

Sacred Heart University

DigitalCommons@SHU

DNP Projects

Dr. Susan L. Davis, R.N. and Richard J. Henley College of Nursing

5-2023

Evaluating the Impact of a No-show Policy: A Quality Improvement Project

Adrianne S. Harding

Follow this and additional works at: https://digitalcommons.sacredheart.edu/dnp_projects

Part of the Nursing Commons, Primary Care Commons, and the Quality Improvement Commons

Recommended Citation

Harding, A. S. (2023). Evaluating the impact of a no-show policy: A quality improvement project. [Unpublished DNP project]. Sacred Heart University.

This DNP Project is brought to you for free and open access by the Dr. Susan L. Davis, R.N. and Richard J. Henley College of Nursing at DigitalCommons@SHU. It has been accepted for inclusion in DNP Projects by an authorized administrator of DigitalCommons@SHU. For more information, please contact lysobeyb@sacredheart.edu.

Evaluating the impact of a no-show policy: A Quality Improvement Project

Adrianne S. Harding BSN, RN

A DNP project submitted in partial fulfillment of the requirements for

the degree of Doctor of Nursing Practice, Davis & Henley College of Nursing

Dr. Constance Glenn DNP, MSN, FNP-BC, CNE; DNP Project Faulty Advisor Janice Tavares APRN FNP-BC; Practice Mentor

> Sacred Heart University Davis & Henley College of Nursing May 2023

This is to certify that the DNP Project Final Report by

Adrianne S. Harding

has been approved by the DNP Project Team on

April 14, 2023

for the Doctor of Nursing Practice degree

DNP Project Faculty Advisor: Dr. Constance Glenn DNP, MSN, FNP-BC, CNE

Practice Mentor: Janice Tavares APRN FNP-BC

Acknowledgements

I would like to recognize the following people who were critical in supporting my achievements to excel at Sacred Heart University Davis & Henley College of Nursing, Doctor of Nursing Program.

- My supportive family and friends for their love, words of encouragement, and motivation to attain my goals.
- Dr. Constance Glenn DNP, MSN, FNP-BC, CNE; my DNP Project Faculty Advisor for her patience, encouragement, confidence, guidance, and advice that assured me along the way.
- Dr. Susan DeNisco DNP, APRN, FNP-BC, FAANP, for her guidance, advice and words of wisdom which inspired this quality improvement project.
- Janice Tavares APRN FNP-BC my practice mentor who played a pivotal role in mediating communication between the organization leaders and stakeholders. Thank you for your patience, enthusiasm, confidence mentorship and praise that will be beneficial for me as a professional.
- Primary care practice in CT stakeholders and staff for giving me the opportunity to implement my DNP project at their office.

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 4 PROJECT

Table of Contents

List of Figures
Abstract7
Problem identification
Background and Significance of Problem10
Description of Local Problem10
Focused Search Question10
Description of evidence search
Evidence Review10
Evidence Appraisal, Summary, and Recommendations11
Project Planning
Project Goals
EBP/QI Model Implementation Model14
Plan-Do-Study-Act Framework14
Context/Organizational Assessment14
Description of the setting
Stakeholders15
Barriers to Implementation16
Timeline
Resources
Ethical Merit Data
Project Implementation
Evaluation

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 5 PROJECT

Key Lessons Learned	21
Sustainability Plan	21
Dissemination	22
References	24
Appendix A	26
Appendix B	
Appendix C	49
Appendix D	51
Appendix E	52
Appendix F	53
Appendix G	54
Appendix H	55
Appendix I	57

List of Figures

Figure 1. Project Timeline
Figure 2. Monthly No-Show
Figure 3. No-Shows by Gender60
Figure 4. No- Shows by Age61
Figure 5. No- Shows by Visit Type62
Figure 6. No- Show by Zip Code63
Figure 7. No- Show Confirmation Status64
Figure 8. No- Shows Pre and Post SMS Implementation65
Figure 9. No- Shows Pre and Post SMS Implementation by Age and Gender
Figure 10. No- Shows Pre and Post SMS Implementation by Visit Type67
Figure11. No- Shows Pre and Post SMS Implementation by Chronic Illness
Figure12. No- Shows Pre and Post SMS Implementation by Hypertension
Figure 13. No- Shows Pre and Post SMS Implementation by Hyperlipidemia70
Figure 14. No- Shows Pre and Post SMS Implementation by Type II Diabetes71
Figure15. No- Shows Pre and Post SMS Implementation Return on Investment72

Abstract

Significance and Background: No- shows are a global problem that creates a significant challenge for the healthcare system. When a patient misses an appointment, it decreases health care staff productivity, creates a waste of resources and it negatively impacts revenue (Lance et. al, 2021). Current evidence supports interventions that incorporate voluminous data and artificial intelligence with strategies such as overbooking, appointment notification systems and financial incentives to reduce outpatient no-shows (Oikonomidi et al., 2022). This project will evaluate the impact of a no-show policy and provide insights to improve primary care attendance and inform decisions.

Purpose: To evaluate an outpatient primary care office adherence to a no-show policy and its impact on practice revenue based on current evidence.

Methods: Plan-Do-Study-Act. Plan- No- show and demographic attributes from March 2022 to February 2023 were discussed. Do- No- show data from March 2022 to February 2023 was collected from the electronic health record. Study- No-show data was analyzed. Act- Present to stakeholders and plan for next PDSA cycle.

Outcome: During a 12-month period, the primary care practice reported 1435 (17%) no-show occurrences, in comparison to the national average no show rate of 18%. The practice implemented a short message service (SMS) appointment notification system. There was a 38% decrease in the average monthly rate of no-shows in the 4 months post SMS implementation. With the United States national average cost of \$218 for a primary care visit, a return on investment for SMS implementation was \$11,554. Implications from the study suggest that no-show patients have greater than 10 chronic illness' and are missing follow- up visits. SMS

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 8 PROJECT

implementation was shown to decrease the number of no-show appointments of patients with chronic illnesses and missed follow up appointments.

Discussion: Appointment reminders reduce no-shows. Artificial intelligence can optimize solutions to mitigate no-shows. Machine learning can be utilized to detect patterns in identifying appointments at high risk of no-show and guide practice decision making. Reducing no-show rates can decrease the cost on the healthcare system, improve resource efficiency and patient outcomes while decreasing loss of revenue.

Keywords: No-shows rates, appointment notification, cost effectiveness, electronic health record, primary care.

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 9 PROJECT

Problem Identification & Evidence Review

Background and Significance of Problem

A no-show is described as a patient who does not show up for their scheduled appointment without contacting the healthcare provider (Oikonomidi et al., 2022). No- shows are a global problem that creates a significant challenge for the healthcare system. In the United States, no shows cost the healthcare system more than \$150 billion a year (Saif et al., 2018). Researchers estimate that the national annual average no-show rate is 18% (Kheirkhah et. al, 2016). When a patient misses an appointment, it decreases health care staff productivity, creates a waste of resources and negatively impacts revenue (Lance et. al, 2021). No-shows have a direct correlation with negative health outcomes and are an independent predictor for increased use of acute care and emergency department services. (Oikonomidi et al., 2022). When a patient misses an important screening or diagnostic testing, it places the individual at risk for delayed disease detection.

There is a consensus that outpatient no-shows are a complex, multifactual phenomenon directly related to patient characteristics. These include demographics relevant to equity, for example low-income families, transportation issues and health disparities. Other factors include characteristics of the appointment, such as lead time and the location of the healthcare system, where access to transportation can be an issue.

Current industry interventions incorporate the concept of voluminous data and artificial intelligence with strategies such as overbooking, appointment notification systems and financial incentives to reduce no-shows (Oikonomidi et al., 2022). Artificial intelligence can optimize solutions to mitigate no-shows. Predictive models and machine learning have been used to detect

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 10 PROJECT

patterns in identifying appointments at high risk of no-show and guiding the selection of appointments to double-book. Reducing no-show rates can decrease the cost on the healthcare system and improve the quality of health care delivery (Kheirkhah et.al, 2016).

Description of Local Problem/Organizational Priority

A primary care and cardiology office located in the northeast United States, serves adults older than 18 with chronic illnesses from low-income households. In 2019, the practice reported seeing 16,657 patients with 526 no-show occurrences and 2980 cancellations, reflecting a 21% no-show rate. To decrease the no show rate, the practice implemented a no-show policy July 1, 2021 (Appendix E). In November 2022, the practice implemented a short message service (SMS) appointment reminder system, that sends patients reminders 3 days prior to their appointment. This project has the support of the Chief Executive Officer (CEO) and practice manager and aims to evaluate the adherence to a no-show policy and its impact on revenue.

Focused Search Question

In out-patient primary care (P), does the adherence to a no- show policy (I) compared to non-adherence (C) impact revenue (O) over a 12-month period (T)?

