gk#)52(b]tab(r ;@gk#)/]r b , where
tab(r ;@gk#)5 1

4 @]2/]r a8]r b91]2/]r b8]r a9 #gk(r 8r 9)ur85r95r is
the kinetic-energy tensor. The fieldzs(r ;@gs,k#) is similarly
defined in terms of theS-system tensortab,s(r ;@gs,k#).

For systems of symmetry such that the component fields
Eee(r ) andZtc

(r ) are separately conservative, the potential

energyvee(r ) may be expressed as the sum of the separate
work done in these fields. Thus

vee~r !5Wee~r !1Wtc
~r ! ~15!

5WH~r !1Wxc~r !1Wtc
~r ! ~16!

5WH~r !1Wx~r !1Wc~r !1Wtc
~r !, ~17!

whereWee(r ), WH(r ), Wxc(r ), Wx(r ), Wc(r ), andWtc
(r )

are the work done in the fieldsEee(r ), EH(r ), Exc(r ),
Ex(r ), Ec(r ), andZtc

(r ), respectively.
The excited-state energy is

Ek5Ts1E rk~r !v~r !dr1Eee1Tc , ~18!

where Ts5^F$f i%uT̂uF$f i%& is the kinetic energy of the
noninteracting fermions. The electron-interaction (Eee) and
correlation-kinetic (Tc) energies are expressed in terms of
the fieldsEee(r ) andZtc

(r ), respectively, in integral virial
form as

Eee5E drrk~r !r•Eee~r ! andTc5
1

2E drrk~r !r•Ztc
~r !.

~19!

In our previous work@6# we had proved that the state
arbitrariness of theS system is reflected entirely through its
kinetic field Zs(r ) or equivalently the correlation-kinetic
field Ztc

(r ). The electron-interaction component field

Eee(r ) remains the same. Thus, it is the fieldZtc
(r ) that is

adjusted to ensure that the density, energy, and ionization
potential of the interacting system are achieved.@Note that
although the fieldEee(r ) remains unchanged, its Pauli
@Ex(r )# and Coulomb@Ec(r )# components will each be dif-
ferent depending upon the state theS system is in.#

III. CONSTRUCTION OF MODEL NONINTERACTING
FERMION SYSTEMS

The interacting system we consider is Hooke’s atom in its
first excited singlet state. Hooke’s atom comprises two elec-

trons whose external potential energy is harmonic,v(r )
5 1

2 kr2. The solution of the Schro¨dinger equation for this
state withk50.144 498 is

C01~r1r2!5C0e2vR2
e2vr 2/4F11C1Av

2
r 1C2S v

2 D r 2

1C3S v

2 D 3/2

r 3G , ~20!

where r5r12r2 , R5(r11r2)/2, v5Ak50.380 129, C0
50.026 100 5,C151.146 884,C2520.561 569, andC35
20.489 647. The total energy of this state isE01
52.280 775 a.u., and its ionization potential isI 015
21.710 582 a.u.. The atom in this first excited state is
spherically symmetric.

The results of transformation via Q-DFT of this excited
state of the interacting system to two model noninteracting
fermion systems, one in a singletgroundstate (1s2) and the
other in a singlet firstexcitedstate (1s2s), are described
below. The calculations for the transformation to anS-system
in its ground state are principally analytical since each orbital
f1s2(r )5Ar(r )/2, andr(r ) is known analytically. However,
the orbitals and the singlet eigenvaluee1s2 have also been
determined independently by numerical solution of the
S-system differential equation. Additionally, the value ofe1s2

has been reconfirmed by taking the expectation value of the
S-system Hamiltonian. The orbitalsf1s(r ), f2s(r ), and the
corresponding eigenvaluese1s , e2s for transformation to the
S-system in its excited state are determined by numerical
self-consistent solution of theS-system differential equation.
In this equation, the potential-energy componentWee(r ) of
the electron-interaction potential energyvee(r ) @see Eq.
~15!#, which is the same as for the ground-state calculation,
remains fixed for each iteration. It is the correlation-kinetic
componentWtc

(r ), which depends upon the orbitalsf1s(r )

andf2s(r ) through the Dirac density matrix, which changes
in each iteration and is determined self-consistently together
with the orbitals and eigenvalues. The input potential energy
employed to initiate the self-consistency procedure was that
of the ground-state calculation. The self-consistency code
was designed to converge for solutions with positive eigen-
value for each orbital. Following self-consistency, the eigen-
valuese1s and e2s were independently confirmed by taking
the expectation of theS-system Hamiltonian with the appro-
priate self-consistently determined orbitals.

