
Sacred Heart University Sacred Heart University 

DigitalCommons@SHU DigitalCommons@SHU 

Mathematics Faculty Publications Mathematics 

2014 

Zp-Modules with Partial Decomposition Bases in L δ ∞ω Zp-Modules with Partial Decomposition Bases in L   

Carol Jacoby 

Peter Loth 
Sacred Heart University, lothp@sacredheart.edu 

Follow this and additional works at: https://digitalcommons.sacredheart.edu/math_fac 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Jacoby, C., & Loth, P. (2014). Zp-modules with partial decomposition bases in L δ ∞ω. Houston Journal of 
Mathematics, 40(4), 1007-1019. 

This Article is brought to you for free and open access by the Mathematics at DigitalCommons@SHU. It has been 
accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of 
DigitalCommons@SHU. For more information, please contact santoro-dillond@sacredheart.edu. 

http://digitalcommons.sacredheart.edu/
http://digitalcommons.sacredheart.edu/
https://digitalcommons.sacredheart.edu/
https://digitalcommons.sacredheart.edu/math_fac
https://digitalcommons.sacredheart.edu/math
https://digitalcommons.sacredheart.edu/math_fac?utm_source=digitalcommons.sacredheart.edu%2Fmath_fac%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.sacredheart.edu%2Fmath_fac%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:santoro-dillond@sacredheart.edu


Houston Journal of Mathematics
c© 2014 University of Houston

Volume 40, No. 4, 2014

Zp-MODULES WITH PARTIAL DECOMPOSITION BASES IN

Lδ∞ω

CAROL JACOBY AND PETER LOTH

Communicated by Manfred Dugas

Abstract. We consider the class of mixed Zp-modules with partial decom-

position bases. This class includes those modules classified by Ulm and

Warfield and is closed under L∞ω-equivalence. In the context of L∞ω-

equivalence, Jacoby defined invariants for this class and proved a classifica-

tion theorem. Here we examine this class relative to Lδ∞ω , those formulas

of quantifier rank ≤ some ordinal δ, defining invariants and proving a clas-

sification theorem. This generalizes a result of Barwise and Eklof.

1. Introduction

Ulm’s Theorem [U] presents invariants that classify countable torsion abelian

groups up to isomorphism. Barwise and Eklof [BE] extended this result to the

classification of arbitrary torsion abelian groups up to equivalence in the infinitary

language L∞ω. Warfield [W2] extended Ulm’s Theorem by classifying a certain

class of mixed local groups, which have come to be called Warfield groups, up

to isomorphism. The first author [J2] defined a class of mixed Zp-modules which

includes those studied by Warfield and is closed under L∞ω-equivalence. The

defining property of these modules is the existence of a partial decomposition

basis, a generalization of the concept of decomposition basis. In the context of

L∞ω-equivalence, invariants were defined for this class and a classification theorem

was proved.

Here we look at this class in the context of Lδ∞ω for some ordinal δ, i.e, the

formulas of quantifier rank ≤ δ. These results were needed to prove theorems
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about definability and expressibility of the invariants and the class [J3]. Classifi-

cation of this class in Lδ∞ω was included in [J2], but recently the second author

noted shortcomings in some of these proofs. These have been corrected here. In

addition, new results and approaches have streamlined many of the theorems.

We focus on local groups, i.e., modules over Zp. The global case is considered in

[JLLS] and [JL].

Section 2 presents the definitions and results from algebra that will be needed.

Section 3 defines Lδ∞ω and presents Karp’s Theorem that unites the algebraic and

model theoretic views. Section 4 proves an extension result that will be needed

in the classification theorem and Section 5 proves the classification theorem for

modules with partial decomposition bases in Lδ∞ω.

For notation and terminology on abelian groups and on model theory, we may

refer to the books [F1], [F2], [L] and [R].

