
Sacred Heart University
DigitalCommons@SHU

Computer Science & Information Technology
Faculty Publications Computer Science & Information Technology

6-2009

Free, Source-Code-Available, or Proprietary: An
Ethically Charged, Context-Sensitive Choice
Marty J. Wolf
Bemidji State University

Keith W. Miller
University of Illinois at Springfield

Frances Grodzinsky
Sacred Heart University, grodzinskyf@sacredheart.edu

Follow this and additional works at: http://digitalcommons.sacredheart.edu/computersci_fac

Part of the Software Engineering Commons

This Article is brought to you for free and open access by the Computer Science & Information Technology at DigitalCommons@SHU. It has been
accepted for inclusion in Computer Science & Information Technology Faculty Publications by an authorized administrator of
DigitalCommons@SHU. For more information, please contact ferribyp@sacredheart.edu.

Recommended Citation
Wolf, Marty J.; Miller, Keith W.; and Grodzinsky, Frances, "Free, Source-Code-Available, or Proprietary: An Ethically Charged,
Context-Sensitive Choice" (2009). Computer Science & Information Technology Faculty Publications. Paper 17.
http://digitalcommons.sacredheart.edu/computersci_fac/17

http://digitalcommons.sacredheart.edu/?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci_fac?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci_fac?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci_fac?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci_fac/17?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ferribyp@sacredheart.edu

SIGCAS Computers and Society, Volume 39, No. 1, June 2009
15

Free, Source-Code-Available, Or Proprietary: An Ethically

Charged, Context-Sensitive Choice

Marty J. Wolf

Bemidji State University

mjwolf@cs.bemidjistate.edu

Keith W. Miller

University of Illinois, Springfield

kmill2@uis.edu

Frances S. Grodzinsky

Sacred Heart University

grodzinskyf@yahoo.com

Abstract

We demonstrate that different categories of software raise different ethical concerns with
respect to whether software ought to be Free Software or Proprietary Software. We
outline the ethical tension between Free Software and Proprietary Software that stems
from the two kinds of licenses. For some categories of software we develop support for
normative statements regarding the software development landscape. We claim that as
society's use of software changes, the ethical analysis for that category of software must
necessarily be repeated. Finally, we make a utilitarian argument that the software
development environment should encourage both Free Software and Proprietary Software
to flourish.

Introduction

Much of the ethical analysis of Free, Libre, and Open Source Software, either separately
or collectively, focuses on its differences from proprietary software. Chopra and Dexter
give a particularly comprehensive analysis in their book [Chopra and Dexter, 2008].
Typically, in these analyses, all contexts of software use have been treated as ethically
equivalent. It is not uncommon to find a specific example given in support of a particular
claim with an implicit suggestion that the argument can be extended to all kinds of
software. In this paper we explore the notion that some categories of software elicit
different ethical concerns than software in general. We use the term software category to
refer to different software that accomplishes roughly the same purpose. Some categories
will admit subcategories. For example, the category of “Productivity Software” includes
the subcategory of “Word Processing Software.” When we talk about software type, we
are referring to whether it is Free Software (FS), Proprietary Software (PS) or Source
Code Available Software (SCAS). By analyzing the ethics of FS, SCAS, and PS in the
context of a particular category of software, we develop a more nuanced approach that
allows a more focused ethical analysis of each category.

For the purposes of our paper, we define Proprietary Software as software that is
developed by either an individual or company and is made available to the public and
other businesses only in binary form. Furthermore, it is licensed in such a way as to
restrict its further distribution and to prevent reverse engineering.

An earlier version of the paper was published in Proceedings of Ethicomp 2008, University of Pavia,

Mantua Italy, ed: Bynum, Calzarossa, De Lotto, Rogerson, 2008. The authors retained the copyright.

