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Pure injective and *-pure injective LCA groups

PETER LOTH

ABSTRACT - A proper short exact sequence 0 — A — B — C — 0inthe category ¥ of
locally compact abelian (LCA) groups is called «-pure if the induced sequence
0 — A[n] — B[n] — C[n] — 0is proper exact for all positive integers n. An LCA
group is called *-pure injective in L if it has the injective property relative to all
«-pure sequences in &. In this paper, we give a complete description of the *-pure
injectives in &. They coincide with the injectives in ¥ and therefore with the pure
injectives in ¥. Dually, we determine the topologically pure projectives in L.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 20K35, 22B05, 20K25, 20K40,
20K45.

KEYWORDS. Locally compact abelian groups, pure injectives, *-pure injectives, to-
pologically pure projectives.

1. Introduction

All groups considered in this paper are Hausdorff abelian topological
groups and they will be written additively. For a group G and a positive
integer n, let nG = {nx:x € G} and Gln]l={r e G:nx=0}. Let &
denote the category of locally compact abelian groups with continuous
homomorphisms as morphisms. In [15], Moskowitz developed a homo-
logical theory in the category ¥ and studied the functors Hom, ®, Tor and
Ext on certain subcategories of ¥. Later Fulp and Griffith ([9], [10]) ex-
tended Moskowitz’s construction of the functor Ext to the category .
Following Fulp and Griffith ([9]), we call a morphism proper if it is open
onto its image. An exact sequence

G e g,
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in ¥ is called proper exact if each morphism ¢, is proper. A proper short
exact sequence £/ : 0 — A — B — C — 01in ¥ is called an extension of A by
C (in &) and Ext(C, A) denotes the group of extensions of A by C (see [9]).
Then the extension £ is pure if and only if the induced sequence

E,:0— A[n] — B[n] — C[n] — 0

is exact for all positive integers n (see [6, Theorem 29.1]). The elements
represented by pure extensions of A by C form a subgroup of Ext(C,A)
which is denoted by Pext(C, A). If each sequence E,, is proper exact, we call
the extension £ x-pure.

The concept of purity plays an important role in abelian group theory
(see for instance [6]). In [7], Fulp studied pure extensions in the category L.
As it was pointed out by Armacost [1], much of the paper is based on
[7, Proposition 2] (stating that the dual of a pure extension is pure) which
is unfortunately not valid for all groups in ¥.

In this paper, we continue our study of x-pure extensions started in [13]
and give a complete description of the x-pure injectives in the category of
locally compact abelian groups. Let € denote the class of all groups X in &
such that X is connected or X is a torsion-free group which is either dis-
crete or a topological torsion group (for the definition, see Section 2). Then
a group (G in ¥ has the property that every x-pure extension of G by a
group in € splits if and only if G has the form R & T where R is a vector
group and 7 is a toral group (Theorem 3.7). Consequently, the *-pure in-
jectives in & coincide not only with the injectives in & but also with the pure
injectives in ¥ (see Theorem 4.1 and Corollary 4.2). Recall that a proper
exact sequence 0 — A — B — C — 0in ¥ is said to be topologically pure if
for each positive integer 7, the induced sequence

0—nA —nB—nC—0

is proper exact (see [13]). Using Pontrjagin duality, we obtain the following
result: A groupin ¥ is topologically pure projective if and only if it has the form
R @ F where R is a vector group and F is a free group (see Corollary 4.3).
The group of real numbers with the usual topology is denoted by R, 7 is
the group of integers, Q is the group of rationals taken discrete and T
denotes the quotient R /7. By Z(p>) we mean the quasicyclic group and F),
is the additive group of the p-adic number field with the usual topology.
For any groups G and H in ¥, let Hom(G, H) denote the group of all
continuous homomorphisms from G to H. The identity component of G is
given by Gy and the union of all compact subgroups of G is denoted by
B(G). Notice that B(G) is a closed subgroup of G (cf. [4, Proposition 3.3.6]).
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The Pontrjagin dual of G is
G = Hom(G, ),

endowed with the compact-open topology. All isomorphisms are under-
stood to be topological isomorphisms and all considered direct sums are
topological direct sums. We mostly follow the standard notation in [6] for
abelian groups and [1] for locally compact abelian groups. For background
information on abelian topological groups and Pontrjagin duality, we refer
the reader to the books [4] and [12].