2. Algebraic background

All modules considered in this paper are modules over Zp, the ring of integers

localized at the prime p. For every ordinal α, a submodule pαM of the module

M is defined as follows: pM = {px : x ∈ M}, pα+1M = p(pαM), and pαM =⋂
β<α p

βM if α is a limit ordinal. The length of M is the least ordinal τ such

that pτM = pτ+1M . The height of an element x ∈ M , written |x| or |x|M , is α

if x ∈ pαM\pα+1M and |x| = ∞ if x ∈ p∞M =
⋂
α p

αM . The module p∞M is

called the divisible part of M and M is called reduced if p∞M = 0. The submodule

of M generated by a subset S of M is denoted by 〈S〉, and 〈S〉0 is the set of all

elements x ∈ M such that rx ∈ 〈S〉 for some 0 6= r ∈ Zp. Notice that the height

of x ∈ S computed in M coincides with the height of x computed in 〈S〉0. A

submodule H of M is called nice (in M) if

pα(M/H) = (pαM +H)/H

for all ordinals α. Note that H is nice if and only if every coset of H has an

element x ∈M which is proper with respect to H, that is, if x has maximal height

among all elements in the coset x+H (cf. [L, Proposition 1.4]). In this case, we

have |x + h| = min{|x|, |h|} for all h ∈ H. The torsion part of M is denoted by

tM and we let M [p] = {x ∈M : px = 0}. Then the Ulm-Kaplansky invariants of

a module M are defined by

u(α,M) = dim (pαM)[p]/(pα+1M)[p]

where α is an ordinal, and

u(∞,M) = dim (p∞M)[p].
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Ulm [U] proved that these cardinal numbers are isomorphism invariants for count-

able torsion modules.

An Ulm sequence is a sequence (βi : i < ω) where each βi is an ordinal or

the symbol ∞ such that βi < βi+1 for all i and we use the convention α < ∞
whenever α is an ordinal or the symbol ∞. Two Ulm sequences β = (βi : i < ω)

and γ = (γi : i < ω) are called equivalent, and we write β ∼ γ, if there exist

m,n < ω such that (βi+m : i < ω) = (γi+n : i < ω). The Ulm sequence of x ∈M
is the sequence U(x) = (|pix| : i < ω).

A subset X = {xi : i ∈ I} of M is called a decomposition set if all elements of

X are independent and have infinite order such that

|r1x1 + . . .+ rnxn| = min{|r1x1|, . . . , |rnxn|}

for all x1, . . . , xn ∈ X and r1, . . . , rn ∈ Zp. If in addition M/〈X〉 is torsion, X is

called a decomposition basis for M . More generally, a system C is called a partial

decomposition basis for M if

(1) C is a non-empty collection of finite subsets of M ;

(2) if X ∈ C, then X is a decomposition set;

(3) if X ∈ C and x ∈M , there is Y ∈ C such that X ⊆ Y and x ∈ 〈Y 〉0.

It is clear that if X is a decomposition basis for M , then the collection of all

finite subsets of X is a partial decomposition basis for M . Warfield modules are

modules M possessing a decomposition basis X such that 〈X〉 is nice and M/〈X〉
is simply presented. Their Warfield invariants are defined by

w(e,M) = |{x ∈ X : U(x) ∈ e}|

where e is an equivalence class of Ulm sequences. Warfield [W2] showed that

these invariants, together with the Ulm-Kaplansky invariants, form a complete

set of isomorphism invariants for Warfield modules.

3. Model-theoretic preliminaries

L∞ω is an extension of a language of first order logic to allow conjunctions and

disjunctions over arbitrary sets of formulas and quantifications over finite sets of

variables. Lδ∞ω consists of the formulas of this language with quantifier rank no

more than δ (cf. [BE]). We say models A and B are Lδ∞ω-equivalent, written

A ≡δ B if they satisfy the same sentences of Lδ∞ω. In particular, A ≡∞ B if

they satisfy the same sentences of L∞ω. Lδ∞ω-equivalence can be characterized

by partial isomorphisms having the back-and-forth property:
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Theorem 3.1 ([Kar]). Let A = 〈A, . . .〉 and B = 〈B, . . .〉 be models for L∞ω and

δ an ordinal or the symbol ∞. Then the following are equivalent:

(i) A ≡δ B;

(ii) For each ordinal ν ≤ δ there is a non-empty set Iν of isomorphisms on

finitely generated substructures of A into B such that

(a) if ν ≤ µ, then Iµ ⊆ Iν ;

(b) if ν < δ, f ∈ Iν+1 and x ∈ A (y ∈ B, resp.), then f extends to a

map f ′ ∈ Iν such that x ∈ domain(f ′) (y ∈ range(f ′), resp.).
If δ =∞, the sets Iν in (ii) can be chosen to be all equal to some fixed set I.