SIGCAS Computers and Society, Volume 39, No. 1, June 2009
16

In order for a piece of software to be considered Free Software (FS) it must be licensed
under an approved Free Software License [FSF License, 2007]. The Free Software
Foundation promotes the four software freedoms to provide clarity about what those
licenses are designed to accomplish [FSF Definition, 2007]. Briefly, software that is
“free” affords four freedoms:

• Freedom 0: The freedom to run the program, for any purpose.
• Freedom 1: The freedom to study how the program works, and adapt it to your needs.
• Freedom 2: The freedom to redistribute copies so you can help your neighbor.
• Freedom 3: The freedom to improve the program, and release your improvements to

the public, so that the whole community benefits.

In addition, FS usually includes the notion of “copyleft,” which uses copyright law to
ensure that all derivative works of FS are also FS. This is accomplished by licensing
software with a clause that requires all derivative software be licensed with the same
license [FSF Copyleft, 2009]. We include this notion in our sense of FS.

We will call all software that has its source code available in a standard electronic format,
Source Code Available Software (SCAS). Freedoms 1 and 3 require access to the source
code, so FS is also SCAS. However, there is SCAS that is not FS, including some Open
Source Software (OSS), which also has a formal definition that requires more than source
code availability [Coar, 2007]. We focus on FS, PS, and SCAS, and include non-free
OSS in SCAS.

In the remainder of the paper we make the claim that the category of software is a
relevant factor when attempting an ethical analysis of the software. First, we explore the
relevance of the software’s type by examining the ethical tension between FS and PS that
stems from the two different kinds of licenses. Next we consider a variety of categories

of software and, using the lenses of FS, SCAS, and PS, develop support for normative
statements regarding the software development landscape. As we consider some
categories of software, we accumulate evidence to support the claim that as society's use
of software changes and the role of software in society changes, the ethical analysis for
that category of software should be repeated. We conclude by noting that an overarching
ethical concern surrounding software development is ensuring that the software
development environment has the agility to allow both FS and PS to flourish.

Critiques

In some sense, FS is itself a critique of PS. The FS definition, its GPL licenses and many
supporting documents argue that FS preserves the autonomy of individuals and the
cohesiveness of communities that use the software. There is a strong emphasis on users'
rights over developers' rights in the FS definition. It is precisely this emphasis that leads
to some notable critiques of FS.

In an earlier paper [Grodzinsky and Wolf, 2007], we examined some ethical critiques of
FS. They largely fall into two groups. Both groups of critiques involve how under FS
licenses FS software authors have to relinquish some of their rights. In the first group,
the critiques note that any software author who has dedicated time, talent, and energy to
develop software, at least deserves control over his/her creation, if not some financial
reward as well. Therefore, the argument goes, an author who writes truly original

SIGCAS Computers and Society, Volume 39, No. 1, June 2009
17

software should not be required to give up both control and future financial rewards by
making their software into FS. This argument is not unique to software as Himma and
others make a similar argument for the more general case of intellectual property
[Himma, 2006]. A closely related argument is that authors who make “value-added”
changes to existing FS should not be coerced by the FS license into making the changed
software FS as well. Watson, among others, argues that there should be no requirement
of quid pro quo. Just because a developer is in a position to take advantage of the
software written by others, does not mean the same developer must return his/her
contributions to the free software development community. Watson objects to copyleft
as a coercive system [Watson, 1999].

The second group of critiques centers on a concern that some FS borrows heavily from
existing PS, with much of the user interface and many of the ideas for features co-opted
from PS. There is a sense that these ideas have been taken unfairly from the original
creator. This tension over the co-opting of features is manifested particularly when, by
default, a category of software by the very nature of its use requires openly exposing
features of the software. Software with this property includes application software such
as a word processor or a spreadsheet, and software that uses any sort of network
communication protocol.

Much of the ethical tension between FS and PS stems from the tension between the rights
of the users of software and the rights of the developers of software. We explore this
tension by looking at different categories of software.

Software Categories

The two groups of critiques of FS offer starting points for analyzing the question, “When
should software be Free?” In this analysis, the user and the developer of a piece of
software each bring different ethical considerations to the table, and the power structure
between the user and the developer also impacts the ethical analysis.

