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Figure 2. Selected conformations from CMDpeptide calculations. Here, we show select results from 

Table 2. For this figure, we took the peptides from the PDB structures below. The first column of 

images shows the conformations in the top 25 ranked conformations with the lowest RMSDs to the 
bound conformations. The second column of images shows the conformations in the top 100 ranked 

conformations with the lowest RMSDs. The third co lumn of images shows the conformations in the 

top 500 ranked conformations with the lowest RMSDs. In each case a conformational ensemble was 
generated starting from a sequence using the default parameters of CMDpeptide. In each case, the 

bound conformation is shown in green and the CMDp eptide conformation in cyan. Each peptide is 

shown as a ribbon with the C�…-C�† bond. Additionally, for the stapled helices the staple is shown. 

In all cases studied, there is at least one peptide conformation among the low-energy 
conformations (within 15 kcal/mol of the lowest en ergy conformation) within an RMSD < 1.6 Å of the 
co-crystallized peptide ligand conformation with an overall average RMSD of 1.12 Å. In fact, for 
seven of the sixteen cases conformations with RMSDs < 1.0 Å were identified. Hence, CMDpeptide 
can be used to consistently sample conformations close to the bound conformation observed in 
MDM2/MDMX cocrystal structures. This is an encouraging result, especially given that a range of 
peptide lengths (8–18 resides) and chemical types (L-linear, N–C cyclized, bicyclic, D-linear, and L-
stapled) were studied and that much of the calculated RMSD values result from conformational 
deviations at N and C termini. Similarly, it is worth pointing out that there is a relatively weak but 
non-trivial correlation between peptide length and best low-energy RMSD (R �¿ 0.46). In fact, a simple 

Figure 2. Selected conformations from CMDpeptide calculations. Here, we show select results from
Table 2. For this figure, we took the peptides from the PDB structures below. The first column of
images shows the conformations in the top 25 ranked conformations with the lowest RMSDs to the
bound conformations. The second column of images shows the conformations in the top 100 ranked
conformations with the lowest RMSDs. The third column of images shows the conformations in the
top 500 ranked conformations with the lowest RMSDs. In each case a conformational ensemble was
generated starting from a sequence using the default parameters of CMDpeptide. In each case, the
bound conformation is shown in green and the CMDpeptide conformation in cyan. Each peptide is
shown as a ribbon with the C� -C� bond. Additionally, for the stapled helices the staple is shown.

MDM2-peptide binding affinity calculations with CMDboltzmann. As described in detail in the
Materials and Methods section, CMDboltzmann is a tool for estimating the binding affinity of a peptide
given knowledge of the binding mode of a portion of its backbone. It particular, it locally samples
a peptide conformation in the binding site of a protein producing a calculated binding affinity that
is based on numerous similar binding modes of the peptide. As a result, it tends to be less sensitive
to the exact details of the starting binding mode. The results of the CMDboltzmann calculations on
the various data sets are shown in Figure 3. In all, six MDM2/MDMX SAR datasets were analyzed:
(1) p53 L-helix variants, (2) PMI L-α-helix variants, (3) PMI-α D-α-helix variants, (4) ATSP-3900 stapled
L-α-helix ala scan variants, (5) p53 L-α-helix staple variants, and (6) N–C cyclized variants. Hence, the



Molecules 2019, 24, 4586 7 of 28

CMDboltzmann binding affinity calculations cover diverse peptide chemistries and topologies. The
CMBboltzmann calculations were all performed using the 3eqs structure of MDM2 using the binding
mode extracted from the corresponding co-crystal structures with the respective peptide.
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two term regression model that includes peptide length and the presence or absence of a staple as 
independent descriptors can be used to account for ≈ 68% of the measured variation in lowest RMSD. 

Not surprisingly, the average best peptide conformation RMSD trends down from 2.38 Å, to 2.16 
Å, to 1.48 Å as the number of as the number of conformations allows increases from 25, to 100, to 500. 
Importantly, even at 500 clusters the best low-energy RMSD peptide identified is never present. So, 
while the results are encouraging, they suggest that the improvements in the scoring strategy are still 
needed for identifying and ranking best RMSD peptide binding conformations. This conclusion is 
reinforced by the fact that our current force field scoring and clustering protocols failed to pick out 
best RMSD conformations where sampling does not appear to be an issue (sampled conformations 
within ≈ 0.8 Å of X-ray). It remains a possibility, however, that incomplete sidechain sampling failed 
to identify a sidechain interaction that would have led to the ranking of those conformation close to 
the X-ray conformation near to the top of the ensemble. Indeed, the combination of the large sampling 
space with the scoring problem makes the peptide conformational analysis a difficult challenge. 