4. Extending α-height-preserving isomorphisms

Let S and T be submodules of modules M and N , respectively, and let α be an

ordinal or the symbol ∞. Then we say that an isomorphism f : S → T preserves

heights up to α if

min{|x|, α} = min{|f(x)|, α}

for all x ∈ S where all heights are computed in M and N , respectively. In this

case, f is also called α-height-preserving (or height-preserving if α =∞).

The following result is a special case of [J1, Theorem 4.2] and uses modifications

of the Ulm-Kaplansky invariants (see [BE] and [J1]): for a module M and an

ordinal α, let û(α,M) = min{u(α,M), ω} and û(∞,M) = min{u(∞,M), ω}.

Theorem 4.1 ([J1]). Let M and N be modules, α an ordinal and f : S → T an α-

height-preserving isomorphism where S and T are finitely generated submodules

of M and N , respectively. Suppose that û(σ,M) ≤ û(σ,N) for all σ < α. If

x ∈M is proper with respect to S, px ∈ S and |x|+1 < α, then for a suitable y in

N , f can be extended to an α-height-preserving isomorphism g : 〈S, x〉 → 〈T, y〉
by mapping x onto y.

The following lemmas will be useful.

Lemma 4.2 ([GLLS], [J2]). Let M and N be modules, α an ordinal and f :

S → T an α-height-preserving isomorphism where S and T are submodules of

M and N , respectively. Suppose that x ∈ M , y ∈ N , |x| ≥ α and |y| ≥ α.

Suppose further that x+ S and y + T have the same order and if pn is the order

of x + S, then f(pnx) = pny. Then f can be extended to an α-height-preserving

isomorphism f ′ : 〈S, x〉 → 〈T, y〉 by mapping x onto y.
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Lemma 4.3 ([J1]). Let M be a reduced module of finite rank with a decomposition

basis {x1, . . . , xn}. Then there is a torsion module T and submodules Mi of M

(i = 1, . . . , n) such that

M ⊕ T ≡∞ M1 ⊕ · · · ⊕Mn

and xi ∈ Mi for all i = 1, . . . , n. In fact, the set I of all height-preserving

isomorphisms between finitely generated submodules of M ⊕ T and M1 ⊕ · · · ⊕
Mn extending the canonical map ϕ : 〈x1, . . . , xn〉 → 〈x1, . . . , xn〉 satisfies the

conditions of Karp’s Theorem 3.1.

Lemma 4.4. Let M be a module, X a decomposition basis for M and S a finitely

generated submodule of M such that S∩〈X〉 = 〈S∩X〉. If y ∈ X such that y /∈ S
then there is an n ∈ ω such that

|rpny + s| = min{|rpny|, |s|}

for all r ∈ Zp and s ∈ S.

Proof. It is easy to verify that S ∩ 〈y〉 = 0. Since S is finitely generated,

S ∩X is finite, say S ∩X = {x1, . . . , xm} where the first k elements are exactly

those whose Ulm sequence is not equivalent to (∞,∞, . . .) (0 ≤ k ≤ m). Clearly

{y, x1, . . . , xm} is a decomposition basis for

N = (S ⊕ 〈y〉)0.

If U(y) ∼ (∞,∞, . . .) there is n ∈ ω such that |pny| = ∞, so the claim fol-

lows immediately. Suppose U(y) 6∼ (∞,∞, . . .). Letting D be the divisible part

of N we have 〈y, x1, . . . , xk〉 ∩ D = 0. By [Kap, Theorem 6], the projection

〈y, x1, . . . , xk〉 ⊕D → D can be extended to N resulting in N = R⊕D where R

is a reduced module with decomposition basis {y, x1, . . . , xk}. By Lemma 4.3 we

have

R⊕ T ≡∞ N0 ⊕ . . .⊕Nk
where T is torsion, y ∈ N0 and xi ∈ Ni for i = 1, . . . , k. Let I be the set of partial

isomorphisms as in Lemma 4.3. For a map f : A→ B in I define

f ′ : A⊕D → B ⊕D.
(a, x) 7→ (f(a), x)