We have not found a compelling ethical argument that all software should be FS.
Similarly, we do not think there is a compelling ethical argument that all software should
be PS. Instead we find that our ethical analyses vary depending on the category of
software under analysis. As we examine different software categories to understand
better the ethical issues pertaining to the categories, we examine these kinds of questions:
Should software in this category be FS? Should it be PS? Is SCAS sufficient to satisfy
ethical concerns? Have the ethical arguments changed due to the changing role of the
software in society?

3.1 In-House Software for Internal Use
As a straightforward case we consider software that is developed in-house for internal use
by a company. Because the software users and the software developers are (at one level
of abstraction) the same entity--the company, although different people in the company
can separately fulfill the roles of developer and user--the ethical tension is greatly
diminished. Even the most ardent supporters of FS concede that in-house software need
not be free to people outside the company. (FS advocates would certainly be pleased if
such in-house software would be made into FS, but they do not see it as a moral
imperative.) A key observation is that this software is not distributed outside the
company, and those outside of the company have no special rights to that software. The

SIGCAS Computers and Society, Volume 39, No. 1, June 2009
18

software is developed by the company, runs exclusively on the company's computers and
does not interact with outside users or outside data.

3.2 In-House Software Used as a Service by Remote Users
A slightly different category of software is FS software that is modified in-house and
used internally by a company without releasing the modifications back to the FS
community. Typically, the FS community has accepted this type of use since the FS
license is focused on how software is distributed and the copyleft provisions do not “kick
in” until distribution takes place. However, there are web-based services that allow the
public to run this “internal” software on the company’s computers. A client submits data
via the web to the company, the software runs on the company’s computers and the
results are sent back to the client via the web. (Web-based email, calendaring and task
management software are commonplace examples.) It seems ethically uncontroversial
that a company could use either PS or FS on its internal machines to service the remote
users. However, an interesting issue arises when the company obtains a piece of FS,
modifies it to service remote users, but does not release the modified version as FS.

Software used this way does not meet the legal definition of being “distributed,” so the
company is using the software in a way consistent with the legal requirements of FS.
Even so, there are those within the FS community who find FS modified and then used as
software-as-a-service objectionable. This issue was an important consideration during
the development of version 3 of the GNU General Public License (GPLv3). It seems that
even within the FS community there is not universal, and perhaps not even widespread,
support for preventing the offering of modified FS as a service. However, a second form
of the GPL, the Affero GPL, was developed to address these concerns directly. (See
[Miller, Wolf, and Grodzinsky, 2008] for more information on the development of
GPLv3 and AGPL.) Why is there uneasiness within the FS community about deploying
modified FS as a service?

Allowing people to use FS at little or no cost has the potential to elicit feelings of good
will both in the FS user and the FS developer. On the other hand, when people or
organizations make money using modified FS without making contributions back to the
FS community (declining, for example, to release their modifications as FS) there is a
sense that those people or organizations are exploiting the original developers of that FS,
acting as “free riders.” The original FS developers shared, but these modifiers do not
share. Again there is tension between the rights of the user and the rights of the original
developers. In this case of server-side software offered as software-as-a-service, the
users of the original FS who become the developers of the modified software, although
adhering to the letter of the FS license, are viewed as violating the spirit of the FS
community.

We find it interesting that the Free Software community that resents this type of “non-
sharing use” of FS is making a complaint similar to the second group of critiques of FS
by PS developers. Recall that PS developers object to FS that is similar in function and
interface to a piece of PS because the FS does not compensate the PS developer for what
the PS developer deems to be work that the FS conceptually relies upon. In the case of
server-side software, assume that company X adapts a piece of FS, call it S1, producing a
modified version, S2, and then uses S2 as server-side software. In this case, S2 is
naturally quite similar to S1, in fact includes significant parts of S1. But because S2 is

SIGCAS Computers and Society, Volume 39, No. 1, June 2009
19

not shared as FS, the Free Software community is not being “compensated” (X does not
share S2) for the value of S1 used by X.

The situation in which the company X modifies S1 into S2, uses S2, but does not share
S2, has similarities to PS sold to a consumer. In both cases, the developer has great
power over the users. In the case of PS, the roles of developer and users are clear.
However, in the case of FS, some care is required because the organization X is both a
user (of the original FS S1) and a developer (of the modified software S2). With regard
to S2, X dictates all of the terms of use of the software, while a remote user of S2 has no
influence on the functionality of the software. As a user, X was free to use S1 in ways
that are not available to remote “users” of the server-side software S2.