Evidence Review

External Evidence. Databases searched include CINAHL Complete, MEDLINE full text with key words: no-show rates, missed appointments, cancellation, appointment notification, cost effectiveness, electronic health record. Searches of peer review articles published in English between 2016 – 2022. Each research article was appraised using the level of evidence (LOE) hierarchy (Melnyk & Fineout-Overholt, 2019). The final yield from all databases was a total of eight articles (Appendix B).

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 11 PROJECT

Internal Evidence. The practice has since made subsequent changes to the no show policy, to include short message service (SMS) notification system. Preliminary data from the practice suggests the need for best practices to evaluate the impact of a no-show policy in primary care.

Evidence Appraisal, Summary, and Recommendations

Eight articles were critically appraised for level of evidence (LOE) (Appendix C). The key outcomes of each article were delineated for comparison in a synthesis table (Appendix D). Out of the eight articles, article one was LOE I, article two was LOE I, article three was LOE II, article four was LOE I, article five was LOE II, and article six was LOE IV, article seven was a LOE IV, article eight was LOE III.

As noted in the evaluation and synthesis tables, the no show rates decreased (articles one, two, three, and six) (see Appendices B, C and D).

An increasing number of organizations utilize Artificial Intelligence (AI) to reduce gaps in quality care by implementing the best evidence-based practice. SMS reminders have been used to facilitate behavior change through coaching and prompting to enhance prospective memory, such as remembering to complete an activity in the future (Schwebel & Larimer, 2018). SMS reminders are relatively inexpensive, easily customized, and are automatically sent. SMS reminders have been found to either increase the rate of appointment attendance, increase the rate of appointments cancelled ahead of time, or decrease the rate of missed appointments (Schwebel & Larimer, 2018). Robotham et al. (2016) found that patients who received text message reminders were 23% more likely to attend appointments compared to those who received no notification. When comparing SMS and telephone reminders, SMS notification is cheaper however, telephone reminders are more cost effective. Lance et. al, 2021 found that for

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 12 PROJECT

each dollar invested in SMS, there was a return of \$2.67 while the return on investment related to telephone calls was \$15.24. The investment of \$141,000 in telephone calls could avoid a loss of around \$2.1 million per year. To avoid the high cost of sending reminder notifications to every patient, most studies suggest sending notifications to patients who are at high risk of no-show (Coley et. al, 2022; Salazar et. al, 2022; Robotham et.al, 2016).

Oikonomidi et al., 2022 and Salazar et. al, 2022 found that machine learning (ML) and predictive models using text message reminders, were effective in reducing no show rates. Coley et. al (2022) used risk prediction models in the EHR to send an additional text message reminder to patients with a high-risk of no shows and achieved higher efficiency at lower costs to the health system when compared to sending a message to all patients.

Various factors affect no-show, including age, gender, visit type, time of appointment (day and month), distance, and patient health status. (Kheirkhah, et. al, 2016). On average, 17 attributes based on the most influential factors that impact no shows are utilized to build predictive models (i.e. age, sex, zip code). Salazar et. al, (2022) found that prior to ML trained model the initial no show rate was (85%) and post ML trained models the no show rate decreased to 10%. Studies suggest that the smaller the data the more accurate the model will perform, using Gradient Boosting, Decision Trees, and Random Forest for the best performance (Salazar et. al, 2022).

Studies have reported major finacial savings after implementing an automated SMS reminder system, and attribute savings to the relative inexpensiveness and the decreased rate of missed appointments. (Schwebel & Larimer, 2018). Estimating the cost of an intervention can be challenging however, evaluating the cost of technology can provide insights into individual

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 13 PROJECT

practice sites. Estimating cost can inform decisions like adopting similar strategies for another practice location (Wagner et. al, 2020).

Evidence-based AI development and deployment through quality improvement can address systemic issues in primary care and aid in standardizing AI practices in healthcare. The purpose of this quality improvement project is to evaluate a primary care practice adherence to a no-show policy and its impact on practice revenue based on current evidence.

Project Plan

Project Goals

- Implement an evaluation to measure a primary care practice's adherence to a no-show policy.
- 2. Evaluate a primary care practice's annual no-show rate in comparison to the national annual average no-show rate of 18%.
- Utilize business intelligence software (Microsoft Power BI) to analyze no show data between March 2022 to February 2023, from the electronic health record (EHR) and SMS notification system.
- Evaluate the financial impact of a SMS notification system from July 2022 to October 2022 (Pre-SMS implementation) and November 2022 to February 2023 (Post- SMS implementation) to determine if there is a 20% increase in revenue post implementation.
- 5. Identify patient variables associated with primary care no-shows and provide recommendations.

Project Design and Methodology (EBP Process Steps 0-3)

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 14 PROJECT

Framework

The methodology for this project began with the evidence-based practice (EBP) process steps 0-3 (Melnyk & Fineout-Overholt, 2019) that revealed using artificial intelligence thorough SMS notification is effective in reducing no show rates. The framework used to guide this project is the Model for Improvement (MFI). MFI provides a framework for developing, testing, and implementing changes for improvement. The Plan-Do-Study-Act (PDSA) will guide the application of the MFI for this QI project. Appendix D outlines the steps for the PDSA cycle.

Plan Phase. The DNP student met with the primary care nurse practitioners and the office manager to discuss the practice adherence to a no-show policy and seek approval for the evaluation of a no-show policy The DNP student and stakeholders discussed primary care no-show attributes to collect.

Do Phase. This phase consists of evaluating the practice adherence to a no-show policy. The DNP student met with office staff to discuss how the practice schedules and documents patient appointments in the EHR and SMS appointment notification system. The EHR was retrospectively audited to assess documentation of primary care no shows from March 2022 to February 2023.

Study Phase De-identified primary care no-show data from March 2022 to February 2023 was synthesized into Microsoft Excel and Power BI. Microsoft Power BI was used for data analysis and visualization. This was done by the DNP student to evaluate the financial impact of a no-show policy.

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 15 PROJECT

Act Phase Primary Care No-show data was presented to key stakeholders and recommendations were made for subsequent PDSA cycles.

Context

This quality improvement project was conducted at a private practice group with a primary care location in the northeast United States. The general population served at this practice are insured by Medicaid and Medicare, live below the poverty level, have multiple comorbidities such as hypertension, hyperlipidemia, type II diabetes mellitus and obesity. The primary care practice sees approximately 60-80 patients per day which amounts to approximately 300-400 patients on a weekly basis. The practice utilizes an EHR system named EPIC to schedule patient appointments.

Project Team Members and Roles

The practice CEO and practice manager's role is to review and approve the quality improvement project. The practice lead primary care Nurse Practitioner is the practice mentor onsite, who will help with the implementation and championing of the project. The DNP student will be the project leader with advisement from SHU DHCON faculty and evidence-based practice expert.

Key Stakeholders and Buy-In

Key stake holders included the CEO, Practice Manager, primary care nurse practitioners, nurses, medical assistants, and patients. Other stakeholders are the receptionists who schedule appointments and make follow-up visits.

Description of Practice Change

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 16 PROJECT

- Propose practice change with key stakeholders with the goal to evaluate a No-Show policy.
- Evaluate the current use of the SMS notification system and EHR to document missed appointments.
- Utilize data to deliver contextually relevant interventions that improve patient care and business operations.

Evaluation Plan

The DNP student will be onsite for two weeks to evaluate practice adherence to a noshow policy including process and documentation. The DNP student will review patient charts and all data collected will be organized into spreadsheets and analyzed. Data analysis will include no-show rate, SMS notification system, and financial impact.

Potential Barriers to Implementation

- Inaccurate documentation of no-shows in EHR
- Inaccurate documentation of patient attributes in EHR.
- Time-consuming to synthesize and analyze data into spreadsheets.

Timeline

- February 2023: Evidence Review and DNP project proposal presentation.
- March 2023: Ethical Merit Review and Data collection
- April 2023: Data collection, analysis, and evaluation
- April 14, 2023: Final DNP project Presentation
- April 21, 2023: Davis & Henley College of Nursing DNP Poster Presentation (see

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 17 PROJECT

Figure 1).

Resources

Resources include EHR access, Microsoft Excel and Power BI for data collection, analysis, and presentation.

Review for Ethical Considerations

This project does not require Sacred heart University Institutional Review Board approval because it is a quality improvement project (see Appendix F & G). The approval to implement the project has been received from the CEO and practice manager.

Project Implementation, Evaluation, ROI

Project Implementation

The quality improvement team discussed the no- show attributes to evaluate. Based on evidence, factors chosen were age, gender, visit type, time of appointment, confirmation status, zip code, and patient health status (Kheirkhah, et. al, 2016). The EHR was assessed for no- show documentation by auditing all scheduled primary care visits from March 2022 to February 2023. Patients who missed their appointment without contacting the practice within 24 hours before the visit were labeled in the EHR as a no-show. Patients who confirmed their appointment were labeled in the EHR as confirmed.