Then I ′ = {f ′ : f ∈ I} is a set of isomorphisms between submodules of N ⊕ T
and N0 ⊕ . . . ⊕ Nk ⊕ D satisfying the conditions of Karp’s Theorem 3.1, hence

the finitely generated submodule S⊕〈y〉 of N is contained in the domain of some

f ′ ∈ I ′. If π : N0 ⊕ · · · ⊕Nk ⊕D → N0 is the projection, then πf ′(S) is finitely

generated since S is. It is also torsion, since if z ∈ S, then there is a nonzero
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r ∈ Zp such that rz ∈ S ∩ 〈X〉 = 〈S ∩ X〉, so by the construction of f and f ′

we have f ′(rz) = rz ∈ N1 ⊕ . . . ⊕Nk ⊕D which implies rπf ′(z) = πf ′(rz) = 0.

But then the elements of πf ′(S) have only a finite number of heights. Since

U(y) 6∼ (∞,∞, . . .) and f ′ is height-preserving, the elements pnf ′(y) (n ∈ ω)

have infinitely many heights, so there is an n ∈ ω such that |rpny| 6= |s| for all

0 6= r ∈ Zp and s ∈ πf ′(S).

Now let s ∈ S, r ∈ Zp and write f ′(s) = s0 + · · · + sk + d where si ∈ Ni for

i = 0, . . . , k and d ∈ D. Then

|rpny + s| = |f ′(rpny + s)| = |f ′(rpny) + s0 + · · ·+ sk + d|
= min{|f ′(rpny) + s0|, |s1|, . . . , |sk|, |d|}
= min{|f ′(rpny)|, |s0|, . . . , |sk|, |d|}
= min{|f ′(rpny)|, |f ′(s)|}
= min{|rpny|, |s|}

�

Lemma 4.5 ([W1]). Suppose N and S are submodules of a module M such that

N is nice in M and S contains N such that S/N is torsion and finitely generated.

Then S is nice in M .

The following extension result will be needed in Section 5.

Lemma 4.6. Let M and N be modules such that û(α,M) = û(α,N) for all

α < ω(ν + 1) for some ordinal ν and if length(tM) < ω(ν + 1), then û(∞,M) =

û(∞, N). Suppose f : S → T is an isomorphism which preserves heights up to

ων + k + n + 1 for some k, n ∈ ω, where S and T are nice, finitely generated

submodules of M and N respectively. Let a ∈M and suppose

(1) pn+1a ∈ S and pna /∈ S;

(2) for all 0 ≤ m ≤ n the following is true: if for all x ∈ pma + 〈S, pm+1a〉
we have |x| < ω(ν + 1), then |x|+ 1 < ων + k for all such x;

(3) if length(tM) < ω(ν + 1) then length(tM) < ων + k.

Then f extends to an ων + k-height-preserving isomorphism g : 〈S, a〉 → T ′ for

some submodule T ′ of N .

Proof. Case 1: First consider the case in which for every 0 ≤ m ≤ n and

x ∈ pma + 〈S, pm+1a〉 we have |x| < ω(ν + 1). We will prove by induction on

m, 0 ≤ m ≤ n + 1, that f extends to an ων + k-height-preserving isomorphism

fm such that domain(fm) = 〈S, pn+1−ma〉. Let f0 = f . Suppose fm has been

chosen. Let y = pn−ma. Then py ∈ Sm = domain(fm). If y ∈ Sm, we may let
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fm+1 = fm. So suppose y /∈ Sm. For all x ∈ y+ Sm = pn−ma+ 〈S, pn+1−ma〉 we

have |x| < ω(ν+ 1) by assumption so |x|+ 1 < ων+k by (2). By Lemma 4.5, Sm
is nice in M , so we may choose x proper with respect to Sm. Then by Theorem

4.1, fm extends to an ων + k-height-preserving isomorphism fm+1 such that

domain(fm+1) = 〈Sm, x〉 = 〈Sm, y〉 = 〈S, pn+1−ma, pn−ma〉 = 〈S, pn−ma〉.

This completes the induction. Let g = fn+1.

