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Abstract

The intrinsic complexity of learning compares the difficulty of learning classes of objects by using some re-
ducibility notion. For several types of learning recursive functions, both natural complete classes are exhibited
and necessary and sufficient conditions for completeness are derived. Informally, a class is complete iff both its
topological structure is highly complex while its algorithmic structure is easy. Some self-describing classes turn
out to be complete. Furthermore, the structure of the intrinsic complexity is shown to be much richer than the
structure of the mind change complexity, though in general, intrinsic complexity and mind change complexity can
behave “orthogonally”.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

The problem of learning infinite objects from growing finite samples of their behavior has attracted
much attention in recent decades. In inductive inference the objects to be learned are recursive functions,
i.e., computable functions being everywhere defined on thi sféinatural numbers. The finite samples
given to the learning machine are just initial segments of the infinite sequence of all the values of the cor-
responding function. The machine is said to learn that function if when fed increasing initial segments,
it eventually produces a program of the corresponding function and never changes its mind thereatfter.
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(C. Papazian), smith@cs.umd.edu (C. Smith), wiehagen@informatik.uni-kl.de (R. Wiehagen).
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A machine learns a class of functions if it learns every function from that class. This is basically the
concept of learning in the limit introduced in [13]. Other criteria for learning have been studied, see the
surveys [2,4,7,12,15,21,24].

In studying any model of learning, two fundamental aspects must be addressed; the qualitative aspect,
i.e., which object classes are learnable and which are not, and the quantitative aspect, i.e., how complex
are the learning tasks. There has been prior work on trying to get at the complexity of learning, see
for example [4-6,13,14]. Our work is different in that we use reducibilities as in both recursion theory
[27] and complexity theory [11]. The main idea of the so-called intrinsic complexity introduced in [8]
is to compare the complexity of learning problems. This is achieved by adopting some formal notion
of reducibility between learning problems. Namely, if for clasgésV of recursive functions to be
learned,U is reducible toV, then, informally,U is at most as hard to learn &sis. Clearly, with every
notion of reducibility comes a notion of completeness. A cldsis complete for some learning type,
if all the classed/ from that type are reducible t&. Our main goal consists of exhibiting natural
classes which turn out to be complete and characterizing completeness. Surprisingly, the characteristic
conditions do not depend much on the concrete learning type under consideration. Informally, these
properties consist in being both “topologically complex” and “algorithmically easy”. On the one hand,
it seems reasonable that high topological complexity can make learning difficult. On the other hand, the
fact that high topological complexity has to be combined only with low algorithmic complexity may
seem surprising and, in a sense, counterintuitive. We give some explanation of this fact below, when we
will have the corresponding proofs at hand.

Furthermore, we study the relationship between intrinsic complexity and mind change complexity.
Under some natural conditions greater mind change complexity is shown to imply greater intrinsic com-
plexity. Moreover, these conditions are necessary to this end. In general, intrinsic complexity and mind
change complexity behave “orthogonally” to each other.

In [16-18] the approach of intrinsic complexity was studied for language identification. The problem
of characterizing complete classes was not addressed in these papers. There has been one prior study
of reductions between learnable classes, see [25]. However, this approach differs from the approach of
intrinsic complexity in a fundamental way (see [8] for a more detailed discussion). The rest of this paper
is organized as follows. In Section 2 the necessary notation and definitions will be given, including
the formalization of the approach of intrinsic complexity. In Section 3 some natural function class and
its derivatives are shown to be complete for several learning types. Section 4 is devoted to derive the
corresponding characterizations of completeness for these learning types. In Section 5 the intrinsic com-
plexity is compared with the mind change complexity. Finally, in Section 6 we summarize our results
and discuss some of their consequences as well as possible future work.