This asymmetry of X’s use of S1 as FS and the development of S2 as non-FS is
apparently legal under most interpretations of FS licenses. But ethically, the asymmetry
is troubling. One way in which X can address this asymmetry is to release some
improvements to S1 as a new FS version (S1*) as FS while still holding S2 in-house. S2,
which holds information that X wishes to be a trade secret, is protected, but S1* is still a
contribution to the Free Software community. Some organizations using modified FS in-
house do participate in just this way (Shankland, 2008).

Returning to our original questions, our judgment is that in-house software used as a
service for remote users can be either PS or FS at the option of the company on whose
machines the software runs. If the software is modified FS, there is an ethical obligation
for the company to contribute to the FS community in some meaningful way, an
obligation that does not apply if the software used is PS or unmodified FS.

3.3 Client-Side Web Software
Web software can be divided into two broad subcategories: server-side software and
client-side software. The software-as-service discussed in section 3.2 is an example of
server-side software. Server-side and client-side software are distinct cases when
analyzing questions about whether FS, PS, or SCAS is most appropriate. The location of
where the software executes is crucial to our analysis. In the case of the server-side
software, the software runs on computers owned by the company running the website.
As such, the software does not have access to remote user’s computers and data, except
the data a remote user has sent to the server. Without further analysis of the purpose and
activities carried out by the website, this case is identical to the analysis in section 3.2.

On the other hand, client-side software immediately has privacy concerns not prevalent in
server-side software, and so requires additional consideration. Even a careful web surfer
who does not supply personal information to any website is potentially subject to
surveillance by the web browser as well as any software embedded in web pages. It is
possible to imagine a government requiring that browser producers include surveillance
software in browsers. The availability of FS web browsers seems to preclude such a
requirement. Even if there were such a requirement, the nature of FS would allow
individuals to remove the surveillance components prior to installing the browser. While
the casual user may not choose to do so, the type of person who fears being watched
would be highly likely to do so, making the surveillance software requirement relatively
useless. Thus, the mere availability of FS in the browser market reduces the chances of a
government from becoming overly intrusive through web browsers. Note that this

SIGCAS Computers and Society, Volume 39, No. 1, June 2009
20

argument is not strong enough to require all browsers be FS; it only rises to the level of
not preventing the development of FS web browsers. (A less clear consideration is
whether the ethical argument is strong enough to require the development of at least one
FS web browser.) Furthermore, it may be the case that there are other mechanisms to
reduce the chances of a government becoming overly intrusive in this context. If so,
more general arguments, such as developer autonomy, are needed for allowing the
development of FS web browsers. However, any positive claim for a right or obligation
to actively prevent the development of FS web browsers would, it seems to us, require a
strong case, a case we do not see.

It is also worth considering whether all of the requirements of FS are really needed to
discourage intrusive browsers; is SCAS sufficient to mitigate the concern? While a web
browser that is SCAS would allow for the same improvements mentioned above, it is not
clear that having the source is sufficient to ensure development of a piece of high quality
software that is likely to be adopted by a large community of users. Given the
complexity of web browsing software, the large user base and the potential for a large
developer base, it seems reasonable to conclude that a FS browser will stay Free as it is
improved (at least if people follow the license), whereas we have no such expectation of a
SCAS browser.