Case 2: Now suppose for some 0 ≤ m ≤ n there is an x ∈ pma + 〈S, pm+1a〉
such that |x| ≥ ω(ν + 1). We may assume that x has been chosen so that m is

minimal. We will prove that f extends to x.

Choose j least such that pj+1x ∈ S. Then

|pj+1x| ≥ |x|+ j + 1 ≥ ω(ν + 1) + j + 1 > ων +m+ k + j + 1,

so |f(pj+1x)| ≥ ων + m + k + j + 1 since j ≤ n −m and f preserves heights up

to ων + k + n + 1. Thus we may choose b0 ∈ N such that pj+1b0 = f(pj+1x)

and |b0| ≥ ων + m + k. We claim there is a b /∈ T with these same properties.

If pjb0 /∈ T , we may let b = b0. Suppose pjb0 ∈ T , say pjb0 = f(a0) for some

a0 ∈ S.

Case 2a Suppose first that length(tM) < ω(ν+1). Then length(tM) < ων+k

by (3). Since

f(p(pjx− a0)) = pj+1b0 − pj+1b0 = 0,

we have p(pjx − a0) = 0. Also |pjx − a0| ≥ ων + m + k and pjx − a0 6= 0 since

pjx /∈ S. Let y = pjx−a0. Suppose |y| 6=∞. Since y ∈ tM ,∞ 6= |y| ≥ ων+m+k

contradicts length(tM) < ων + k. Consequently, we have |y| =∞. But then

û(∞, N) = û(∞,M) = min{dim (p∞M)[p], ω} ≥ dim (p∞M ∩ 〈S, y〉)[p]
= dim 〈y〉 ⊕ (S[p] ∩ p∞M),

the latter equality following from the modular law. Letting α = ων + k + n+ 1,

we have

dim 〈y〉 ⊕ (S[p] ∩ p∞M) > dimS[p] ∩ p∞M = dimS[p] ∩ p∞(tM)

= dimS[p] ∩ pα(tM) = dimS[p] ∩ pαM
= dimT [p] ∩ pαN

since f is α-height-preserving. Then there is an element in (p∞N)[p] that is not

in T [p] ∩ pαN , hence it is not in T . Write it as pjb1 where |b1| =∞.

It is easy to verify that b = b0 + b1 satisfies the desired condition.

Case 2b Now suppose length(tM) ≥ ω(ν + 1). Then length(tN) ≥ ω(ν + 1)

since otherwise the modified Ulm invariants would disagree between length(tN)
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and ω(ν + 1). Again, we will choose an appropriate b as the image of x. Barwise

and Eklof [BE, (2.6) and (2.7)] proved that if G is a p-group, S a subgroup of G

of finite rank, α a limit ordinal ≤ length(G) and β < α, then for any n ∈ ω there

exists a z ∈ pβG such that pnz /∈ S and pn+1z = 0. The proof applies equally well

to Zp-modules, so by applying it to tN , the limit ordinal ω(ν + 1) ≤ length(tN)

and β = ων +m+ k, we get b1 ∈ pων+m+kN such that pjb1 /∈ T and pj+1b1 = 0.

Let b = b0 + b1.

In either case we have chosen a b such that

|b| ≥ ων +m+ k, pjb /∈ T and pj+1b = f(pj+1x).

Define f ′ : 〈S, x〉 → 〈T, b〉 as in Lemma 4.2. Then f ′ preserves heights up to

ων +m+ k.

We have shown that f can be extended to an ων + m + k-height-preserving

map f ′ with x in its domain. Now we must show that f ′ can be extended to

include a. We claim that 〈S, x〉 = 〈S, pma〉. Recall that x ∈ pma + 〈S, pm+1a〉,
say x = pma+ rpm+1a+ s for some r ∈ Zp and s ∈ S. Let y = pma+ rpm+1a =

pm(1 + rp)a. Then x− y ∈ S, so 〈S, x〉 = 〈S, y〉. But 1 + rp and p are relatively

prime, so 〈y〉 = 〈pma〉 and thus pma ∈ 〈S, x〉. Thus 〈S, x〉 = 〈S, pma〉.
Now let S′ = 〈S, pma〉 = domain(f ′). Then pma ∈ S′ and for every l ≤ m− 1