All de-identified patient no-show data was extracted from the EHR to a Microsoft Excel spreadsheet. The de-identified patient no-show data was then imported to Microsoft Power BI, a business intelligence software, for data analysis and visualization. The primary care no show

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 18 PROJECT

data was presented to key stakeholders and recommendations were made for subsequent PDSA cycles.

Barriers to Implementation

The review of EHR data became a more detailed and lengthy process. Approximately, (8,584) scheduled appointments were carefully reviewed. The EHR Information Technology (IT) support department was contacted for assistance and provided access to creating patient reports with additional patient attributes. The EHR report provides patient diagnosis duplications and diagnosis reporting inconsistencies. To ensure accuracy of data, patient diagnoses were manually extracted for all scheduled primary care no-shows. Although every patient received a text message, we were unable to account for patients who opted out of receiving SMS appointment reminders.

Evaluation

Data retrieval included all primary care scheduled visits from March 2022 to February 2023, of all adult patients (18 years and older). Patient data was synthesized into Microsoft Excel spreadsheets and analyzed with Microsoft Power BI. Total time spent with data retrieval and analysis equated to approximately 65 hours.

Process Measures

To evaluate the adherence to the no-show policy, scheduling data was retroactively analyzed from March 2022 to February 2023. Patients who missed their appointment without contacting the practice 24 hours before the visit were labeled a No-Show in the EHR by office receptionists.

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 19 PROJECT

In November 2022, the practice implemented a short message service (SMS) appointment reminder system. The SMS notification system utilized is a HIPPA compliant chat robot application that conducts an on-line conversation via text using a Natural Language Processing (NLP) engine.

At the beginning and the end of every day the office receptionists generate patient schedules from the EHR. The de-identified patient list is exported to the SMS system. The SMS system sends appointment reminders to all patients, 72 hours prior to their appointment. The SMS system generates a list of unconfirmed patients 48 hours prior to the patient appointment. Unconfirmed patients were called by office receptionists and if confirmed by phone, the receptionist documented "confirmed" in the EHR. On the day of the appointment, a SMS appointment reminder and primary care practice address was sent to all patients.

Outcome Measures

During a 12-month period, there were (8,584) scheduled appointments in the primary care practice during the quality improvement period (see Figure 2). After review of (8,584) scheduled patients, there were (1,435) (17%) no-show occurrences, in comparison to the national average no show rate of 18% (Kheirkhah et. al, 2016) (see Figure 2). Of these (1,435) no-show patients, (59%) were women and (41%) were men (see Figure 3). The largest population of no-show appointments (23%) were between the ages of 51- 61 (see Figure 4). Most of the no-show appointments by visit type were follow up appointments; (69%) (see Figure 5). When analyzed by zip code, (74%) of no-show patients live within 20 square mile radius of the primary care practice (see Figure 6).

Data from the SMS system did not appropriately analyze SMS confirmations that were consistent with scheduled and documented confirmed appointments within the EHR (see Figure

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 20 PROJECT

7). During an 8-month period, no show appointments 4 months prior to SMS implementation (554) and 4 months post SMS implementation (344) were analyzed. There was a (38%) (53) decrease in the average monthly rate of no shows in the 4 months post SMS implementation (see Figure 8). No show appointments for patients between the ages of 51-61 prior and post SMS implementation by gender and age were analyzed. There was a (23%) decrease in the number of women who missed their appointments post SMS implementation. There was a (52%) decrease in the number of men who missed their appointments post SMS implementation (see Figure 9). No-shows follow up appointments prior to SMS implementation was (397) and post SMS implementation was (209); a (47%) decrease post SMS implementation (see Figure 10). Noshow appointments of patients with 0-10 chronic illness prior to SMS implementation was (427) and post SMS implementation was (258); a (40%) decrease post SMS implementation (see Figure 11). No show appointments of patients with Hypertension prior to SMS implementation were (254) and post SMS implementation was (152); a (40%) decrease in no-show patients with hypertension post SMS implementation (see Figure 12). No show appointments of patients with Hyperlipidemia prior to SMS implementation were (102) and post SMS implementation was (48); a (53%) decrease in no-show patients with Hyperlipidemia post SMS implementation (see Figure 13). No show appointments of patients with Type II Diabetes prior to SMS implementation were (152) and post SMS implementation was (98); a (36%) decrease in noshow patients with Type II Diabetes post SMS implementation (see Figure 14).

Return on Investment

When assessing the value of a medical intervention, a cost-effectiveness analysis is the most widely accepted method used by organizations to make informed decisions on whether to implement complex health interventions to reduce quality gaps (Wagner et al., 2020).

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 21 PROJECT

The SMS appointment reminder system cost the primary care practice (\$30) to implement. The average cost of \$218 was determined from the United States national average cost for a primary care visit (Kheirkhah, et. al, 2016). Prior to SMS implementation the potential revenue lost was (\$30,302); this was calculated by the average number of no shows pre-SMS implementation (139) multiplied by the average cost of a primary care visit (\$218). After SMS implementation the potential revenue lost was (\$18,748); this was calculated by the average number of no shows post-SMS implementation (86) multiplied by the average cost of a primary care visit (\$218). The return on investment (ROI) for SMS notification implementation was (\$11,554) a (38%) increase in revenue. ROI was calculated by the average no show reduction (53) multiplied by the average revenue from a primary care visit (\$218) (see Table15).

Key Lessons Learned

One of the key lessons learned was the value of good data quality and management. Raw EHR data is inherently disorganized and can be challenging with even the simplest of queries (Milinovich & Kattan, 2018). During the implementation phase, manual data extraction was time consuming and a pragmatic process. To ensure the cleanest and most robust data for future statistical analysis, data will need to be simplified and structured into Unified Medical Language System (UMLS) identifiers to save time (Milinovich & Kattan, 2018).

Sustainability Plan

The primary care practice adhered to the no-show policy and with the utilization of AI, decreased the number of no-show patients with chronic illnesses, follow up appointments and increased revenue. The PDSA method can be used for future improvement initiatives to decrease no-shows. The SMS notification system utilized by the practice, is powered by NLP

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 22 PROJECT

understanding and can be used as a tool for patient surveys and building medical conversational interfaces for patient engagement and chronic care management.

This quality improvement project differs from historic evaluations because all patient noshow data related to patient demographics, appointment history and visit characteristics were pooled into an AI visualization tool, for rapid analysis and continuous improvement. Power BI is a simple to use business intelligence tool. Its interoperability makes it easy to aggregate data from otherwise disconnected databases into one data dashboard. The data can be refreshed within a few minutes once the data source is updated. Power BI can be used to provide individualized care for at risk patients using advanced analytics and holistic visualization of patient demographics and health status. Power BI can help mitigate unexpected challenges through real time analysis of patient data, clinical logistics, costs, and resource allocation.

This project demonstrates that providers can use scheduling data from the EHR to improve patient care through efficient scheduling practices. Power BI can continue to be used to integrate and analyze data from the EHR. Epic EHR, developed a proprietary algorithm for predicting no-shows and can be utilized to assess SMS frequency to reduce no shows (Coley et. al, 2022).

Dissemination

Implications of Project Results to Organization and Practice Community

Implications from the study suggest that AI can be utilized to uncover data driven insights that optimize clinical decision making and improve patient outcomes. Understanding the value of evaluating the cost of technology can provide senior leadership with insights that can inform decisions in lean economic environments.

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 23 PROJECT

Sharing Project Results

An executive summary and data dashboard was shared with the practice setting (see Appendix G for executive summary). A PowerPoint presentation was completed for the practice leadership and SHU community. As part of the DNP program course, the project was presented in poster format for the Davis & Henley College of Nursing faculty and students (see Appendix I).