2. Preliminaries

A group G in ¥ is called injective in & if for every proper exact se-
quence 0 A — B — C — 0 in ¥ and every o € Hom(A, G) there is a
f € Hom(B, G) such that the diagram

0 - A — B — C — 0

ol B
G

is commutative. Dually, G is called projective in & if for every proper exact
sequence 0 - A — B — C — 0 in ¥ and every y € Hom(G, C) there is a
0 € Hom(G, B) such that the diagram

G

o/ Ly
0 - A - B — C — 0

is commutative. Dixmier [3] and later Moskowitz [15] independently
characterized the injectives in ¥:

THEOREM 2.1 ([3], [15]). The following are equivalent for a group G in &
(1) G 1is injective in &

(2) G2 R"®T™ where n is a nonnegative integer and m is a cardinal.

Using Pontrjagin duality, Moskowitz [15] proved the following:

THEOREM 2.2 ([15]). The following are equivalent for a group G in &:

(1) G 1is projective in &
2 G=2R"® .. 7 where n is a nonnegative integer and m is a
cardinal.
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Using the notion of proper morphisms, Fulp and Griffith [9] developed
the (discrete) group-valued extension functor Ext for the category %,
generalizing both the functor Ext as defined in (discrete) abelian group
theory and the functor Ext studied by Moskowitz [15]. We would like to
point out the unfortunate fact that, at the same time, another use of the
term “proper” exists; it is used by some authors in topology as a synonym
for stably closed (what Engelking [5] calls “perfect”). The following basic
properties will be useful:

ProposiTION 2.3 ([9]). If G is a discrete group, then Ext(T,G) = G.
Hence the range of Ext is all of the discrete groups.

THEOREM 24 ([9]). Let G be a group in . If {H;:1 €1} is a col-
lection of groups in & such that H; is compact for almost all i, then
EXt(G7 HHz) = H Ext(G, H;).

el iel

In [9], Fulp and Griffith proved that the Hom-Ext sequences are exact
except possibly at the right end. Then, in [10], they showed that Ext is
right-exact; in fact, it was shown that Ext” = 0 for all n > 2.

THEOREM 2.5 ([9],[10]). Let G be a group in & and let 0 — A —
B — C — 0 be a proper exact sequence i L. Then the following induced
sequences are exact:

1) 0 - Hom(G,A) — Hom(G, B) — Hom(G, C) — Ext(G,A) —
Ext(G,B) — Ext(G,C) — 0,

(2) 0 - Hom(C,G) — Hom(B, G) — Hom(4, G) — Ext(C, G) —
Ext(B,G) — Ext(4,G) — 0.

Using the right-exactness of Ext, Fulp and Griffith were able to im-
prove Theorem 2.1:

THEOREM 2.6 ([10]). The following are equivalent for a group G in

(1) G = R" @ T where n is a nonnegative integer and n is a cardinal.
(2) Ext(C,G) = 0 for all connected groups C in L.

A group G in ¥ is called a topological torsion group if lim n!x = 0 for all

N—00

2 € G. Robertson [16] established several characterizations of topological
torsion groups including the following:
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THEOREM 2.7 ([16]). AA group G in & is a topological torsion group if
and only if both G and G are totally disconnected.

Now let {G;:7 €I} be a collection of groups in ¥ and let H; be a
compact open subgroup of G; for every ¢ € I. Then the local direct product
of the groups G; with respect to the subgroups H; is defined to be the group

G= {(mi) € HGZ' : x; € H; for almost all z}
iel

and is topologized so that it contains [] H; (with its compact product to-

el
pology) as an open subgroup (cf. [12, (6.16)]). The group G is in ¥ and is
denoted by LP;c;(G;,H;). Braconnier [2] and Vilenkin [18] proved in-
dependently that every topological torsion group G can be decomposed into
a local direct product of its p-components

Gp={x€G: lim p"z =0}
belonging to different primes p:

THEOREM 2.8 ([2], [18]). Let G be a topological torsion group and
let H be any compact open subgroup of G. Then G, is a closed sub-
group of G for every prime p and G is isomorphic to the local direct
product LPpcp(Gy, Hp).