and every

z ∈ pla+ 〈S′, pl+1a〉 = pla+ 〈S, pl+1a〉,
|z| < ω(ν + 1) by the minimality of m. Thus by Case 1 applied to f ′ : S′ → T ′

and m − 1, we may extend f ′ to include a such that the extension is ων + k-

height-preserving. �

Corollary 4.7. Let M and N be modules such that û(α,M) = û(α,N) for all α

and û(∞,M) = û(∞, N). Suppose f : S → T is a height-preserving isomorphism

where S and T are nice, finitely generated submodules of M and N respectively.

If a ∈ M and pra ∈ S for some r ∈ ω, then f extends to a height-preserving

isomorphism g : S′ = 〈S, a〉 → T ′ for some submodule T ′ of N .

Proof. Let ν be an ordinal such that length(M) < ων and apply Lemma 4.6. �

Corollary 4.8 ([BE]). Let G and H be p-groups and δ an ordinal such that

(1) û(α,G) = û(α,H) for all α < ωδ;

(2) if length(G) < ωδ, then û(∞, G) = û(∞, H).

Then G ≡δ H.

Proof. Consider the system {Iν : ν ≤ δ} where each Iν consists of all ων-height-

preserving isomorphisms f : S → T where S and T are finite subgroups of G and



Zp-MODULES WITH PARTIAL DECOMPOSITION BASES 1015

H, respectively. Let f ∈ Iν+1(ν < δ) and a ∈ G. Since S is finite, there are

k, n ∈ ω such that conditions (1)-(3) of Lemma 4.6 hold, hence f extends to

g ∈ Iν with a ∈ domain(g). By symmetry, condition (ii) of Karp’s Theorem 3.1

is satisfied, hence G ≡δ H. �

5. Classification in Lδ∞ω

Let α be an ordinal. We call two Ulm sequences (βi) and (γi) equal up to α if

min{βi, α} = min{γi, α}

for all i < ω. In this case we write (βi) =α (γi). Two equivalence classes e and e′

of Ulm sequences are called α-equivalent, and we write e ∼α e′, if there are Ulm

sequences (βi) ∈ e and (γi) ∈ e′ which are equal up to α.

For a module M with partial decomposition basis C, define ŵ(e,M) to be the

largest integer n, if it exists, such that there are X ∈ C and x1, . . . , xn ∈ X such

that U(xi) ∈ e for all i = 1, . . . , n. If no such n exists, put ŵ(e,M) = ω. If α is

an ordinal, define

ŵα(e,M) = min{
∑
e′∼ae

ŵ(e′,M), ω}.

Note that if X is a finite decomposition set, then for any e and any α,

ŵα(e, 〈X〉0) =
∑
e′∼αe

|{x ∈ X : U(x) ∈ e′}| = |{x ∈ X : [U(x)] ∼α e}|.

Lemma 5.1. Let M be a module with partial decomposition basis C. If X ∈ C,

then ŵα(e,M) ≥ ŵα(e, 〈X〉0) for any ordinal α and equivalence class e of Ulm

sequences.

Proof. The setX is a decomposition basis for 〈X〉0. Then ŵ(e′,M)≥ ŵ(e′, 〈X〉0)

for all equivalence classes e′, therefore ŵα(e,M) ≥ ŵα(e, 〈X〉0). �

Theorem 5.2. Let M be a module with partial decomposition basis C, α an

ordinal and n a positive integer. Suppose ŵα(e,M) ≥ n and X ∈ C. Then there

is an X ′ ∈ C such that X ⊆ X ′ and X ′ has ≥ n elements x with [U(x)] ∼α e.

Proof. There is a finite set {e1, . . . , em} of distinct equivalence classes of Ulm

sequences ∼α e such that
∑m
i=1 w(ei,M) ≥ n. If w(ei,M) ≥ ω for some i we are

done, so assume that w(ei,M) < ω for all i = 1, . . . ,m.