Note that our normative claim about FS web browsers has an implication that extends
beyond software. Since the browser must communicate with servers, there must be both
protocols by which the communication takes place and a universal language so that all
web browsers can reliably translate information into a properly displayed page. The
ethical requirement, to allow the development of FS web browsers, demands that the
protocols and languages used for web communication be open and available as well. If
they were not available, there were onerous restrictions on their use, or the protocols were
intentionally misleading and allowed back doors for surveillance, then the protocols
would lead to privacy concerns for web browser users.
To this point we have been assuming that the web user has not been knowingly supplying
any personal data to any of the websites being visited. What are the ethical implications
when users are consciously supplying such data? It is reasonable for users to expect that
such data be kept private and be used only for its intended purpose [Kobsa, 2007]. It is
certainly the case that web server software that is SCAS would allow users to understand
how their sensitive data is handled. While this transparency is preferable, this argument
does not rise to the level of an ethical requirement for SCAS because even with SCAS,
the data could be mishandled after it was delivered to the web site owner. In this case,
there are other factors in play that typically encourage the holders of private data to treat
it responsibly and privacy policies that articulate how the data is used. Kobsa discusses
how the on-line business environment, in connection with privacy laws in various
jurisdictions, has gone a long way to protect personalized information that organizations
collect [Kobsa, 2007].

3.4 Malware

Malicious software can lurk in any kind of software. At least theoretically, FS allows
users to examine, compile, and link their own executables, which could lead to greater
security. However, some people claim that opening the source code to hackers
encourages more sophisticated attacks on FS than on closed source PS. We will not

SIGCAS Computers and Society, Volume 39, No. 1, June 2009
21

attempt an authoritative answer to the complex and ultimately empirical question “is FS
or PS more vulnerable to malware?” Instead, we will assume that until that question is
settled, either FS or PS can be used based on its vulnerability to malware or other attacks.
However, if for a particular category it was demonstrated that either FS or PS was less
vulnerable to hacker attacks, then that type of software would gain a strong practical and
ethical (in a consequential sense) advantage. In the case of such a situation for a
particular category, we can then envision a strong argument that the type of software that
is more hacker-resistant should be used in that category of application. However, absent
that demonstration, the threat of malware does not affect our questions.

3.5 E-government Software
Chopra and Dexter argue that a “system of e-government built on closed software is itself
closed” [Chopra and Dexter, 2008, 166]. They argue that the closed software embodies
laws and policies that are unknowable by the public and destroy the very nature of a
participatory democracy. They draw particular attention to voting software. In the U.S.
and elsewhere, there is a movement to eliminate PS from the voting process [Open
Voting Consortium, 2006 and Zetter, 2003]. Chopra and Dexter contend that there is a
strong ethical claim in favor of using FS for voting in any democratic system. FS is by
design and definition more open and transparent than closed source PS. PS in this
context, even if it is not being manipulated, cannot ever be as trusted by the general
public as a functionally equivalent FS solution. This is not to say that FS, in itself,
guarantees free and fair elections. But FS seems far more likely to enable fairness than
PS simply due to the transparent nature of FS. However, FS is not necessary to achieve
this sort of transparency. The transparency comes from the ability to inspect the source
code. In fact, we defend the non-intuitive claim that some of the freedoms of FS are
ethically undesirable in voting software.

There is little value to the electoral process in allowing the modification and distribution
of voting source code. Voting software only has value on voting machines, which should
be strictly under control of the government. The license to individually modify and
distribute new versions of the software is contrary to democratic systems where laws and
policies are drawn up by constitutionally defined processes. We contend that the ideal
situation for voting software is that it be SCAS and not FS so that the software can be
examined as part of a free and open democratic process, and that derivative software not
be used without this open, public process. This, then, is our first example of a category
of software we contend should be SCAS but should not be FS.

While voting software should be SCAS and not FS, we suggest another category of
software that should be FS: government software that is used to analyze and implement
policy and in its day-to-day operations. To be clear, we are not advocating access to
sensitive data, rather to the code that handles that data. The point is that policy is
embedded in code and transparency of software adds to the transparency of the
government. To maintain openness and fairness, it is important that such software be FS.
Anyone wishing to be critical of government’s operations and analysis would have access
to the same software tools as the government and could therefore explore alternative
analyses and operations. Indeed, citizens could participate by suggesting software
modifications that could increase efficiency and improve analyses by government

SIGCAS Computers and Society, Volume 39, No. 1, June 2009
22

personnel. Berry and Moss contend that making e-government tools FS has the potential
to increase participation in government [Berry and Moss, 2006].

Finally, we note that a government that makes the claim of openness and fairness would
need to communicate with the people via open communication channels. Government
websites that require citizens to use PS as part of the communication process seem to fail
on this point. Closed software at any point in the communication channel remains an
impediment to open governance.