Let p be a prime and G a group in &. Then G is called a topological p-
group if G = G, If G contains a dense divisible subgroup, then G is said to
be densely divisible (see [16]). The next result will be needed:

ProposiTion 2.9 ([1]). Let G be a nontrivial topological p-group. If G
is densely divisible, then G contains a closed subgroup D such that D = F),
or D =2 7(p™).

3. Splitting x-pure extensions

For groups A and C in &, let *Pext(C,A) denote the set of elements
E e Ext(C,A) such that £ is equivalent to some x-pure extension of A
by C. Then *Pext(C,A) C Pext(C,A) and *Pext(C,A) = 0 if and only if
every x-pure extension of A by C splits (cf. [13]).
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LEmMA 3.1.  Let A and C be groups in L. Then:

(1) If C is torsion-free, then *Pext(C,A) = Ext(C,A).
(2) IfA = H @ K for some groups H and K in & and *Pext(C,A) = 0,
then *Pext(C,H) = 0.

Proor. (1) Suppose £:0— A 2. B — C — 0 is an extension in
where C is torsion-free. Then E is pure and C[n] = 0 for every positive
integer 7. Since ¢ is proper and injective, each map ¢| 4., : Aln] — Bln]is
proper. It follows that each sequence 0 — A[n] — B[n] — C[n] — 0 is
proper exact, hence £ is x-pure.

@ LetE:0—-H-SB—C—0bea x-pure sequence. Then
EF:0-HeK—-BoK—~C—0

is an extension in & and 0 — H[n] ¢ K[n] — B[n] ® K[n] — C[n] — 0 is
proper exact for all positive integers n. If the sequence £’ splits, then
wH)® K is a direct summand of B¢ K. But then w(H) is a direct
summand of B (see the proof of [1, Lemma 9.11]), hence the sequence £
splits. O

The proof of [13, Theorem 4.3(1)] shows the following:

PROPOSITION 3.2. If a group G in ¥ satisfies *Pext(C,G) = 0 for all
connected groups C in &, then there is a closed subgroup H of G such that
G=Gy®H and Gy = R" xT™ for some nonnegative integer n and
cardinal m.

Let E:0— A 2. B — C — 0 be a proper exact sequence in & and
o € Hom(A, G) where G is a group in ¥. Then there is a standard pushout
diagram for « and ¢

E:0 - A 2 B 5 ¢ = 0

“] | |
WE: 0 - 6 5 X o0 - 0
(cf. [9, Proposition 2.5]). Recall that X =(G® B)/N where N =
{(— a(a), (@) : a € A} is a closed subgroup of G ® B, ¢ : g+ (g,0) + N
and 7' : (¢9,b) + N — n(b). Further, «F is a proper exact sequence in &
(see [9, p. 350]). The next result will be useful:
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LEmMMA 3.3. Let E:0— A 2. B -5C —0 be a proper exact se-
quence i & such that A is divisible and B[n] is o-compact for all pos-
itive integers m. Suppose that G is a group in & and o € Hom(A4, G).
Then both E and oF are x-pure.

Proor. Let n be a positive integer. The exact sequence ¥ is pure be-
cause A is divisible, therefore the induced sequence
E,:0 — Afnl % Bln) ™ i — 0
is exact. The map ¢|4;,) is proper and since B[n] is g-compact, 7g,; is
proper by the open mapping theorem (see [12, (5.29)]), hence £, is proper
exact. Therefore, £ is x-pure. The maps o and ¢ have a standard pushout
diagram

E:0 - A 2 B % ¢ = 0

T ||

ocE:0—>Gi>Xi>C—>0
and o is proper exact. Since ¥ is pure, the sequence oF is pure ([11, Lemma
26]), hence the induced sequence (¢£), : 0 — G[n] — X[n] — C[n] — 0 is
exact. We need to show that («F),, is proper exact. Notice that the continuous
surjective homomorphism ¢ = 7’| xn) - X[n] — Cln]is openif and only if the
induced map ¢ : X[n]/ ker 9 — C[n] is an isomorphism in & (cf. [12, p. 41]).
The group N = {( — a(a), (@) : a € A} is divisible and therefore pure in
G @ B, hence X[n] = (G @ B)/N)[n] = (G[n] ® Bln] + N)/N. Notice that
both G[n] ® B[n] + N and G[n] ® 0 + N are locally compact since X[n] and
kerp = (GIn]® 0+ N)/N are locally compact ([12, (5.25)]). The group
X[n]/ ker ¢ is equal to