2. Preliminary definitions and notation

For setsA, B, A € B andA C B will denote inclusion and proper inclusion, respectively\ B =
{x|x € A, x ¢ B} denotes the difference o and B. ¢ stands for the empty set. Byurd A, the
cardinality of A will be denoted. ForA € N, maxA and minA will stand for the maximum ofA and
the minimum ofA, respectively. The set of all finite sequences of natural numbers is denoketl by

Let R denote the set of all (total) recursive functions of one argument.fFerR andn € N, let
"=, fD,..., f(n)) bethe initial segment of up torn. For any functions’, g € Randn € N,
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let f =, giff f" =g", i.e., if f andg coincide up ta:; and f +£, g otherwise. Letf” C g iff f =, g.

In this case we say also that the functigmextends the initial segmert®, or thatg is an extension of

f". Analogously,f" C ¢" iff n = min{n, m} and f =, g. At several places below we will identify a

recursive function with the infinite sequence of its values. Thus, for examplesténds for the every-

where zero function and 00 stands for the functiorf such thatf(x) =1, if x =i, and f(x) = 0

otherwise. Furthermore, letisz(f, g¢) = card{x|f(x) # g(x)} denote thedistance betweenf andg.

The following classes of recursive functions will be used frequently in the sequel:

e theclassFINSUP = {f|f € R, dist(f,0°) < oo} of the functions of finite support, i.e., the class
of all recursive functions that have a non-zero value at no more than finitely many arguments,

e the subclassesINSUP,, = {f|f € R, 1< dist(f,0°) <m+ 1} of FINSUP foranym € N,;
note that & ¢ FINSU P,, by definition.

LetU € Randf € R. Thenf is called araccumulation point of U iff for any n € N, there exists a
functiong € U such thaig =, f butg # f. Notice thatf can belong td’/ or not.U is calleddense iff
U is non-empty and, for any € U, f is an accumulation point df. Clearly, any dense class must be
infinite. U is calleddiscreteiff U does not contain any accumulation pointof

Discrete and dense classes are opposites of each other in the very strong sense that discrete sets contain
no accumulation points and dense sets contalg accumulation points. However, one can show how to
build large collections of accumulation points only from discrete sets. We proceed by example. Notice
that we will rely on this example in Section 4.

Let F; denote the largest subsetfiNSUP containing only functions that have exacily- 1 support
points. The classel are discrete. For exampl&p contains the functions with exactly one support point
and can be graphically represented in a fashion suggestive of an effective enumeggatfan, .., see
Fig. 1. Each row of Fig. 1 represents a function and.ittrevalue in that row contains the value of the
function on argument. Notice the regularity of Fig. 1. For every there is a such that

_ (1 ify=ux;
ff(y)_{o otherwise.

In fact, j is easily calculated from only.

x—1 2
X+ x
Jj x-i-kZ1 >

We have used the convention that i 1 < 1 then the sum evaluates to 0. lketlenote the function
that takesr to (x2 + x)/2.

Suppose is the length initial segment of 6°. Notice further thatf;,) agrees withr, but f;,,) #
0°°. We have just shown (even effectively) that @& an accumulation point afp.

Suppose now that > 0 andf € Fy_1. Thenf has exactlyk support points. Let be the lengthy + 1
initial segment off, wheren is an arbitrary natural number. Thenhas exactlyi support points, for
somei < k. Defineg = 0 1¥~i+10°°. Sog has the support points frona and exactlyk — i + 1 others.
Hence,g € F;. Furthermoreg =, f by definition of g. Finally, g # f, since f has fewer support
points. Consequently; is an accumulation point afy. Since f was chosen somewhat arbitrarily, we
have established that, for &ll> 0, any function inFj_1 is an accumulation point ofy.

A non-empty clasg/ C R is calledrecursively enumerable (r.e.) iff there is a universal recursive
functionu of U; i.e.,u is a recursive function of two arguments enumerating exactly the tlagg|i
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N} = U whereu; = Axu(i, x). Thenu is called a (recursiveumbering of U. Furthermore, iff € U
andu; = f theni is called au-index (or au-number) of f. Note that every infinite r.e. class possesses a
one-one numberingu, i.e., a numbering such that # u; for anyi # j, see [20]. ClearlyFINSUP and

all the classe¥' INSU P,,, m € N, are r.e.