3.6 Productivity Software
Productivity software typically refers to software that is generally used in an office
setting to make individual workers more productive in their jobs. While there may be
some argument as to what belongs in this category of software, it seems clear that word
processing, spreadsheet and presentation software are all included. We use these three
subcategories to discuss this category.

To begin, consider how productivity software was used prior to widespread use of email
and the advent of the World Wide Web. An employee might develop documents and
spreadsheets as mechanisms for sharing information internally. If there was a need to
share the information, it was printed and sent to the intended recipient. In this situation
there is clear ownership of the information as well as the document. There is little in this
situation to lead us to consider ethical concerns external to the company. Productivity
software was used for little other than increasing the productivity of employees, so the
decision to purchase such software was mostly a business decision based on a
cost/benefit analysis for the company. Such a decision seemingly had little impact
beyond the company. In this case, PS, FS, and SCAS could be used ethically, and the
existence of all three types of software is useful because it encourages innovation and
competition.

Today, with the widespread use of email and the ubiquity of the World Wide Web,
productivity tools are no longer used solely for the internal dissemination of information.
In essence, the output from productivity software has become a communication
mechanism. Individuals send each other word processing documents. Spreadsheets are
exchanged between small businesses. These documents have become part of society’s
communication fabric. Note that there are two important concepts in the output of
productivity software—both the document and the information contained within the
document.

Ethical concerns in this environment are raised on three levels. Since the documents are
communicated over some medium, there are concerns over the security of the medium.
The second level involves the ownership of the information in the document. Privacy
concerns and the appropriateness of communicating the information are at this level.
Concerns at these two levels are beyond the scope of this paper. Assuming that the
network is relatively secure and the communication is ethically appropriate, our ethical
consideration, the third level, is whether the software for interpreting these documents
should be free or proprietary.

Since this software is part of the communication infrastructure, some consideration must
be given to the ability of people to communicate freely with one another. If one company
was to control all communication via this method, in addition to the usual concerns about

SIGCAS Computers and Society, Volume 39, No. 1, June 2009
23

monopolies, we would have to be concerned about the impact on free communication and
the company exerting unwarranted control of the information contained within
documents. Seen from this perspective, our previous argument about web browsers is
relevant. One solution to this concern could be the use of open (and non-proprietary)
communications standards that would allow all software to interact, including FS as well
as PS software from multiple vendors. It would be beneficial to all users to have a
seamless transition from Open Office to MS Office and vice versa. (Such cooperation is
highly desirable for users of both FS and PS, although it may not be in the best economic
interest of PS vendors.) Having multiple competing products, proprietary or otherwise, is
not sufficient in this situation. Since this is a communication mechanism, both the
receiver and the sender must be in a position to encode and decode messages in order for
there to be effective communication. Thus, as is the case with the World Wide Web,
productivity software best serves people when there is a well-defined and open standard
for storing information that is to be shared in this way. Furthermore, an open standard
produces an environment that decreases the threat of monopoly and the potential abuses
of that monopoly.

The reader might object that such standards are unlikely to occur and would be
impractical if they did. However, the success of the open HTML and XML standards
demonstrates the viability (though not the inevitability) of such standards. The existence
of standards such as JPEG is another example of an existing open standard; however,
there are can be difficulties in converting from a proprietary encoding to an open standard
like JPEG. Aspects of the native object may be lost, or expensive new space may be
required for the transformed file. When these costs proliferate, users may give up on the
open standards and surrender to a more convenient proprietary standard, whose
convenience increases in proportion to its market share. Standards decisions that tend to
reduce the possibility of fair competition between both PS and FS alternatives for
productivity software are, we contend, unethical.

In summary, PS, FS, and SCAS are all useful and ethically appropriate choices for
productivity software. However, to make sure all are viable and can compete on a
reasonably level playing field, open standards for documents, messages, and other
protocols are required.