In Fig. 1 we plot the ground-stateSsystem orbitalf1s2(r )
and the excited-stateS-system orbitalsf1s(r ) and f2s(r ).
The node off2s(r ) is at 2.4 a.u. The orbitalf1s2(r ) and
orbitalsf1s(r ), f2s(r ) lead to the same densityr(r ) as that
of the singlet excited state of Hooke’s atom.

In Fig. 2 the radial probability density of each orbital
@r 2r1s2(r ), r 2r1s(r ), r 2r2s(r )] is plotted. The ground-state
S system radial probability densityr 2r1s2(r ) is equal to the
sum of the excited-stateSsystem radial probability densities
r 2@r1s(r )1r2s(r )#. Each in turn is equivalent to the radial
probability densityr 2r(r ) of the interacting system. The
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probability densityr 2r2s(r ) has two maxima, and a mini-
mum at the node. The maximum ofr 2r1s(r ) occurs at the
minimum of r 2r2s(r ), indicating that the region the first
model fermion is most likely to be found coincides with the
region where the second fermion is least likely to be. Note
that r 2r1s(r ) is negligible for r .5 a.u.. As such, the
asymptotic structure of the radial probability density, and
hence the density, is that ofr 2r2s(r ), and that it coincides
with r 2r1s2(r ). This is the reason why the eigenvaluese1s2

ande2s are equivalent~see Table I!.

In Fig. 3, the electron-interaction fieldEee(r ), and its
Hartree@EH(r )#, Pauli @Ex(r )#, and Coulomb@Ec(r )# field
components are plotted.@Note that for two electrons in a
singlet state within local effective potential-energy theory,
one definesrx(rr 8)52r(r 8)/2, so thatEx(r )52EH(r )/2.#
The corresponding potential energyWee(r ), and its Hartree
@WH(r )#, Pauli @Wx(r )#, and Coulomb@Wc(r )# compo-
nents are plotted in Fig. 4. The contribution of these potential
energies to the electron-interaction potential energyvee(r ) of
Eq. ~17! remains unchanged irrespective of the state theS
system is in.„The fact that the Pauli@Wx(r )# and Coulomb
Wc(r ) potential energies remain the same is particular to the

FIG. 1. The orbitals of theS system in its singlet ground state
f1s2(r ), and its singlet first excited statesf1s(r ) andf2s(r ).

FIG. 2. The radial probability densitiesr 2r1s2(r ), r 2r1s(r ), and
r 2r2s(r )

TABLE I. The components of the total energy and eigenvalues
for the transformation from a singlet first excited state of Hooke’s
atom to S systems in the singlet ground (1s2) and first excited
singlet (1s2s) states.

S systems
Property~a.u.! Ground state 1s2 Excited state 1s2s

EH 0.722217 0.722217
Ex 20.361109 20.361109
Ec 20.008966 20.008966
Eee 0.352142 0.352142
Ts 0.327471 1.015505
Tc 0.548791 20.139243
Eext 1.052371 1.052371
E 2.280775 2.280775
Eigenvalues e1s251.711 e1s50.573

e2s51.711

FIG. 3. The electron-interaction fieldEee(r ) and its Hartree
@EH(r )#, Pauli @Ex(r )#, and Coulomb@Ec(r )# field components.
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two-electron case…. The electron-interaction energyEee, and
its Hartree (EH), Pauli (Ex), and Coulomb (Ec) energy
component values which remain the same are given in Table
I.

It is the kinetic-energy fieldZs(r ) of the noninteracting
fermions or equivalently the correlation-kinetic fieldZtc

(r )
that differs as a function of the state of theS system. In Fig.
5 we plot the interacting system kinetic ‘‘force’’z(r ), and
ground- and excited-stateS system kinetic forceszs(r )u1s2,
zs(r )u1s2s . Observe that the forcezs(r )u1s2s has an additional
structure when compared tozs(r )u1s2, because both a
ground- and an excited-state orbital contribute to it. All the
three forces vanish at the nucleus. They also all merge as-
ymptotically. The differences @zs(r )u1s22z(r )# and
@zs(r )u1s2s2z(r )# between the kinetic forces required for the
determination of the corresponding correlation-kinetic fields
Ztc

(r )u1s2 andZtc
(r )u1s2s , vanish in this region. This can-

cellation is important because the fieldZtc
(r ) is also propor-

tional to 1/rk(r ). Asymptotically, for larger, the contribution
of 1/rk(r ) is singular. The exact cancellation of the kinetic
forces then prevents the correlation-kinetic fields from being
singular in the asymptotic region.