References

- Coley, R. Y., Ulloa-Perez, E., Blasi, P., Westbrook, E., Lozano, P., & Coleman, K. (2022).
 Pragmatic Randomized Study of Targeted Text Message Reminders to Reduce Missed
 Clinic Visits. *The Permanente Journal*, 26(1), 64–72. https://doi.org/10.7812/tpp/21.078
- Boone, C. E., Celhay, P., Gertler, P., Gracner, T., & Rodriguez, J. (2022). How scheduling systems with automated appointment reminders improve health clinic efficiency. *Journal* of Health Economics, 82, 102598. https://doi.org/10.1016/j.jhealeco.2022.102598
- Kheirkhah, P., Feng, Q., Travis, L. M., Tavakoli-Tabasi, S., & Sharafkhaneh, A. (2016).
 Prevalence, predictors and economic consequences of no-shows. *BMC Health Services Research*, *16*(1). https://doi.org/10.1186/s12913-015-1243-z
- Lance, R. C., Pazin-Filho, A., & Neves, F. F. (2021). Comparison Between Short Text Messages and Phone Calls to Reduce No-Show Rates in Outpatient Medical Appointments. *The Journal of Ambulatory Care Management*, 44(4), 314–320. https://doi.org/10.1097/jac.000000000000388
- Marbouh, D., Khaleel, I. M., Shanqiti, K. A., Tamimi, M. A., Simsekler, M. C. E., Ellahham, S., Alibazoglu, D., & Alibazoglu, H. (2020). Evaluating the Impact of Patient No-Shows on Service Quality. *Risk Management and Healthcare Policy*, *Volume 13*, 509–517. https://doi.org/10.2147/rmhp.s232114
- Melnyk, B. M., & Fineout-Overholt, E. F. (2019). *Evidence-based practice in nursing and healthcare: A guide to practice* (4th ed.). Wolters Kluwer
- Milinovich, A., & Kattan, M. W. (2018). Extracting and utilizing electronic health data from Epic for research. *Annals of Translational Medicine*, 6(3), 42. https://doi.org/10.21037/atm.2018.01.13

- Oikonomidi, T., Norman, G., McGarrigle, L., Stokes, J., Van Der Veer, S. N., & Dowding, D. (2022). Predictive model-based interventions to reduce outpatient no-shows: a rapid systematic review. *Journal of the American Medical Informatics Association*. https://doi.org/10.1093/jamia/ocac242
- Robotham, D., Satkunanathan, S., Reynolds, J. V., Stahl, D., & Wykes, T. (2016). Using digital notifications to improve attendance in clinic: systematic review and meta-analysis. *BMJ Open*, 6(10), e012116. https://doi.org/10.1136/bmjopen-2016-012116
- Saif, U., Sangeetha, R., Todd, L., Ellen, D., Regina, J., Swapna, A., Christina, G., & Angad, G.
 (2018). Why do Patients Miss their Appointments at Primary Care Clinics? *Journal of Family Medicine and Disease Prevention*, 4(3). https://doi.org/10.23937/2469-5793/1510090
- Salazar, L. H. A., Parreira, W. D., Da Rocha Fernandes, A. M., & Leithardt, V. R. Q. (2022).
 No-Show in Medical Appointments with Machine Learning Techniques: A Systematic
 Literature Review. *Information*, 13(11), 507. https://doi.org/10.3390/info13110507
- Schwebel, F. J., & Larimer, M. E. (2018). Using text message reminders in health care services: A narrative literature review. *Internet Interventions*, 13, 82–104. https://doi.org/10.1016/j.invent.2018.06.002
- Wagner, T. H., Yoon, J., Jacobs, J., So, A., Kilbourne, A. M., Yu, W., & Goodrich, D. C. (2020).
 Estimating Costs of an Implementation Intervention. *Medical Decision Making*, 40(8), 959–967. https://doi.org/10.1177/0272989x209604

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 26 PROJECT

Appendix A

No-Show, Cancellation, and Rescheduling Policy

Thanks for trusting us with your medical care needs. When an appointment is scheduled, we try to allocate enough time to provide each patient with quality care. Therefore, if a patient needs to cancel or reschedule an appointment, be sure to get in touch with our office as soon as possible, no later than 24 hours before your scheduled appointment.

Please see our Appointment Cancellation/No Show Policy below:

"No Show" shall mean any patient who fails to arrive for a scheduled appointment.
"Same Day Cancellation" shall mean any patient who cancels an appointment less than 24 hours before their scheduled appointment.

□ "Late Arrival" shall mean any patient who arrives at the clinic 15 minutes after the expected arrival time for the scheduled appointment.

□ Effective July 1, 2021, any patient who fails to show or cancels an appointment and has not contacted our office with at least 24 hours' notice will be considered a No Show and charged a \$25.00 fee.

□ Any established patient who fails to show or cancels/reschedules an appointment without 24 hours' notice a second time will be charged another \$25 fee.

□ If a third, No Show or cancellation should occur, the patient may be dismissed from Advanced Cardiovascular Specialists.

□ A 15-minute callback policy will be implemented to help facilitate missed appointments and same-day rescheduling when possible.

 \Box The fee shall be charged to the patient, not the insurance company.

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 27 PROJECT

□ As a courtesy, we will make reminder calls for missed and late appointments when time allows. If you do not receive a reminder call or message, the above Policy will remain in effect.

We understand that when an unforeseen emergency event occurs, that is out of your control and you may not be able to keep your scheduled appointment. If an emergency occurs, please get in touch with the office immediately to waive the no-show fee. You may contact the practice 24 hours a day, seven days a week at the numbers below. Should it be after regular business hours Monday through Friday or a weekend, you may leave a message. We will return your call as soon as possible.

Appendix B

Evidence Summary Table

Citation	Conce ptual Fram ework	Design/ Method	Sample/Setting	Major Variables Studied and Their Definitions	Outcome Measurem ent	D a t a A n a l y si s	Findings	Level of Evide nce/Q uality	Quality of Evidence: Critical Worth to Practice
Author Year Title County Funding	Theor etical basis for study		Number Characteristics Exclusion criteria Attrition	Independe nt variables IV1 = IV2 = Dependent variables	What scales used - reliability info (alphas)	W h a t s t a t s u s e d	Statistical findings or qualitative findings	Level =	Strengths Limitations Risk or harm if implemented Feasibility of use in your practice
Article 1									

Oikonomi di et al., 2022. Predictive model- based interventio ns to reduce outpatient no-shows: a rapid systematic review	N/A	Systemati c review of randomiz ed controlled trials (RCTs) and non- RCTs	Sample: 8 Studies Inclusion criteria: (1) Randomized controlled trials (RCTs), nonrandomized controlled trials, and interrupted time series (2) Interventions based on predictive models and aiming to reduce no- shows or increase attendance, with any comparator (3) Conducted in outpatient care, with adults with any condition.	IV1= Predictive Modelling IV2= Usual scheduling practice Dependent variables = - Outpatient No shows - Costs - Acceptabili ty - Equity	 Cochrane Risk of Bias tool (ROB 2)/ Risk Of Bias In Nonrandom ized Studies of Interventio ns (ROBINS- I) GRADE assessment 	R is k R a ti o (R R)	Prediction model plus phone call reminders versus usual scheduling practice: Median no- show RR was 0.61 (IQR 0.49, 0.68, min 0.49, max 0.75). Costs, acceptability, and equity: - One RCTs reported an effect of predictive model-based phone call reminders on the mean relative value units per patient, absolute difference 0.13, 95% CI 0.02 to 0.28. - In another RCT, the authors conducted post intervention debriefing with 8 physicians and managers and found that they considered the intervention successful, but that there were issues with	Level I/Hig h qualit y	 Strengths: Appraisal of the evidence using the ROB 2, ROBINS-I, and GRADE tools. Identified effective predictive model-based interventions and mapped important evidence gaps. The findings can be used to guide future research and support the current implementation of predictive models in real-life care settings. Limitations A meta-analysis could not be
--	-----	---	--	---	--	-------------------------	--	------------------------------------	--

least dom india appo atter no-s cance atter appo Excl crite (1) lack cont s cont s cont or si cont	cating pointment ndance (ie, shows, celations, nded pointments lusion eria: Studies ing a temporaneou ntrol group studies ag historical imulated trols),	 the workload resulting from achieving fewer no- shows and the workload associated with implementing the intervention. No information was reported on equity Prediction model plus text message reminders versus usual scheduling practice: Median no- show RR 0.91, interquartile range 0.90, 0.92, min 0.89, max 0.93 	 performed due to the incomplete and unclear reporting of outcome data, and heterogeneity in outcome measures and interventions. Although the range of observed RR is presented, this does not account for differences in the relative sizes of the studies.
serie fewe data poin and inter (2) S	rrupted time es with er than 3 a collection hts before 3 after the rvention. Studies in jatric	Costs, acceptability, and equity: - A sensitivity analysis found no evidence of heterogeneous intervention effect on no-show rates by age, sex,	- A rapid review, screening was completed by 1 researcher. Although the agreement between reviewers was excellent in the independent

settings (ie, participantsrace, or amount of copay.screening of 10% of 10% of information was reported on costs and according to the inclusionscreening of 10% of it is possible acceptabilityreported on costs and according to the inclusionPrediction model plus patient navigator versusstudies inclusiongeneral general offices, and studies focused exclusively on vaccination screening.Prediction model studiesstudies inclusionvacination appointments or population screening No-shows RR 0.55, 95% CI 0.46-0.67 and cancelations RR 1.16, 95% CI, 1.04-1.29- Findings may not generalize to certain contexts, such as low-income countries and exclusively on vacinationoffices, and studies focused exclusively on vacination screening No-shows RR 0.55, 95% CI 0.46-0.67 and cancelations RR 1.16, 95% CI, 1.04-1.29- Findings may not generalize to certain contexts, such as low-income countries and pediatrics.offices, and studies- The average net income associated with this intervention was \$S000 per month. - In a subgroup- The average net income associated with this intervention	participants copay. were under 18 - No information reported of according to the according to the inclusion criteria) or in Prediction general practitioner plus patient according to the acceptability offices, and studies focused studies focused scheduling	
analysis (unreported numeric data, odds ratios of appointment attendance for race,	appointments or population screening. 95% CI 0.46-0.67 cancelation 95% CI, 10 0.5% CI, 10 Costs, ac and equite 10 0.16 Costs, ac and equite 10 0.17 Costs, ac and equite 10 0.18 Costs, ac and equite 10 0.18 Costs, ac and equite 10 0.16 Costs, ac and equite 10 0.17 Costs, ac and equite 10 118 Costs, ac and equite 10	rmation was on costs and lity retrieved titles, it is possible that we missed some eligible studies ent r versus - The review included findings from 8 studies. - Findings may not generalize to certain contexts, such as low-income countries and pediatrics. - Rad pediatrics.