3.7 Gaming Software
Gaming software is an increasingly lucrative field. Is there an ethical imperative that
gaming software be FS? We think not. It may be that some users will have a strong
preference for FS for gaming (because of price, the opportunity to fine-tune the software,
or for community responses to requests for changes), and other users may prefer PS for
gaming (paid support, the lure of hidden secrets in the code, and commercial add-ons).
Although some users heavily invest their time and money into gaming software, our
position is that these users can decide for themselves whether FS or PS fits their gaming
needs. We do not see a compelling ethical case for requiring FS, SCAS or PS for
gaming.

3.8 Operating Systems Software
An operating system is software that can affect users significantly. This dependency adds
weight to questions about whether operating system software should, ethically, be
exclusively FS or PS. We contend that the issue of trust is decisive here. Convenience,

SIGCAS Computers and Society, Volume 39, No. 1, June 2009
24

features, and price can be competitive in FS and PS in an operating system, and we see
no ethical reason to prefer one or the other based on these characteristics. In addition to
convenience, features and price, an operating system user might prefer an operating
system that is reliable (especially in the long run after the user comes to rely on its
familiarity), holds no hidden malware, and is maintained sufficiently both now and in the
foreseeable future. Again we are faced with an empirical question that must be answered
prior to answering a question about whether an operating system ought to be either FS or
PS: does FS or PS have a consistent advantage over the other in being reliable, secure,
and maintainable? Unfortunately, each of these points is controversial, with FS
advocates asserting the advantages of free operating systems, and PS advocates asserting
the advantages of proprietary operating systems. Absent an authoritative answer to these
competing claims, we cannot make a consequential argument based on reliability,
security, or maintenance.

There is, however, at least one other way to examine the ethical nature of operating
systems: through the prism of “trust.” Insofar as operating systems are relied upon for
frequent and fundamental electronic services, there is a need to trust the software, at least
in some abstract sense. In a more concrete sense, operating system users depend upon
the operating system developers. The operating system will fulfill the goals above only
insofar as the developers are diligent in delivering reliable, secure, and well maintained
software. Are FS developers more trustworthy than PS developers, or vice versa?
Advocates can argue that FS and SCAS operating systems are far more worthy of trust,
since their developers are willing to share the source code with users, and PS developers
are far more secretive. Furthermore, FS advocates can point to the altruistic spirit of
software developers willing to share their expertise in a voluntary community. However,
PS advocates counter that it is difficult to trust an amorphous group that changes rapidly.
PS is written, the argument goes, by professionals whose reputation and livelihood
depends on delivering value for money. PS developers are not software hobbyists.

There is a FS counter to this PS argument: FS developers are an open community where
peer reputation is paramount. PS is developed by companies and perhaps the reputation
of the company more than the developer is at stake. Granted, a professional may lose a
job based on poor performance, but given the way PS is developed, the modules you
write may contribute to the whole, but it is not generally an individual who is getting the
credit (or blame) for software. In FS, you more often know (or can discover) who has
done the work.

The trust perspective, then, transfers the question of “PS or FS” to a question of “whom
do you think is more likely to be trustworthy: developers cooperating in a volunteer
community, developers who allow you to inspect their code, or developers paid by
proceeds from PS?” As with several categories above, there are plausible arguments for
each of these positions; there are instances of FS and PS that have demonstrated long-
term trustworthy developer behaviors, and there are instances of FS and PS that have
disappointed users, often by dropping support for software depended upon by users.
Therefore, we do not foresee a compelling argument that FS, SCAS or PS is clearly
preferred ethically for operating system software.

SIGCAS Computers and Society, Volume 39, No. 1, June 2009
25

Conclusion

Some advocates of both FS and PS have made general declarations that categorically
extol the virtues of their type of software or declare the vices of the other type of
software. We think that any such blanket categorical declaration can not accurately
reflect the strengths, weaknesses, successes and limitations of FS, SCAS and PS. We
have presented ethical arguments that some applications should be FS, that some
applications should be PS, some should be SCAS, and that some applications ethically
can be any of the three types. For other categories of software, the existence of a FS
alternative can be ethically useful, although we don't see a compelling case to mandate
that all such software must be FS (for example, browser software). Furthermore, the
ethical tension that exists among FS, SCAS and PS is useful because it serves to keep
ethical considerations closer to the forefront for software developers. Public arguments
about the quality of FS and SCAS versus the quality of PS in a particular category
encourage all developers to be mindful of software quality.