The correlation-kinetic fieldsZtc
(r )u1s2, Ztc

(r )u1s2s are

plotted in Fig. 6, and the potential energiesWtc
(r )u1s2,

Wtc
(r )u1s2s in Fig. 7. As expected, the field and potential

energy of the system in its excited state have more structure
than when in its ground state. The correlation-kinetic fields
both vanish at the nucleus, and therefore the potential ener-
gies have a zero slope there. Observe that asymptotically the
fields are the same~Fig. 6!. Thus, in this region, the potential

energies are also the same~Fig. 7!. Therefore, the effective
fieldsF1s2

e f f(r ), F1s2s
e f f (r ) of Eq. ~8!, and consequently, the

S-system electron-interaction potential energiesvee(r )u1s2,
vee(r )u1s2s , as obtained via Eq.~7! or Eq.~17!, are the same
~Fig. 8!, decaying asymptotically as 1/r . This ensures that
the corresponding highest occupied eigenvaluese1s2 ande2s

are the same~see Table I!. Observe that both thevee(r ) are
finite at the nucleus as must be the case@17#. The two po-
tential energiesvee(r ) of Fig. 8, one corresponding to theS
system in the 1s2 state and the other to anS system in the
1s2s state, generate the same densityr(r ) as that of the
interacting system.

The noninteracting kinetic energyTs of the twoSsystems
in the different states as quoted in Table I differ significantly.
So do the correlation-kinetic energiesTc determined from
the fields of Fig. 6 via Eq.~19! ~see Table I!. However, they
both add up to the kinetic energyT50.876 262 a.u. of the
interacting system. The fact thatTs for the S system in the
1s2s state is greater than the one in the 1s2 state follows
from the virial theorem. The 2s electron is further from the
nucleus~see Fig. 2!, and consequently hashigher external
potential energy sincev(r ) is harmonic. Therefore, via the
virial theorem its contribution toTs is large.

For theS system in the ground 1s2 state,Tc.Ts.0. In
fact, Tc is large and 63% ofT. For the S system in the
excited 1s2s state,Tc,,Ts andTc,0. The fact thatTc is
negative is consistent with the structure of the field
Ztc

(r )u1s2s of Fig. 6. The field is negative in two regions of

FIG. 4. The potential energyWee(r ), and its Hartree@WH(r )#,
Pauli@Wx(r )#, and Coulomb@Wc(r )# potential-energy components

FIG. 5. The kinetic forcesz(r ) of the interacting system, and
those of theS systemzs(r )u1s2, zs(r )u1s2s in the ground (1s2) and
excited (1s2s) states, respectively.
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space where the density is also high~Fig. 2!. @We have be-
come aware of a recent work@18# on the He atom whereby
an S system in a 1s2s excited state is constructed to repro-
duce the density of the corresponding state of the interacting
system. In this calculation, an accurate albeit approximate
density is assumed, and theS system effective potential en-
ergy vs(r ) determined indirectly by one of the standard
density-based methods@19#. For this case too the difference
T2Ts5Tc,0.]

IV. RESULTS EXPRESSED IN KOHN-SHAM THEORY
TERMS

The results derived via Q-DFT can be expressed in the
language of KS-DFT. For the transformation from thekth
excited state of the interacting system to anS system in an
excited state, the KS-DFT electron-interaction bidensity en-
ergy functional is written@10# as

Eee
KS@r,r0#ur5rk

5EH@r#ur5rk
1Exc

KS@r,r0#ur5rk
, ~21!

wherer0(r ), rk(r ) are the ground- and excited-state densi-
ties, andEH@r# is the Hartree energy functional:

EH@r#5
1

2E E r~r !r~r 8!

ur2r 8u
dr dr 8, ~22!

and Exc
KS@r,r0# the unknown-excited-state KS ‘‘exchange-

correlation’’ energy bidensity functional. The corresponding
electron-interaction potential energy is

FIG. 6. The correlation-kinetic fieldsZtc
(r ) for theSsystems in

the ground (1s2) and excited (1s2s) states.