in figures), the effect
of the patient
navigator intervention
was significant for
anglophone patients
but not for other
language groups, for
white and African
American patients but
not Hispanic and
Asian patients, and
for Medicare and
commercial insurance
holders but not for
Medicaid
holders and self-
paying patients.
- Regarding age, the
intervention effect
was significant only
for patients in the 40–
69 age group.
- No information was
reported on
acceptability
Prediction model
plus overbooking
versus usual
scheduling practice:
seneuuning practice.
- In 2 RCTs and 1
non-RCT (analyzing

31,766
appointments),
information
on the risk of no-
show was used to
make overbooking
decisions.
- Outcome data could
not be summarized,
because the 3 studies
used different
outcomes. Due to the
risk of bias,
inconsistency,
indirectness, and
imprecision in the
available evidence,
there is very low
certainty whether
there is an effect of
predictive model
based
overbooking on
appointment
attendance.
Costs, acceptability,
and equity:
- Cost: Predictive
model-based
overbooking was
associated with a

	relative increase of
	15.4% in hourly
	revenue in the MRI
	clinic (absolute
	difference
	of 8.14\$, unreported
	95% CIs and
	significance), but
	with higher daily
	overtime costs in
	endoscopy (absolute
	difference of 26.13\$).
	Acceptability: 1 RCT
	reported that on
	intervention
	days, clinics ran
	longer by an average
	34 min compared to
	control days (absolute
	difference 0.47 h
	[95% CI, 0.06–0.88,
	P02]). One non-RCT
	reported a
	nonsignificant
	increase of 6.2 min in
	patient in-clinic wait
	time (relative
	difference 3.66%) and
	10
	min in staff overtime
	(4.05%, unreported
	95% CIs and
	significance).

Article 2							- In 1 RCT, African Americans were twice as likely as whites to take up "fast track" appointments made available by overbooking (adjusted odds ratio 1.99, 95% CI, 1.26– 3.17).		
Salazar et. al, 2022.No- Show in Medical Appointm ents with Machine Learning Technique s: A Systemati c Literature Review	N/A	Systemati c review	Sample :24 studies Inclusion Criteria : - Contain an abstract; Be written in English. Have been published between 1 January 2017 and 1 January 2022 Exclusion criteria:	IV: Machine Learning Dependent variables = No shows	- Preferred Reporting Items for Systematic Reviews and Meta- Analyses (PRISMA)	A r e a u n d e r t h e R O C C u r	How much data is used to train machine learning models for no-show prediction? - In total, 18 different data sets were used in the 24 studies found. Two studies did not report the volume of data used. Only five studies used an amount of data greater than one million records, while the others used around 120 thousand records, on average.	Level I/ High qualit y	Strengths - The accuracy of the models developed with a smaller amount of data was higher or equivalent to the others The results indicate that even with more complex algorithms available in artificial intelligence, decision trees algorithms are still the best choice to handle the no-show in medical appointments

T T T		Т	
- Medical	v	On average, 17	- The data quality is
attendance	e	attributes were used	evidenced as an
prediction in		to build the model in	important factor in
other fields than		each work.	terms of building the
health		- With regard to the	machine learning
appointments.		no-show rate present	models. Most have
Medical		in the initial dataset,	derived new attributes
attendance		the highest rate	from existing ones
prediction		observed was 85%.	from the original
without the use		- The average	dataset or added new
of machine		absenteeism rate	datasets to improve the
learning		remained around 18%	model's
techniques.		and the lowest rate	comprehensiveness.
Literature		was 10%	- Re-balancing
reviews		Wub 1070	techniques were
leviews		Which machine	performed in most of
			the datasets in order to
		learning algorithms are used in the	not bias the model
		predictive models	training.
		and which of these	
		presented the best	- The studies presented
		performance?	research and useful
		- The algorithms with	contributions to data
		the best performance	privacy management in
		in the works found	different concepts and
		were Gradient	scenarios.
		Boosting, Decision	
		Trees, and Random	Limitations:
		Forest.	
		- Random forest was	- The results revealed
		selected as the most	that the solutions used
			to mitigate medical
			appointments no-show

			suitable for building the models What characteristics most influence patients not to attend a scheduled medical appointment? - The most influential factors in the built model are related to the patient's age, whether the patient missed a previous appointment (previous no-show), and the distance between the appointment and the patient's scheduling (lead time). Other attributes, such as the geographical distance from the patient's home to the clinic location, appointment date and shift, medical specialty, and whether there was prior confirmation of the appointment, had	with machine learning techniques do not present practical results of reducing abstentions based on the solutions presented. Except for one, which showed in their experiments that there was a 3.4% reduction in no-shows after the deployed solution.
--	--	--	---	---

a low impact on the
algorithms.
What is the no-show
rate reduction in
medical
appointments that
solutions
developed with the
help of machine
learning techniques
achieve?
- One study reported
a reduction from
19.3% to 15.9% in
abstentions, by
sending a reminder to
25% of the patients
who were pointed out
by the model as at
greater risk of not attending the
appointment
- Other studies did
not present metrics
that demonstrate the
reduction of no-
shows in medical
appointments, after
the machine learning
model development.
- In order to avoid
- III order to avoid

Article 3							the high cost of sending reminder notifications to every patient, some studies have proposed to optimize the sending and make them only for patients who are at high risk of no- show.		
Coley et. al, (2022). Pragmatic Randomiz ed Study of Targeted Text Message Reminders to Reduce Missed Clinic Visits.	N/A	RCT	Sample: 125,076 primary care visits and 33,593 mental health visits Inclusion: - visits scheduled 4 business days or more in advance and were classified as "high-risk" for no-show, defined as an Epic no-show risk in the top	IV1: receive a text message 3 business days before the visit, in addition to the usual text message reminder 2 business days before the visit. IV2: receive a text	Logistical regression	R e l a ti v e R is k	- A total of 125,076 primary care visits (41.3%) had a predicted no-show risk at or above 5.1% (40th percentile cut- off) and were randomly assigned 1 text message (n = 62,519) or 2 reminder text messages (n = 62,557). A total of 33,593 mental health visits (38.4%) had a predicted no-show risk at or above 21.1% and were assigned for randomization during the study period.	Level II/ High qualit y	Strengths: - An additional text message in advance of visits at high chance of being missed was effective in reducing no-shows in primary care and mental health visits, and in reducing same-day cancellations of primary care visits. - Utilizing a risk prediction model to target reminders may promote efficient use of health care resources - By sending an additional text message reminder to high-risk