MDM2-peptide binding affinity calculations with CMDboltzmann. As described in detail in the 
Materials and Methods section, CMDboltzmann is a tool for estimating the binding affinity of a 
peptide given knowledge of the binding mode of a portion of its backbone. It particular, it locally 
samples a peptide conformation in the binding site of a protein producing a calculated binding 
affinity that is based on numerous similar binding modes of the peptide. As a result, it tends to be 
less sensitive to the exact details of the starting binding mode. The results of the CMDboltzmann 
calculations on the various data sets are shown in Figure 3. In all, six MDM2/MDMX SAR datasets 
were analyzed: (1) p53 L-helix variants, (2) PMI L-α-helix variants, (3) PMI-α D-α-helix variants, (4) 
ATSP-3900 stapled L-α-helix ala scan variants, (5) p53 L-α-helix staple variants, and (6) N–C cyclized 
variants. Hence, the CMDboltzmann binding affinity calculations cover diverse peptide chemistries 
and topologies. The CMBboltzmann calculations were all performed using the 3eqs structure of 
MDM2 using the binding mode extracted from the corresponding co-crystal structures with the 
respective peptide. 
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Figure 3. The CMDboltzmann calculations on the individual data sets—All figures show 
CMDboltzmann calculated binding affinities recorded on the X-axis and experimental binding 
affinities (typically pKd) recorded on the Y-axis. (A) Structure activity relationship (SAR) around the 
L-α-helix p53 [4]. (B) SAR around the L-α-helix PMI [4]. (C) SAR around the D-helix PMI-α [8]. (D) 
SAR around the stapled L-α-helix ATSP-3900 [16]. (E) SAR around L-α-helix p53 stapled variants 
SAR [15]. (F) SAR around the N–C cyclic peptide from the 2axi structure [18]. 

As can be seen from Figure 3, the R2s between calculated and experimental binding affinities 
vary from 0.43 to 0.93. Hence, the CMDboltzmann calculations can account for some 43%–93% of the 
measured binding affinity variation. This is an encouraging result, especially given the diverse sizes 
and topologies of the peptides studied and the large changes in amino acids found in the data sets 
particularly the N–C cyclized variants. 

Further, Figure 4 shows calculated binding affinities versus measured pKd values for all peptides 
studied, color coded by data set. Once again, the results are encouraging, as a fairly straight line can 
be drawn through the calculated and measured binding affinities for all of the PMI L-α-helix, PMI-α 
D-α-helix, ATSP-3900 stapled L-α-helix, and N–C cyclized peptides. With just these four data sets, 
i.e., omitting the p53 peptide analogs, the overall R2 is 0.75. By including the p53 peptide analogs, the 
R2 falls to 0.48. The p53 peptide analogs show higher calculated binding affinities than expected, 
suggesting that a penalty contribution of some kind is missing from the CMDboltzmann model. The 
missing penalty contribution likely derives from two missing factors. The first factor is the inability 
of the solvation model to adequately counter balance the electrostatic binding interactions. p53 is a 
highly negatively charged peptide, as it contains four charged residues and both termini are free and 
ionized, and the high charge may pose a serious challenge to the EEF1 solvation model. In essence, 
CMDboltzmann overestimates the electrostatic contributions from charged amino acids. The second 
missing factor has to do with the conformational penalty associated with the p53 peptide “climbing” 
into its binding conformation. Indeed, p53 and direct analogs are known to be disordered in water 
and only adopt an α-helical conformation in the context of MDM2/MDMX binding sites. In fact, p53 
has been shown to be approximately 11% α-helical in solution [15]. By comparison, PMI has been 
shown to readily adopt an α-helical conformation in water as well. Hence, it is reasonable to assume 
that p53 will suffer a greater free energy cost upon binding when compared to the other peptide 
ligands. Thus, future work might focus on improving the CMDboltzmann electrostatic solvation 
model and extending CMDboltzmann to include sampling of unbound conformations to better 
estimate the free energy penalties associated with burying charged groups and flexible ligand 
binding. 