For each i = 1, . . . ,m we let ni = w(ei,M) and define inductively Xi ∈ C
having ≥ ni elements x with U(x) ∈ ei such that X ⊆ X1 ⊆ . . . ⊆ Xi. Then it

is clear that X ′ = Xm satisfies the required properties. Now the induction can
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be easily carried out since by [J1, Theorem 3.6], for any Y ∈ C and i ≤ m there

exists an Xi ∈ C containing Y and having ≥ ni elements x with U(x) ∈ ei. �

Corollary 5.3. Let M be a module with partial decomposition basis C, α an

ordinal and e an equivalence class of Ulm sequences. Then ŵα(e,M) is the largest

integer n, if it exists, such that there are X ∈ C and x1, . . . , xn ∈ X satisfying

[U(xi)] ∼α e for all i = 1, . . . , n. If no such n exists, then ŵα(e,M) = ω.

Proof. If there is a largest integer n such that there is an X ∈ C containing n

elements x satisfying [U(x)] ∼α e, then ŵα(e,M) ≤ n by Theorem 5.2. On the

other hand, ŵα(e,M) ≥ ŵα(e, 〈X〉0) = n by Lemma 5.1. If no such n exists,

ŵα(e,M) = ω by Lemma 5.1. �

The following facts about partial decomposition bases will be needed.

Lemma 5.4. Let M be a module with partial decomposition basis C and Y ⊆
X ∈ C. Then 〈Y 〉 is nice in M .

Proof. Let x ∈M . Choose X̃ ∈ C such that X ⊆ X̃ and x ∈ 〈X̃〉0. Then X̃ is a

decomposition basis for the module 〈X̃〉0 and Y is a finite subset of X̃. By [HR,

Lemma 8.1], a subgroup generated by a finite subset of a decomposition basis is

nice, so 〈Y 〉 is nice in 〈X̃〉0. Since x ∈ 〈X̃〉0, this means x+ 〈Y 〉 has an element

of maximal height. Since x ∈M was arbitrary and the heights in M and in 〈X̃〉0
are equal, this proves that 〈Y 〉 is nice in M . �

Lemma 5.5 ([J1]). Suppose M is a module with partial decomposition basis.

Then M also has a partial decomposition basis C such that ∅ ∈ C and for any

X ∈ C, x1, . . . , xn ∈ X and nonzero a1, . . . , an ∈ Zp, {a1x1, . . . , anxn} ∈ C.

Now we are ready to prove the main result of this paper.

Theorem 5.6. Let M and N be modules with partial decomposition bases. Let δ

be an ordinal such that

(1) û(α,M) = û(α,N) for all α < ωδ;

(2) ŵω(ν+1)(e,M) = ŵω(ν+1)(e,N) for all ν < δ and equivalence class e of

Ulm sequences;

(3) if length(tM) < ωδ then û(∞,M) = û(∞, N).

Then M ≡δ N .

Proof. Let C and C′ be partial decomposition bases of M and N as in Lemma

5.5. For ν ≤ δ we define Iν to be the set of all maps f : S → T such that there

are X ∈ C, Y ∈ C′ with f(X) = Y satisfying:
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(i) S and T are finitely generated submodules of M and N , respectively;

(ii) f is an ων-height-preserving isomorphism;

(iii) X ⊆ S ⊆ 〈X〉0 and Y ⊆ T ⊆ 〈Y 〉0.

It suffices to prove that the system {Iν : ν ≤ δ} satisfies condition (ii) of

Theorem 3.1. First we note that for any ν, Iν 6= ∅ since the zero function is in Iν
with S = {0}, T = {0}, X = ∅ and Y = ∅.

Let f : S → T be a map in Iν+1 (ν < δ) with associated X ∈ C and Y ∈ C′,
and let a ∈M . Then there is some X ′ ∈ C such that a ∈ 〈X ′〉0 and X ⊆ X ′, say

X ′ = X ∪ {x1, . . . , xm}. For i = 1, . . . ,m we will define by induction yi ∈ N and

mi, ni ∈ ω and isomorphisms

fi : 〈S, pm1x1, . . . , p
mixi〉 → 〈T, pn1y1, . . . , p

niyi〉

that extend f and satisfy conditions (i)-(iii) of Iν+1 with associated decomposition

sets Xi = X∪{pm1x1, . . . , p
mixi} ∈ C and Yi = Y ∪{pn1y1, . . . , p

niyi} ∈ C′, where

f(pmjxj) = pnjyj for all j = 1, . . . , i. Let f0 = f , X0 = X and Y0 = Y . Assume

this has been done for i < m. Let e = [U(xi+1)]. Then

ŵω(ν+1)(e,N) = ŵω(ν+1)(e,M) ≥ ŵω(ν+1)(e, 〈X ′〉0)