40% of risk predictions Exclusion: - Patients who have opted- out of receiving text messages	message 2 business days before the appointmen t. Dependent variables = - No show rate - Same day cancelation s	 16,830 mental health visits were sent only one text message reminder and 16,763 were sent an additional text message. The percentage of visits of each type included in the study deviated slightly from 40% due to variation in the distribution of risk predictions between visits in the retrospective sample used to select cut-offs and those during the study period. Results indicate that the intervention reduced the chance of no-shows in both primary care and mental health visits and reduced the chance of same-day 	 visits we achieved higher efficiency at lower costs to the health system (compared to sending a message to all visits) and limited unnecessary notifications to patients with a high likelihood of attending their scheduled visit Limitations: Monitor for a change in patient requests to opt out of text messages among patients with visits in the intervention arm. This approach involves additional costs of implementing a risk prediction model within the system. Risk-based targeting of additional text message
		mental health visits	within the system. Risk-based targeting of

							between the control and the intervention arm in primary care visits was 0.93 (95% confidence interval, CI, between 0.89 and 0.96). The no-show risk for that visit will decrease by 7% if an additional text message is sent for any given primary care visit with a high estimated no-show risk. Sending an additional text message reminder also reduced same- day		particular population. A more precise risk model could improve the effectiveness of the intervention and may also be used to inform more resource intensive interventions (eg, live reminder phone calls by patient access representatives).
Article 4							-		
Robotham et.al, 2016. Using digital notificatio ns to improve attendance in clinic: systematic	N/A	Systemati c Review and Meta -analysis	Sample: 26 studies Inclusion: - Studies examining the effect of electronic text notifications on the attendance of prescheduled	IV1: Text- based electronic notification s Dependent Variables: - Rate of attendance	 Preferred Reporting Items for Systematic Reviews and Meta- Analyses (PRISMA) Clopper Pearson 	R is k R a ti o	- Patients who received notifications were 23% more likely to attend clinic than those who received no notification (risk ratio=1.23, 67% vs 54%). Those receiving notifications were	Level I/ High qualit y	Strengths: - Electronic text notifications improve attendance and reduce no shows across healthcare settings. - Sending multiple notifications could improve attendance further

review and meta- analysis	healthcare appointments. - Studies were only included in the primary analysis if they included a control group which received 'no notifications. In cases where studies had multiple comparison groups (eg, electronic text notifications vs voice notifications vs voice notifications vs no notifications), the data from alternative intervention groups were included in a secondary analysis Exclusion:	 Rate of non-attendance Rate of rescheduled appointmen ts Rate of cancelled appointmen ts 	confidence interval	 25% less likely to 'no show' for appointments (risk ratio=.75, 15% vs 21%). Results were similar when accounting for risk of bias, region and publication year. Multiple notifications were significantly more effective at improving attendance than single notifications. Voice notifications appeared more effective than text notifications at improving attendance. 	Limitations - Multiple reminders did not make a significant difference in reducing 'no shows
	- Data relating to patients				

<u> </u>		1
attending non-		
scheduled drop-		
in clinics or		
where patients		
were reminded		
to book future		
appointments,		
or health		
outcomes other		
than clinic		
attendance.		
- Studies not		
published in the		
peer-reviewed		
literature or		
presented at		
academic		
conferences or		
which		
lacked sufficient		
information to		
be included in		
the		
meta-analysis		
after contacting		
study authors		
(ie, studies		
failing to report		
the number of		
patients		
allocated to		
receive an		
electronic text		

Article 5			notifications intervention).						
Lance et. al, 2021.Com parison Between Short Text Messages and Phone Calls to Reduce No-Show Rates in Outpatient Medical Appointm ents	N/A	Randomiz ed controlled trial	Sample: 306 patients Setting: Primary Care Clinic Inclusion criteria: - All patients older than 18 years who were waiting for an internal medicine appointment between July 2, 2018, and September 20, 2018. Exclusion criteria: - Users who	IV1: Telephone Call IV2: Short test messages (SMS) Dependent variable: - No Shows	Chi-square	P < 0 $S = 0$ $S =$	 The lowest percentage of no- show (9.5%) occurred in the telephone call group The SMS group presented at 21% and the no-intervention group at 22.8% (P = .025). Cost-effectiveness analysis The study concluded that although SMS are cheaper than telephone calls, the latter was much more cost- effective. For each dollar invested in SMS, there is a return of \$2.67 while the return 	Level II/Hig h Qualit y	Strengths: - Telephone calls proved to be a superior strategy to text messaging - Patients with the last visit within a greater time frame would benefit more by the reminder. Limitations - Low external validity. Studies published with a similar methodology to this survey, comparing telephone calls, SMS, and a control group, obtained heterogeneous results

Article 6			did not have a cell phone and those who at the time of recruitment had no identification document were excluded			n t	on investment related to telephone calls is \$15.24. - The investment of \$141,000 in telephone calls could avoid a loss of around \$2.1 million per year.		
Kheirkhah et.al, 2016. Prevalenc e, predictors and economic consequen ces of no- shows.	N/A	Retrospec tive Cohort Study	Sample: > 76,000 patients in 10 clinics Setting: VA Medical center Inclusion criteria: - No-show data for 12 years (fiscal year 1997–2008) Exclusion criteria:	IV: Completed Appointme nt IV2: Missed appointmen t Dependent variable: - No Show Rates - Cost - Gender - Age - Hospital size - Appointme	Kolmogoro v-Mirnov test	T w o - w a y A N O V A	 The mean no-show rate was 18.8 % (2.4 %) in 10 main clinics with highest occurring in subspecialist clinics. No-show rate in the women clinic was higher and the no- show rate in geriatric clinic was lower compared to general primary care clinic (PCP). The no-show rate remained at a high level despite its reduction by a centralized phone reminder (from 16.3 % down to 15.8 %). 	Level : IV/G ood qualit y	Strengths: - Provides a large sample size and longitudinal data to evaluate the prevalence and economic consequences over a long period of time. - The huge cost of no shows combining with other undesirable consequences of no- show motivated management to use any method to decrease the overall cost of health care tremendously. Limitations:

				nt time on no-show - Reminder- letter system - Centralized phone system			that imp rem	ne results showed t the current elemented hinder system had dest effect on no w		- Many factors affect no-show, including age, gender, type of clinic, time of appointment (day and month), distance, employment status, and patient health status. Any promising methodology to predict and reduce no-show should consider and examine the effect of these factors on prediction model.
Article 7										
Marbouh et.al, 2020. Evaluating the Impact of Patient No-Shows on Service Quality	N/A	Case Control Study	Sample: Retrospective data on patient no shows Setting: Radiology department at a leading hospital in Dubai Inclusion:	IV: No Shows Dependent variable: - Patient related issues - Environme ntal Issues	Marginal regression model	lati hip no sho and sor	ows 1 ne iabl are ami	No-shows are high due to multiple factors, such as patient behavior, patients' financial situation, environmental factors and scheduling policy	Level : IV/G ood qualit y	Strengths: - By using the Electronic Health Records (EHRs), healthcare providers can access patients' no- show history and build predictive models that can assess each patient and their probability of no-show. By considering the no-

Article 8			Informal discussions were conducted with the hospital staff, including managers, physicians, nurses and scheduling assistants to validate if patient no- shows that have been identified	- Financial Issues - Scheduling Relates Issues					show record of patients and their probability of missing their appointment, predictive analytics tools and methods can be used to create overbooking conditions. These models can avoid the hospital the potential costs of no-shows. Limitations: - Sample size not provided - Factors affecting no- shows for this particular hospital were unique including fear and anxiety.
Boone et. al, 2022. How scheduling systems with	N/A	Controlle d Trial without Randomiz ation	Sample: Setting- Inclusion criteria:	IV: IV2 Dependent variable:	Difference in Difference	chan visit patie recei	program did not age the number of s by chronic ents eligible to ive the reminder visits from other	Level : III/Go od qualit y	Strengths: Limitations:

automated appointme nt reminders improve health clinic efficiency		- No Show Rates	 patients ineligible to receive reminders in- creased by 5.0% in the first year and 7.4% in the second Clinics treating more chronic patients and those with a relatively younger patient population benefited more from the program 	
			- Automatic appointment reminders were effective in increasing clinic ability to care for more patients, likely due to timely cancelations.	

Appendix C

Levels of Evidence Synthesis Table

PICO Question: In outpatient care (P) does the adherence to a no show/cancellation policy (I) compared to non-adherence (C) impact revenue (O) over a 12-month period (T)?

Level of evidence	1	2	3	4	5	6	7	8
Level I:								
Systematic review	Χ	Χ		Χ				
or meta- analysis								
Level II:								
Randomized			Χ		Χ			
control trial								
Level III:								
Controlled trial								X
without								
randomization								
Level IV: Case-								
control or cohort						Χ	Χ	
study								
Level V:								
Systematic review								
of qualitative or								
descriptive								
studies								
Level VI:								
Qualitative or								
descriptive study,								
CPG, Lit Review,								
QI or EBP								
project								
Level VII: Expert								
opinion								

LEGEND 1= Oikonomidi et al., 2022. 2= Salazar et. al, 2022. 3= Coley, R. Y., 2022 4= Robotham et.al, 2016. 5= Lance et. al, 2021. 6= Kheirkhah et.al, 2016. 7= Marbouh et.al, 2020. 8= Boone et. al, 2022.

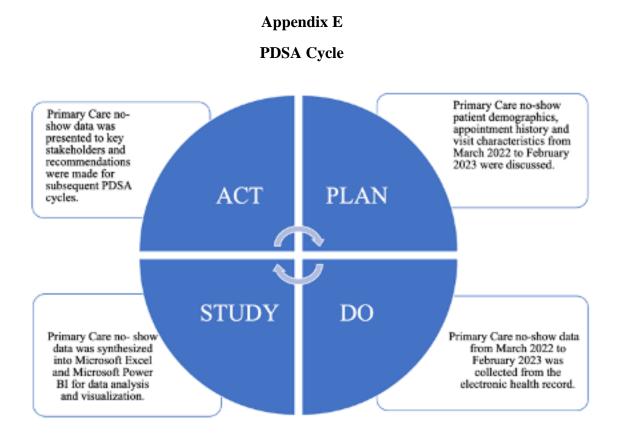
Appendix D

Outcome Synthesis Table

PICO Question: In outpatient care (P) does the adherence to a no show/cancellation policy (I) compared to non-adherence (C) impact revenue (O) over a 12-month period (T)?