Let ¢ be any acceptable programming system or, equivalently, any Gédel numbering of all the partial
recursive functions of one argument, see [22,26,28]. The natural numbers will then serve as names for
programs, ang; will denote the function computed by programAs abovej is called ap-index or ap-
number of a functiory iff ¢; = f. We will useg as the basic hypothesis space for all the learning types
below. Note that this allows the learning machines to work subsequently in other suitable hypothesis
spaces such as in recursive numberimgs well, since any-index can be effectively translated into an
equivalentp-index.

Gold, in a seminal paper [13], defined the notion calléehtification in the limit. This definition
concerned learning by algorithmic devices now calledlctive inference machines (1IMs). An 1IM
inputs the graph of a recursive function, an ordered pair at a time, and, while doing so, outputs com-
puter programs. Since we will only discuss the inference of (total) recursive functions, we may assume,
without loss of generality, that the input is received by an 1IM in its natural domain increasing order,
f(0), f(1),... On input from a functionf, an IIM M will output an infinite sequence of programs
po =M(f9), pr =M(f1), ... The lIM converges iff there is a progranp such that for all but finitely
manyi, p; = p. Then we say that the IIM converges o In general, there is no effective way to tell
when, and if, an IIM has converged.

Rofol1f2]s]a]s]

5o J1]0 o0 ofolo] -

fi Jofrjofofojof--

f2 | 2]ofofofojof--

fa Jofoji]ofojof--
fo |3]ofojofojof--
fs Jof2]ofofojof--

5o o]0 oftfolo] -
7 I 4]olofofolo]
5o Jo]3 0 ofolo]

fo Jofojz]ofojo]--

fuof[ofofofofrjof--

Fig. 1. The clas¥7p.
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Following Gold, we say that an IIM E X-identifies a functiory (written: f € EX (1)), if, whenM is
given the graph of as input, it converges to a prograithat computey’, i.e.,¢, = f. More formally,

M is an operator which takes as input the functigrand outputs the sequen@#& ")), <y Of programs,
denoted by( f).

Each IIM will learn some set of recursive functions. The collection of all such sets, over the universe
of effective algorithms viewed as IIMs, serves as a characterization of the learning power inherent in the
Gold model. This collection is symbolically denoted BX and is defined rigorously b X = {U|U C
R, IM(U € EX(M))}. Note that any r.e. class of recursive functions belongsXg see [13].

Now leta € N. Then we say that an IIM E X“-identifies a functionf € R (written: f € E X% (1))
iff the sequencei(f) converges to a program such thatdist (¢,, f) < a; i.e., EX*-learning allows
final hypotheses with at mostanomalies. LeE X% = {U|U C R, IM(U C EX“(M))}.

We say that an IIM1 E X *-identifies a functionf € R (written: f € EX™*)) iff M(f) converges to
a programp such thatist(¢,, f) < oo; i.e., EX*-learning allows final hypotheses with an arbitrary
finite number of anomalies. L&EX* = {U|U C R, AW(U C EX*(M))}.

In order to define learning with a bounded number of mind changes, notice that without loss of
generality we can allow an 1IM to output a special symbol ? for a while at the beginning of the learn-
ing process. ? can be interpreted as “I don’t know yet”. Clearly, this does not change the limit of the
corresponding sequen@éf). On the other hand, this can save one unnecessary mind change, namely
the very first one, which could be forced by requiring to makg®) a real hypothesis from\. Also
without loss of generality, we can assume thatfter producing a first hypothesis froka will never
output ? again. Actually, by simply repeating its actual hypoth&sign avoid undesired mind changes
without outputting ? again. This way we can also ensuremlimtiefined on all possible input segments
just by outputting either ? or a hypothesis froxn Now, for anym € N, we say that an IIM1 E X,,,-
identifies a functiory’ € R (written: f € EX,, (1)) iff M(f) converges to a programsuch thay, = f
and card{n|? + M(f") £ M(f"t1)} < m; i.e., on the functionf, the machines changes its mind no
more thamm times. LetEX,, = {U|U C R, IM(U C EX,,(M))}.