When no strong ethical argument mandates FS, SCAS or PS in a particular category,
there may be compelling reasons for an individual to prefer to FS, SCAS or PS.
Someone convinced that a particular PS application, currently unchallenged by a viable
FS alternative, was using its monopoly unfairly, could make a case that developers
should provide a FS alternative. A developer with pressing financial obligations (perhaps
to family members) might decide it more ethical to pursue the more obvious profitability
of PS instead of working on FS where financial rewards are unlikely to match those
possible with PS.

But in many other cases, it seems that a developer has a choice to participate in FS or not,
and this participation need not be exclusive. An individual developer could (and many
do) develop PS, SCAS and FS. Companies as well can simultaneously be involved in FS,
SCAS and PS. And in many cases, these “dual-citizenships” are ethically appropriate,
economically fruitful and technically advantageous.

The context sensitivity of software suggests that discussions about the ethics of software
need to be nuanced in order to deal with the complexities discussed above. Furthermore,
the complexities for certain software categories change over time, demanding that ethical
analyses be re-evaluated when society uses software differently than when it was first
introduced. Advocates for both FS and PS should be carefully about their claims when
the claims include ethical obligations, especially for others. Considering in detail the
way the software will be used is essential for making careful ethical analysis about
software.

References

Berry, D.M., and Moss, G. (2006), Free and open-source software: Opening and
democratizing e-government's black box. Information Policy. 11, 21-34.

Chopra, S. and Dexter, S. (2008), Decoding Liberation. Routledge: New York.

Coar, K. (2007), The Open Source Definition. (July. 2007),

http://opensource.org/docs/osd, accessed 10.01.2008.

FSF Copyleft. (2009), http://www.gnu.org/copyleft/copyleft.html, accessed 16.03.2009.

FSF Definition. (2007), http://www.gnu.org/philosophy/free-sw.html, accessed 9.01.2008.

SIGCAS Computers and Society, Volume 39, No. 1, June 2009
26

FSF Licenses. (2007), http://www.fsf.org/licensing/licenses/, accessed 9.01.2008.

Grodzinsky, F. and Wolf, M.J. (2007), “Ethical interest in free and open source
software,” in The Handbook of Information and Computer Ethics, K.E. Himma and H.T.
Tavani, eds. Wiley, Hoboken, NJ.

Himma, K.E. (2006), “Justifying Intellectual Property Protection: Why the Interests of
Content-Creators Usually Wins Over Everyone Else's” in Information Technology and
Social Justice, E. Rooksby and J. Weckert, eds., Idea Group.

Kobsa, A. (2007), Privacy-enhanced personalization. Commun. ACM 50, 8 (Aug.
2007), 24-33.

Miller, K., Wolf, M.J. and Grodzinsky, F. (2008), GPLv3, Freedom 0, and the Free
Software community, manuscript.

Open Voting Consortium. (2006), Open Voting Solution.
http://www.openvotingconsortium.org/our_solution, accessed 21.01.2008.

Shankland, S. (2008), Q&A: Google's open-source balancing act. CNet News (May 28,
2008), http://news.cnet.com/8301-13580_3-9952719-39.html, accessed 17.06.2008.

Watson, B. (1999), “Philosophies of Free Software and Intellectual Property,”
http://www.ram.org/ramblings/philosophy/fmp/free-software-philosophy.html, accessed 21.01.2008.

Zetter, K. (2003), Aussies do it right: E-voting. Wired (Nov. 3, 2003).
http://www.wired.com/techbiz/media/news/2003/11/61045, accessed 21.01.2008.

	Sacred Heart University
	DigitalCommons@SHU
	6-2009

	Free, Source-Code-Available, or Proprietary: An Ethically Charged, Context-Sensitive Choice
	Marty J. Wolf
	Keith W. Miller
	Frances Grodzinsky
	Recommended Citation

	Microsoft Word - CASvol39num1COMPLETE.doc