 ↑, ↓, —, NE, NR, ✓ (select symbol and copy as needed) 	1	2	3	4	5	6	7	8
NSR	I	ł	Ţ	ł	1	ł	1	ł
СЕ	\checkmark							
AN	\checkmark	\checkmark	\checkmark	\checkmark	Î	\checkmark	\checkmark	\checkmark

SYMBOL KEY


↑ = Increased, \downarrow = Decreased, — = No Change, **NE** = Not Examined, **NR** = Not Reported (introduced at beginning but never reported at the end), \checkmark = applicable or present

NSR= No Show Rate **AN**= Appointment Notification **CE**= Cost Effectiveness

LEGEND

1= Oikonomidi et al., 2022. **2**= Salazar et. al, 2022. **3**= Coley et. al., 2022. **4**= Robotham et.al, 2016. **5**= Lance et. al, 2021. **6**= Kheirkhah et.al, 2016. **7**= Marbouh et.al, 2020. **8**= Boone et. al, 2022.

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 52 PROJECT

Appendix F

Ethical Review

Differentiating Quality Improvement and Research Activities Tool

Question	Yes	No
1. Is the project designed to bring about immediate improvement in patient care?	Х	
2. Is the purpose of the project to bring new knowledge to daily practice?	Х	
3. Is the project designed to sustain the improvement?	Х	
4. Is the purpose to measure the effect of a process change on delivery of care?	Х	
5. Are findings specific to this hospital?	Х	
6. Are all patients who participate in the project expected to benefit?	Х	
7. Is the intervention at least as safe as routine care?	Х	
8. Will all participants receive at least usual care?	Х	
9. Do you intend to gather just enough data to learn and complete the cycle?	Х	
10. Do you intend to limit the time for data collection in order to accelerate the rate of improvement?	Х	
11. Is the project intended to test a novel hypothesis or replicate one?		Х
12. Does the project involve withholding any usual care?		Х
13. Does the project involve testing interventions/practices that are not usual or standard of care?		Х
14. Will any of the 18 identifiers according to the HIPAA Privacy Rule be included?		Х

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 54 PROJECT

Appendix G

IRB Exemption Status

Subject:	IRB#230327C - Exempt Status Request
Date:	Wednesday, March 29, 2023 at 7:45:35 AM Pacific Daylight Time
From:	Taber, Prof. Christopher B.
То:	Harding, Adrianne S.
CC:	Alp, Feride F. 'Funda', Londo, Madeline C.

Attachments: image001.png

Dear Applicant,

Thank you for your submission to the IRB requesting exempt review. Based on the application submitted, the IRB is pleased to approve your submission and we wish you great success in your research.

Sincerely, Christopher Taber Chair, IRB

Christopher B. Taber, PhD, CSCS*D, USAW3, EP-C, PES Director, Exercise and Sport Science M.S. Program Associate Professor College of Health Professions Sacred Heart University (203) 396-6342

To learn more about the M.S. in Exercise and Sport Science program, click here.

To see where our M.S. alumni are working, click here.

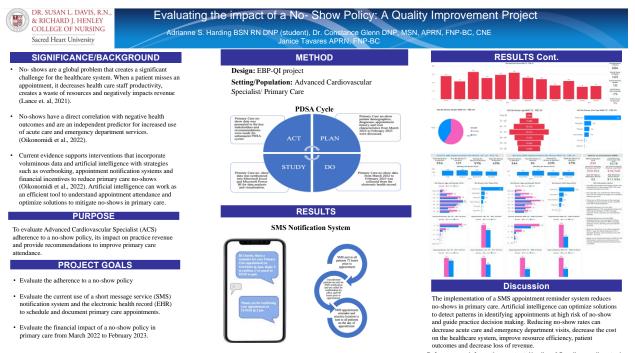
Appendix H

Executive Summary

No- shows are a global problem that creates a significant challenge for the healthcare system. When a patient misses an appointment, it decreases health care staff productivity, creates a waste of resources and negatively impacts revenue (Lance et. al, 2021). Current evidence supports interventions that incorporate voluminous data and artificial intelligence with strategies such as overbooking, appointment notification systems and financial incentives to reduce outpatient no-shows (Oikonomidi et al., 2022). Medical scheduling systems and machine learning algorithms can work as an efficient tool to understand appointment attendance in primary care. Evaluating the impact of a no-show policy to improve primary care attendance provides insights into individual practice sites and can inform decisions.

For this project, the Plan-Do-Study-Act method was used to evaluate an outpatient primary care office adherence to a no-show policy and its impact on practice revenue based on current evidence. In the Plan phase, no-show and demographic attributes from March 2022 to February 2023 were discussed. In the Do phase, the no- show data was collected from the electronic health record (EHR). For the Study phase, no- show data was analyzed. In the Act phase, the no-show data was presented to the key stakeholders at the primary care practice and recommendations were made for subsequent PDSA cycles.

During a 12-month period, the primary care practice reported 1435 (17%) no-show occurrences, in comparison to the national average no show rate of 18%. The practice implemented a short message service (SMS) appointment notification system. There was a 38% decrease in the average monthly rate of no shows in the 4 months post SMS implementation. With the United States national average cost of \$218 for a primary care visit, a return on


EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 56 PROJECT

investment for SMS implementation was \$11,554. Implications from the study suggest that no show patients have greater than 10 chronic illness' and were missing follow up visits. SMS implementation was shown to decrease the number of no-show appointments of patients with chronic illnesses and missed follow up appointments. Limitations included retrospective data analysis and data management. Creating customizable EHR data can be used to train predictive models and identify factors that have a higher impact on missed appointment rates. In summary, appointment reminders reduce no-shows. Artificial intelligence can optimize solutions to mitigate no-shows. Predictive models and machine learning can be utilized to detect patterns in identifying appointments at high risk of no-show and guide practice decision making. Reducing no-show rates can decrease the cost on the healthcare system, improve resource efficiency and patient outcomes while decreasing loss of revenue.

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 57 PROJECT

Appendix I

DNP Project Poster Presentation

References or information contact: Hardinga2@mail.sacredheart.edu

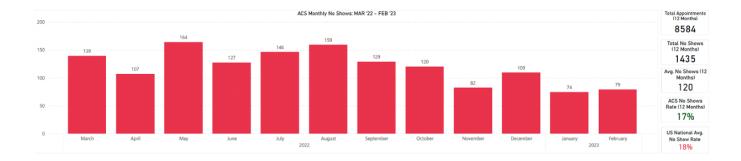
EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 58 PROJECT

Figure 1. Project Timeline

February 2023

- Evidence Review •
- Project Planning •

March 2023


- Project Proposal Ethical Review ٠
- •
- Project Implementation •

April 2023

- Project Evaluation Final DNP Presentation
- Project Dissemination

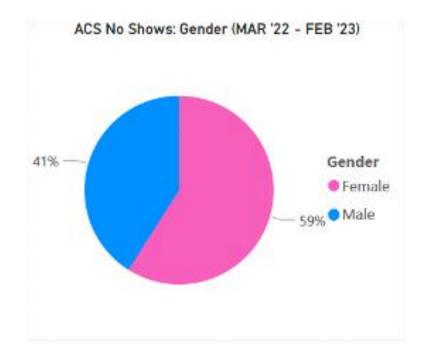
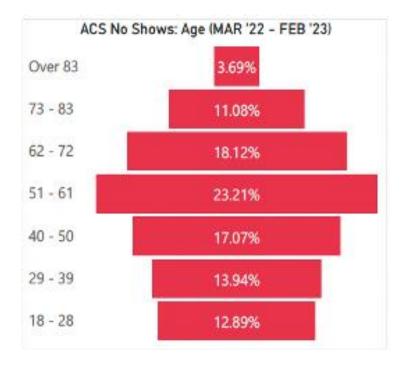

