Apr 21st, 1:00 PM - 3:00 PM

Phenolic levels of invasive Myriophyllum spicatum and native Elodea canadensis at different temperatures

TIffany Balling

Follow this and additional works at: https://digitalcommons.sacredheart.edu/acadfest

Balling, TIffany, 'Phenolic levels of invasive Myriophyllum spicatum and native Elodea canadensis at different temperatures' (2017). Academic Festival. 39.
https://digitalcommons.sacredheart.edu/acadfest/2017/all/39

This Poster is brought to you for free and open access by DigitalCommons@SHU. It has been accepted for inclusion in Academic Festival by an authorized administrator of DigitalCommons@SHU. For more information, please contact ferribyp@sacredheart.edu, lysobeyb@sacredheart.edu.
Phenolic levels of invasive *Myriophyllum spicatum* and native *Elodea canadensis* at different temperatures

Tiffany Balling and Dr. LaTina Steele
Department of Biology, Sacred Heart University, Fairfield, CT

Abstract

Eurasian watermilfoil (*Myriophyllum spicatum*) is an invasive aquatic plant that may dominate lakes and waterways throughout the U.S. It is known to crowd out native plants and create dense mats that interfere with recreational activity. Milfoil also produces allelopathic chemicals, such as phenolics, that may give the invasive plant a competitive advantage over native species like *Elodea canadensis*. In a laboratory competition experiment, we tested the effects of competition and temperature on growth and phenolic levels in both *Myriophyllum spicatum* and *Elodea canadensis*. The experiment consisted of six replicates each of six treatments (M. spicatum alone, E. canadensis alone, and the two species grown together, with each combination of plants grown at ambient temperature and with the temperature increased by 2°C using individual aquarium heaters). After three weeks, the length of each plant fragment was measured, the number of branches on each fragment was counted, each fragment was weighed, and mean growth per fragment was calculated as the change in weight. Plant fragments were frozen for phenolic analysis at the end of the experiment. In general, *M. spicatum* showed more growth and produced more phenolics than *E. canadensis* in all treatments. At higher temperatures, *E. canadensis* produced fewer phenolics than at lower temperatures. Based on these results, it is possible that rising temperatures due to climate change will increase invasive milfoil’s competitive advantage over native *E. canadensis* by shifting herbivory to the less chemically defended native plant.

Methods

- Invasive milfoil (*Myriophyllum spicatum*) and native *Elodea canadensis* were collected from Osboundale Pond in Derby, CT for use in a lab competition experiment.
- The experiment consisted of the following treatments grown at ambient temperature and at a temperature 2°C above ambient (six replicates each): milfoil in monoculture, *Elodea* in monoculture, a polyculture of both species (Fig. 1).
- Plant fragments (10 cm each) were weighed and placed in 2-gallon tanks containing 1 inch of sand, aerated tap water, a thermometer, an air stone, and an aquarium heater (4 fragments per tank).
- At the end of the experiment, fragments were weighed, the number of branches was counted, and plant tissue samples were frozen for later phenolic analysis.
- A colorimetric assay (Folin-Denis assay) was used to measure total reactive phenolic concentrations in the plant tissue (Fig. 2).

Conclusions

- Invasive milfoil appeared to outperform native *Elodea* in terms of both weight and number of branches (Figs. 3 & 4).
- Phenolic production was lower in *Elodea* than in milfoil (Fig. 5).
- A small increase in temperature, consistent with predictions of even the most conservative climate change models, reduced phenolic production in native *Elodea* but not milfoil (Fig. 5).
- As temperature continues to increase with global climate change, the rate at which milfoil outcompetes and overgrows *Elodea* may increase if the lower production of phenolics in *Elodea* at higher temperatures causes herbivory on the native species to increase.

Literature Cited

Acknowledgements

We would like to thank Erin Marx for assisting with plant collection and experiment setup. This work was funded by a USGS/Connecticut Institute of Water Resources Grant to L. Steele.