(GIn]® Blr]+N)/N _ Glnl® Bnl+ N (0@ B[n]) + (Glr] &0+ N)
Gnle0+N)/N — Gnle0+N Gnl®0+N

(cf. [12, (5.35)]) and by the second isomorphism theorem in ¥ (see [9, The-
orem 3.3]), the latter group is isomorphic to
0® Bln] 0 @ B[n]

@B NG &0+ N) 06 AMN) Cln]

since B[n] is o-compact. Thus we have an isomorphism from X[n]/ ker ¢ to
C[n] given by ((g,b) + N) + kerp+— n(b) (g € G[n],b € B[n]). Since this
map coincides with @ it follows that ¢ : X[n] — C[n] is open. Therefore, oF
is x-pure. O
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PEOPOSITION 3.4. Let G be a totally disconnected group in & such that
Ext(Q,G) = 0. Then G s a topological torsion group.

Proor. By Theorem 2.7, it suffices to show that G is totally dis-
connected. To prove this, we argue as in the proof of [14, Theorem 2.7 (ii) =
(iii)]. First, notice that the quotient G/B(G) is discrete (cf. [12, (9.26)(a)])
and torsion-free, and that (Q/ 7) is compact since /7 is discrete ([12,
(23.17)]). The proper exact sequence 0 — B(G) — G — G/B(G) — 0 gives
rise to the exact sequence 0 = Ext(Q, ) — Ext(Q, G/B(G)) — 0. But then
exactness of the sequence

0 = Hom((Q/7)",G/B(@) — Ext(7,G/B(®) — Ext(Q,G/B(@) = 0

yields G/B(G) %AExt(%, G/B(G)) =0 by PropoAsition 2.3, thus G coincides
with @(G). Since Gy is the annihilator of B(G)in G (cf. [12, (24.17)]), it follows
that G is totally disconnected. O

The following lemma will be needed:

LemMA 3.5 [14, Lemma 2.6].  Suppose that G is a group in & possessing
a compact open subgroup. Then G is densely divisible if and only if G/C is
divisible for every compact open subgroup C of G.

ProPOSITION 3.6.  Suppose that G is a topological torsion group such
that Ext(X,G) = 0 for every torsion-free group X in & which is either
discrete or a topological torsion group. Then G is densely divisible.

ProoOF. Our proof is similar to the second part of the proof of [8,
Theorem 7]. Let C be a compact open subgroup of G and set A = G/C.
Then for any torsion-free group X in ¥ which is discrete or a topological
torsion group, exactness of the sequence

0 = Ext(X,G) — Ext(X,A) — 0

yields Ext(X, A) = 0. Recall that a discrete group H is said to be cotorsion
if Ext(J, H) = 0 for every discrete torsion-free group J (see [6, page 232]).
Then the group A is cotorsion. Since A is also torsion, we have A = B® D
for some bounded group B and divisible group D (see [6, Corollary 54.4]).
A bounded group is a direct sum of cyclic groups ([6, Theorem 17.2]), so if
B # 0, then B contains a direct summand B’ = '/, /p"7, for some prime p
and positive integer n. By [13, Example 2.4], there is a non-splitting
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proper exact sequence
0—-B —-K—L—0

in € where L is torsion-free and L is a p-group, hence Lisa topological
torsion group. By Theorem 2.7, L is a topological torsion group and we
have Ext(L,A) =0. But then Theorem 2.4 shows that Ext(L,B’) =0
which is impossible. Therefore B = 0 and it follows from Lemma 3.5 that
G is densely divisible. O

Let € denote the class of groups X in ¥ such that X is connected or X is
a torsion-free group which is either discrete or a topological torsion group.
Then the groups G in ¥ having the property that every *-pure extension of
G by a group in € splits can be characterized as follows:

THEOREM 3.7. A group G in ¥ satisfies *Pext(X, G) = 0 for all groups
X in € if and only if G = R" x T™ for some nonnegative integer n and
cardinal m.