Theorem 2.1 shows the relationships between the identification types defined above.

Theorem 2.1 [4].
1.EXoCEX1C- - CEXp CEXpi1C---CEX
2.EX=EX°Cc...CEXYCcEX*lc...Cc EX*

In this paper we will be concerned only with the identification types, EX¢, EX*, andEX,, as
defined above. Subsequently, wedestand for any one of these types.

Proposition 2.1. Thereexistsanr.e. sequence Mo, M1, Mo, . . ., Of inductive inference machines such that,
for any identification type Z considered in this paper, for all C € 7, thereexistsani € N such that
CCIW).

Ref. [15] shows the above far = E X. Essentially, the same proof can be used foZatbnsidered
in this paper. We assumg, M1, Mo, . . . to be one such sequence of machines.

In the following we need the notion of admissible sequences of hypotheses as introduced in [8].
Informally, for an identification typ&, anZ-admissible sequence for a recursive functfas a sequence
of hypotheses which is “successful” when learnifign the sense aof. For example, atk X-admissible
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sequence fof € R is any sequence of programs, p1, ... converging to some such thaip, = f.
Clearly, using this notion one could redefine the identification Wpeas follows:U € EX iff there is
an IIM M such that for any functiorf € U, M(f) is an E X-admissible sequence fgft. For the other
identification typed, the notion ofZ-admissible sequences is defined analogously.

Besides the notion of admissible sequences we need yet the concept of recursive operators in order to
give the basic definition of intrinsic complexity.

Definition 2.1 [27]. A recursive operator is an effective total mappingy, from (possibly partial)

functions to (possibly partial) functions, which satisfies the following properties:

(a) Monotonicity: For all functionsg, 7/, if n € ' then®(n) € O (7).

(b) Compactness: For ajl if (x, y) € ©(n), then there exists a finite functionC n such thatx, y) €
O(a).

(c) Recursiveness: For all finite functioasone can effectively enumerate @ all (x, y) € ©(«).

In this paper we are concerned with the behavio®obn total functions only. Thus, without loss
of generality, in (c) above we may additionally assume that) is finite for all finite«, and one can
effectively determineard ® («) (in addition to being able to enumeradgw)).

We now present some easy results which will be used several times in the sequel. These results show
that to some extent, recursive operators preserve the structure of the classes they map. As it will be
clear from Lemma 2.1, structure can mean both algorithmic and topological structure. The proof of this
lemma is obvious and therefore omitted.

Lemma2.l. Let U beany class of recursive functions, and let ® be any recursive operator mapping

every function from U to a recursive function, i.e. ® (U) C R. Then:

1. IfUisr.e,then®U) isr.e.

2. If h € U isan accumulation point of U and © is injective, then ©(h) is an accumulation point of
OW).

3. If U isnot discrete and © isinjective, then ®(U) is not discrete.

4. If U isdense and © isinjective, then ® (U) isdense.

On the other hand, recursive operators can map discrete classes to non-discrete classes as well. Actu-
ally, letU = {0°10°|i € N}. ThenU is both r.e. and discrete. Define a recursive oper@tas follows:
O(10°) = 0, and®(0'10®) = 0'10™® for anyi > 0. Then® is injective and® (U) is not discrete,
since this class contains its accumulation poffit O

We now come to the basic definition of intrinsic complexity.

Definition 2.2. Suppos€ is an identification type antl, V € Z. ThenU is said to beZ-reducible to
V (written: U <z V) iff there exist recursive operato& and E such that for any functiorf € U,

1. 0(f)eV,

2. for anyZ-admissible sequeneefor ©(f), E(o) is anZ-admissible sequence fg.