> ŵω(ν+1)(e, 〈X ∪ {x1, . . . , xi}〉0)

= ŵω(ν+1)(e, 〈Y ∪ {y1, . . . , yi}〉0),

the latter equality following from (ii) and induction. By Theorem 5.2 there is

Y ′ ∈ C′ such that Y ∪ {y1, . . . , yi} ⊆ Y ′ and

ŵω(ν+1)(e, 〈Y ′〉0) ≥ ŵω(ν+1)(e, 〈Y ∪ {y1, . . . , yi}〉0) + 1,

so there is a yi+1 ∈ Y ′\(Y ∪ {y1, . . . , yi}) such that [U(yi+1)] ∼ω(ν+1) e. Then

U(pn
′
i+1yi+1) =ω(ν+1) U(pm

′
i+1xi+1) for some m′i+1, n

′
i+1 ∈ ω. Now apply Lemma

4.4 to the module 〈S, x1, . . . , xi, xi+1〉0 with decomposition basisX∪{x1, . . . , xi+1}
and submodule 〈S, x1, . . . , xi〉. This applies since

〈S, x1, . . . , xi〉 ∩ 〈X ∪ {x1, . . . , xi+1}〉 = 〈X ∪ {x1, . . . , xi}〉
= 〈〈S, x1, . . . , xi〉 ∩ (X ∪ {x1, . . . , xi+1})〉.

We may similarly apply Lemma 4.4 to 〈T, y1, . . . , yi+1〉0, Y ∪ {y1, . . . , yi+1} and

〈T, y1, . . . , yi〉. This gives us ki+1 ∈ ω such that for all s ∈ 〈S, x1, . . . , xi〉, t ∈
〈T, y1, . . . , yi〉 and r ∈ Zp,

|rpki+1xi+1 + s| = min{|rpki+1xi+1|, |s|} and

|rpki+1yi+1 + t| = min{|rpki+1yi+1|, |t|}.
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Now let mi+1 = ki+1 + m′i+1, ni+1 = ki+1 + n′i+1 and define fi+1 extending fi
by sending pmi+1xi+1 to pni+1yi+1. By induction, fi satisfies conditions (i)-(iii)

of Iν+1 with associated Xi and Yi, and it is easy to verify that fi+1 does as well

with associated Xi+1 = Xi ∪ {pmi+1xi+1} ∈ C and Yi+1 = Yi ∪ {pni+1yi+1} ∈ C′.
This completes the induction.

Let x′i = pmixi and y′i = pniyi (i = 1, . . . ,m). Then Xm = X ∪ {x′1, . . . , x′m},
so there is a least n such that pn+1a ∈ 〈Xm〉. Choose k ∈ ω sufficiently large

so that for any given j ≤ n if every x ∈ pja + 〈S, x′1, . . . , x′m, pj+1a〉 has height

< ω(ν+ 1), then every such x has height < ων+ k, and if length(tM) < ω(ν+ 1)

then length(tM) < ων + k. This is possible since the submodules involved are

nice by Lemmas 5.4 and 4.5. The map

fm : 〈S, x′1, . . . , x′m〉 → 〈T, y′1, . . . , y′m〉

preserves heights up to ω(ν + 1) hence it preserves heights up to ων + k + n+ 1.

By Lemma 4.6, fm extends to an ων + k-height-preserving isomorphism g with

domain(g) = 〈S, x′1, . . . , x′m, a〉. Thus g satisfies conditions (i) and (ii) on Iν .

Also since fm satisfies condition (iii), so does g, since we may use the same Xm

and Ym because a ∈ 〈Xm〉0, Xm ⊆ domain(g) and Ym ⊆ range(g). Thus g ∈ Iν ,

as desired. By symmetry, condition (ii) of Theorem 3.1 is satisfied and we obtain

M ≡δ N . �
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