Proor. Sufficiency follows from Theorem 2.1. Conversely, suppose
“Pext(X, G) = 0 for all groups X in €. By Proposition 3.2, we have G =
Gy @ H where Gy = R" x T™ for some nonnegative integer » and cardinal
. Due to Lemma 3.1(i), *Pext(X, H) = 0 for all groups X in €. Then by
Lemma 3.1(i), Proposition 3.4 and Proposition 3.6, H is a densely divisible
topological torsion group. By Theorem 2.8, H can be identified with a local
direct product of its p-components

H,={x€H: lim p"z =0}

belonging to different primes p. Assume H # 0. Then there exists a prime p
such that i, # 0. Since the projection map  — H), is continuous, H,, is
densely divisible, so by Proposition 2.9 it contains a closed subgroup D such
that D = F), or D = 7(p>°). In either case, D is a divisible g-compact group
in ¥ ([12, (10.5)]). For the inclusion map « : D — H and a connected group X
in ¥, consider the exact sequence

0 = Hom(X, H/D) — Ext(X, D) 2 Ext(X, H).

To show that Ext(X,D)=0, let £:0— D 2, F—- X —0ecExt(X,D).
The group F/¢(D) = X is g-compact since it is connected ([12, (9.14)])
and ¢(D) is g-compact, hence F' is g-compact ([17, Theorem 6.10(c)]) and
it follows that every group F[n] is o-compact. By Lemma 3.3, o (E) = ol/
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is a x-pure extension, so it splits. Since «, is injective, £ splits as well
and we obtain Ext(X,D)=0. But then Theorem 2.6 shows that D is
connected, a contradiction. Consequently, H =0 and we have G =
R™ x T™, as desired. O

4. Injective and projective properties

A group G in ¥ is called pure injective in L if it has the injective
property relative to all pure extensions in &, that is, if for every pure
proper exact sequence ) — A — B — C — 0in ¥ and every o € Hom(4, G)
there is a f € Hom(B, ) such that the diagram

0 - A —-— B — C — 0
a|l B
G

is commutative. Similarly, we call a group in ¥ x-pure injective in L if it has
the injective property relative to all «-pure extensions. Then we have:

THEOREM 4.1.  The following are equivalent for a group G in L:

(1) G s x-pure injective in &;

(2) *Pext(X,G) = 0 for all groups X in &

B) G=R" @ T™ where n is a nonnegative integer and M is a car-
dinal.

PRrOOF. Suppose that G is *-pure injective in ¥. Then every *-pure ex-
tension 0 — G — B — X — 0 splits because there is a commutative diagram

0O - G —-— B —-— X — 0
(-
G.

Consequently, (1) implies (2). By Theorem 3.7, (2) implies (3). The groups of
the form R" x T™ are injective in £ (Theorem 2.1), hence (3) implies (1). O

By the theorem above, the x-pure injectives in ¢ are exactly the in-
jectives in &. As an immediate consequence, we obtain a complete de-
scription of the pure injectives in . This extends [14, Theorem 2.7] and
shows that the result on discrete and compact injectives in ¥ as stated in
[7, Proposition 8] is incorrect.
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COROLLARY 4.2. The following are equivalent for a group G in &
(1) G s pure injective in
(2) Pext(X, @) = 0 for all groups X in &
B) G=R"@T" where n is a nonnegative integer and m is a car-
dinal.

Recall that a proper exact sequence £:0 - A — B —- C — 01in ¢ is
said to be topologically pure if the induced sequence

0—nA —>nB—nC—0

is proper exact for all positive integers n (see [13]). Pontrjagin duality
shows that the sequence E is topologically pure if and only if its dual se-
quence L
0-C—-B—-A—-0
is x-pure (see [13, Corollary 2.6]). We call a group G in & topologically
pure projective in L if it has the projective property relative to all to-
pologically pure extensions, in other words, if for every topologically pure
exact sequence 0 — A — B — C — 0 and every y € Hom(G, C) there is a
0 € Hom(G, B) such that the diagram
G

o/ Ly
0 - A - B — C — 0

is commutative. Then dualization of Theorem 4.1 yields the following result
which extends [13, Theorem 4.4(3)]:

COROLLARY 4.3. The following are equivalent for a group G in L:

(1) G 1is topologically pure projective in &

(2) every topologically pure sequence 0 — A — B — G — 0 splits;

() G=R" & P,, Z where n is a nonnegative integer and m is a
cardinal.
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