Figure 3. The CMDboltzmann calculations on the individual data sets—All figures show
CMDboltzmann calculated binding affinities recorded on the X-axis and experimental binding affinities
(typically pKd) recorded on the Y-axis. (A) Structure activity relationship (SAR) around the L-α-helix
p53 [4]. (B) SAR around the L-α-helix PMI [4]. (C) SAR around the D-helix PMI-α [8]. (D) SAR around
the stapled L-α-helix ATSP-3900 [16]. (E) SAR around L-α-helix p53 stapled variants SAR [15]. (F) SAR
around the N–C cyclic peptide from the 2axi structure [18].
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As can be seen from Figure 3, the R2s between calculated and experimental binding affinities
vary from 0.43 to 0.93. Hence, the CMDboltzmann calculations can account for some 43%–93% of the
measured binding affinity variation. This is an encouraging result, especially given the diverse sizes
and topologies of the peptides studied and the large changes in amino acids found in the data sets
particularly the N–C cyclized variants.

Further, Figure 4 shows calculated binding affinities versus measured pKd values for all peptides
studied, color coded by data set. Once again, the results are encouraging, as a fairly straight line can
be drawn through the calculated and measured binding affinities for all of the PMI L-α-helix, PMI-α
D-α-helix, ATSP-3900 stapled L-α-helix, and N–C cyclized peptides. With just these four data sets,
i.e., omitting the p53 peptide analogs, the overall R2 is 0.75. By including the p53 peptide analogs,
the R2 falls to 0.48. The p53 peptide analogs show higher calculated binding affinities than expected,
suggesting that a penalty contribution of some kind is missing from the CMDboltzmann model.
The missing penalty contribution likely derives from two missing factors. The first factor is the inability
of the solvation model to adequately counter balance the electrostatic binding interactions. P53 is a
highly negatively charged peptide, as it contains four charged residues and both termini are free and
ionized, and the high charge may pose a serious challenge to the EEF1 solvation model. In essence,
CMDboltzmann overestimates the electrostatic contributions from charged amino acids. The second
missing factor has to do with the conformational penalty associated with the p53 peptide “climbing”
into its binding conformation. Indeed, p53 and direct analogs are known to be disordered in water and
only adopt an α-helical conformation in the context of MDM2/MDMX binding sites. In fact, p53 has
been shown to be approximately 11% α-helical in solution [15]. By comparison, PMI has been shown
to readily adopt an α-helical conformation in water as well. Hence, it is reasonable to assume that
p53 will suffer a greater free energy cost upon binding when compared to the other peptide ligands.
Thus, future work might focus on improving the CMDboltzmann electrostatic solvation model and
extending CMDboltzmann to include sampling of unbound conformations to better estimate the free
energy penalties associated with burying charged groups and flexible ligand binding.

Calculating MDM2/MDMX binding selectivity with CMDboltzmann. As a final test of the
CMDboltzmann procedure for estimating binding affinities, we examined the differences in MDM2
and MDMX binding affinities. The MDMX calculations were all performed using the MDMX structure
from 3jzo [19]. For the PMI analogs [4] and L-α-helices the differences in binding affinities are
modest. In particular, on average the PMI analogs show two-fold more affinity for MDM2 over MDMX
(see Figure 5). Encouragingly, with the exception of a single peptide, our calculations qualitatively
agree with experiment as they show very small differences between calculated binding affinities
between PMI and MDM2 and MDMX. In contrast, the two most potent of the D-α-helical peptides have
been shown to be essentially inactive versus MDM2 [9]. As can be seen in Figure 5, we find substantial
differences between the calculated MDM2 and MDMX binding affinities for the D-α-helical peptides.
Thus, the MDM2/MDMX affinity selectivity calculations are in encouraging qualitative agreement with
the available experimental data for the D-α-helical peptides as well.

Calculating binding affinities from single structures using CMDescore and CMDyscore.
CMDescore and CMDyscore, as described in the Materials and Methods section, score peptide
binding modes based on a single fixed complex structure. All CMDescore and CMDyscore scoring
methods were used to calculate MDM2/MDMX-peptide binding affinities for the datasets summarized
in Table 3. For comparative purposes, the Vina and X-score scoring functions and simple surface area
and packing empirical functions were also used on the same datasets. Binding affinity and binding
energy calculations are shown either ignoring inactive peptides or accounting for them by giving them
a very low binding affinity with results summarized in Table 3A,B, respectively. The latter only affects
the Li p53 data, but adds information on the ability of the methods to distinguish good from very poor
binders. Hence, our focus will be more focused on analyzing the results from Table 3B.