FIG. 7. The correlation-kinetic potential energiesWtc
(r ) for the

S systems in the ground (1s2) and excited (1s2s) states.

FIG. 8. The electron-interaction potential energiesvee(r ) for the
S systems in the ground (1s2) and excited (1s2s) states.
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vee~r !5
dEee

KS@r,r0#

dr~r !
U

r5rk

5vH~r !1vxc~r !, ~23!

wherevH(r )5dEH@r#/dr(r )ur5rk
5*dr 8rk(r 8)/ur2r 8u and

vxc(r )5dExc
KS@r,r0#/dr(r )ur5rk

the KS ‘‘exchange-

correlation’’ potential energy. Asvee(r ) and vH(r )5WH(r )
are known via Q-DFT~Figs. 8 and 4!, we plot in Fig. 9
vxc(r ) for theSsystem in the 1s2s state. Note that this is the
exactfunctional derivative for this excited state. It decays as
21/r , and is finite at the nucleus. The value~from Table I! of
the KS energy Exc

KS@r,r0#ur5rk
5Ex1Ec1Tc5

20.509 318 a.u.
The answer to the question of how one transforms an

excited state of the interacting system to one of noninteract-
ing fermions in agroundstate with equivalent density within
the framework of KS-DFT is unknown. The GAC formula-
tion @12# depends explicitly on the adiabatic path. The end
point is not necessarily a ground state. One cannot employ
the KS ground-state energy functional since it represents the
ground state of the interacting system and not an excited
state. Neither can one employ the excited-state bidensity en-
ergy functional because its functional derivative is unique to
an S system in an excited state. Hence, let usassumethat
there exists an energy functional of the excited-state density

that allows one within the context of KS-DFT to transform
an excited state of the interacting system to anSsystem in its
ground state. One may then define a corresponding KS
exchange-correlation energy functionalExc

KS(e→g)@r,r0#ur5rk

and the potential energy vxc(r )
5dExc

KS(e→g)@r,r0#/dr(r )ur5rk
. Again, as thevee(r ) and

vH(r ) potential energies of theSsystem in the ground (1s2)
state are known via Q-DFT~Figs. 8 and 4!, the function
vxc(r ) may be determined, and is plotted in Fig. 9. It too
decays as21/r asymptotically, and is also finite at the
nucleus. The value ~from Table I! of the energy
Exc

KS(e→g)@rk ,r0#50.178 716 a.u.

V. CONCLUDING REMARKS

In the Q-DFT of excited states, the mapping from a pure
nondegenerate excited state of Schro¨dinger theory to one of
noninteracting fermions with the same density is such that
the state of the modelS system is arbitrary. It may be in a
ground state or in an excited state with the same or different
configuration from that of the interacting system. In this pa-
per we have demonstrated the state arbitrariness of theS
system by transforming the firstexcited state of Hooke’s
atom to S systems in a singletground state (1s2) and a
singlet first excitedstate (1s2s). As expected, the kinetic
energyTs of the S system in its excited state is closer to the
kinetic energyT of the interacting system. Equivalently, the
magnitude of the correlation-kinetic energyTc for the ex-
cited stateS system is less. This is of relevance to the con-
struction of the bidensity energy functionalE@r,r0# of KS-
DFT. In ground-state KS-DFT, the correlation-kinetic energy
Tc contribution is small@3# compared toTs . For excited
state KS-DFT, it is then best to construct theS system to be
in the same configuration as that of the interacting system.

An important property of the noninteracting systems is
that their highest occupied eigenvalue is the negative of the
ionization potential irrespective of the state theS system is
in. This implies that the effective potential energyvs(r ) of
theseSsystems must vanish asymptotically in the classically
forbidden region in the same manner. As the Pauli and Cou-
lomb correlation contribution to the electron-interaction po-
tential energyvee(r ) remains unchanged, this further means
that the correlation-kinetic contribution must asymptotically
be the same for each S system. This is explicitly demon-
strated in the example studied in the paper. Over the rest of
the atom, however, the correlation-kinetic fields and potential
energies differ significantly. It follows, therefore, that the
correlation-kinetic component is critical to ensuring the
equivalence of the highest occupied eigenvalue of theS sys-
tem in different configurations.
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FIG. 9. The KS-DFT ‘‘exchange-correlation’’ potential energies
vxc(r ) for the S systems in the ground (1s2) and excited (1s2s)
states.
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