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 59 PROJECT

Figure 2. Monthly No-Shows



EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 60 PROJECT

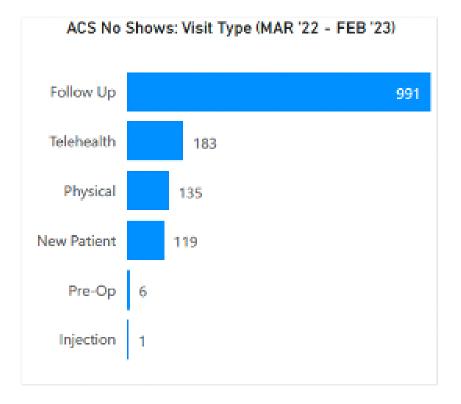

Figure 3. No-Shows by Gender

Figure 4. No- Shows by Age

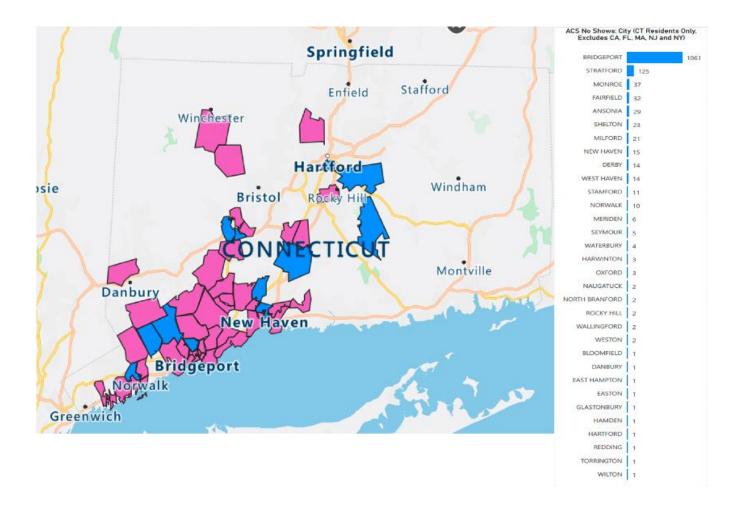
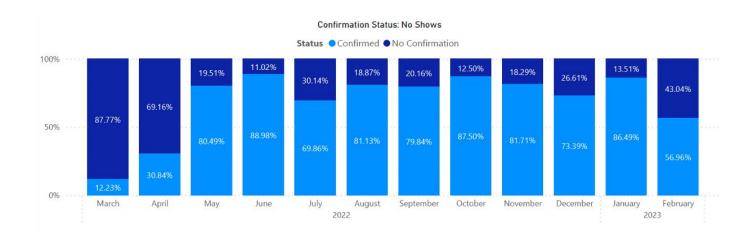


Figure 5. No- Shows by Visit Type



EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 63 PROJECT

Figure 6. No-Show by Zip Code

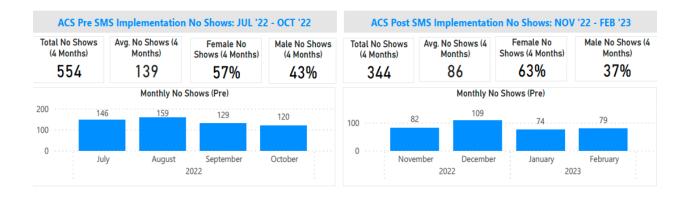
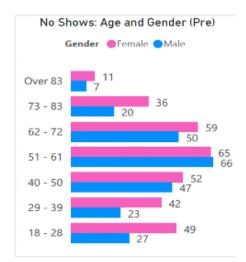
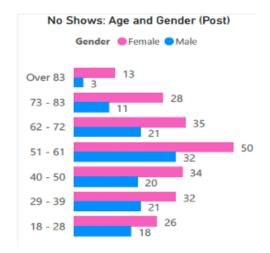
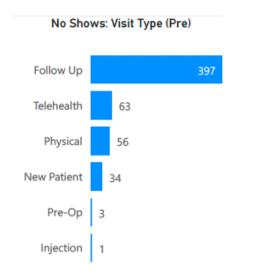

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 64 PROJECT

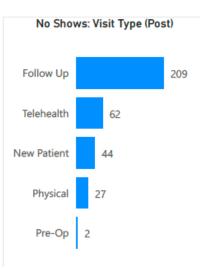
Figure 7. No- Show Confirmation Status


EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 65 PROJECT

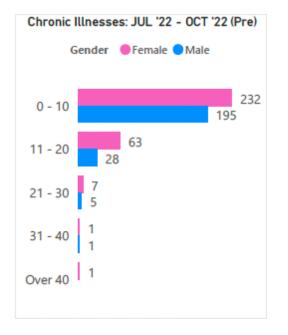

Figure 8. No- Shows Pre and Post SMS Implementation

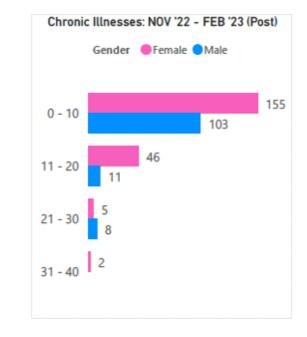
EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 66 PROJECT



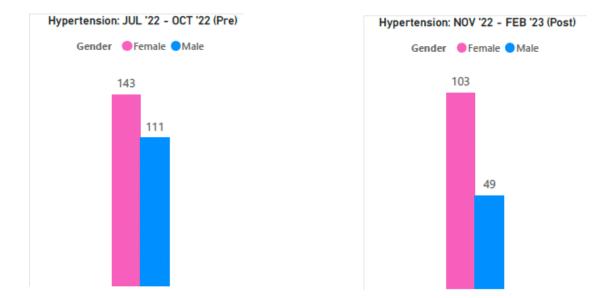


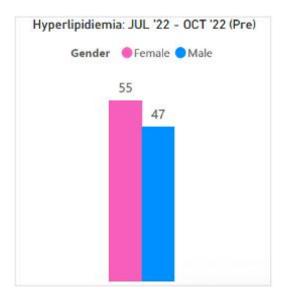
EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 67 PROJECT

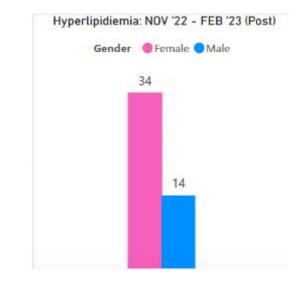

Figure 10. No- Shows Pre and Post SMS Implementation by Visit Type



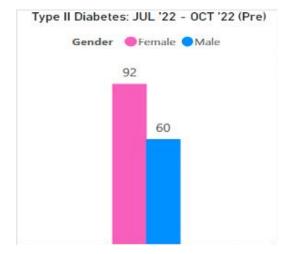
EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 68 PROJECT

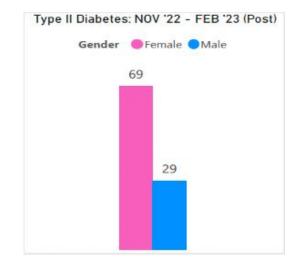



EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 69 PROJECT


Figure 12. No- Shows Pre and Post SMS Implementation by Hypertension

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 70 PROJECT


Figure 13. No- Shows Pre and Post SMS Implementation by Hyperlipidemia



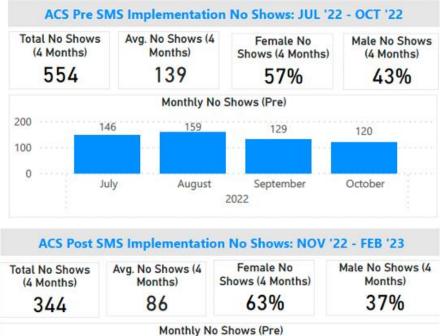
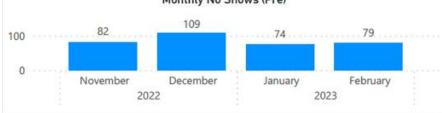

EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 71 PROJECT

Figure 14. No- Shows Pre and Post SMS Implementation by Type II Diabetes



EVALUATING THE IMPACT OF A NO-SHOW POLICY: A QUALITY IMPROVEMENT 72 PROJECT

Figure 15. No- Shows Pre and Post SMS Implementation Return on Investment

Return on Investment (SMS) US National Avg. Primary Care Visit Cost* SMS Installation Cost \$30 \$218 No Shows Potential Revenue Loss (Pre)* No Shows Potential Revenue Loss (Post)* \$30,302 \$18,748 Avg. No Shows Avg. Revenue Reduction (Post)* Saved (Post)* 53 \$11,554

ROI Calculation Notes

 The SMS automated messaging system was implemented in November 2022. The cost of implementation was \$30.

- The average cost of \$218 was determined from the US national average for a standard primary care visit.
- There was a 38% decrease in the average monthly rate of no shows in the 4 months post SMS implementation.
- Potential Revenue Loss Pre SMS Implementation: The average No Shows Pre SMS Implementation (139) X average revenue from a primary care visit (\$218) = \$30,302
- Potential Revenue Loss Post SMS Implementation: The average No Shows Post SMS Implementation (86) X average revenue from a primary care visit (\$218) = \$18,748
- Revenue saved due to no show reduction (ROI) = Avg. No Show Reduction (53) X average revenue from a primary care visit (\$218) = \$11,554
- Based on an initial investment of \$30 for the SMS system, there was a decrease in the number patients that were documented as no shows.