Notice that unlike [8] in the definition above we do not requiddo be injective. This is due to the
fact that in learning with anomalies one and the same sequence can be admissible for infinitely many
functions. Consequently, there is no ultimate need for the opegatorbe injective. On the other hand,
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for the other identification type& considered in this papef;reducibility of U to V by operator® and
E obviously implies the injectivity o®.

Intuitively, if U is Z-reducible toV thenV is at least as difficult to learn in the senseZoésU is.
Actually, for any IIM M thatZ-learnsV, one can easily construct an |IM thatZ-learnsU as follows:
M (f) = EM(O(f))). Consequently, in that sen¥eis most difficult for Z-learning ifall classed/ € 7
areZ-reducible toV'.

For an identification typ&, a classV C R is calledZ-complete iff V € 7 and any clas¥/ € 7 is
Z-reducible tov'.

For an identification typ& and classe#’, V € Z, U andV are said to b&-comparable, Z-incom-
parable, andZ-equivalent, respectively, iff (L)U <z V orV <7 U, (2) neitherU <z V norV <7 U,
(B)U <z V andV <z U, respectively. Finallyly <z V iff U <7 V, butnotV <7 U.

3. Natural examples of complete classes

In this section we will prove some natural classes complete for the types X, EX™*, andE X,,.
Notice that these classes essentially differ from the so-called cylinder classes which were used in [8] in
order to construct a complete class for a given identification fyjyie some uniform way. Informally,
to get such a cylinder class for a typesach recursive function was combined with all the [IMs which
were capable to learn that function in the sensg&.ofhus, these cylinder classes very directly depend
on the learning type under consideration. In contrast, our classes presented below are not distinguished
by such a close and direct relationship to the corresponding learning type. Actually, all these classes
come from a common natural source, namely the dfNSUP of the functions of finite support, that is,
all functionsf € R such thatard{x|f(x) # 0} < oo, or, equivalentlydist (f, 0°) is finite. This class
itself was shown to b& X-complete in [8].

Theorem 3.1. [8] FINSUP is E X-complete.

We show that the same claBENSUP is complete for all the typeg X“, a € N, as well. Thus, sur-
prisingly, E X contains a class being complete for all #i&“, despite the fact thaf X is a smaller and
smaller subset of th& X“. For the typeE X* andEX,,, m € N, we then prove natural modifications
of FINSUP to be complete.

Theorem 3.2. Foranya € N, FINSUP is E X“-complete.

Proof. Leta € N. ThenFINSUP € EX?, sinceFINSUP isr.e., henc& INSUP € EX,andEX C
EX“. In order to show that every class froBX“ can be reduced tBINSUP, we need the following
partitioning of the set of all natural numbers into consecutive intervals of length®. For anyn € N,
let X¢ denote the set(2a + Dn, (2a + Dn+ 1, ..., (2a + 1)n + 2a} of cardinality 21 + 1. Clearly,
Xy N XS, =@if n#n'. Furthermorel J, o X;; = N. Now letU be an arbitrary class fromX“. Lety
be any IIM that identified/ in E X“-style. Without loss of generality assume thiatoes not output ? on
any input. Then, for any € N, find the onlyn € N such thatc € X¢ and define

_ [ +1 ifn=0oru(f") #u(fh;
O = {0 if n > 1 andu(f") = u(f"b.
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Clearly, ® is a recursive operator mappigto FINSUP, since the maching changes its mind only
finitely often on any functiory € U.

Intuitively, ® encodes the sequence of hypotheses producedby into the function® ( f) in a way
that is “robust with respect to anomalies”. Actually, even if at moaimong the 2 + 1 consecutively
encoded hypotheses will be “destroyed” by the maximum of anomalies allowg&rlearning the
function®( f), the remaining: + 1 “undestroyed” hypotheses will keep the majority. This in turn sug-
gests the following definition of the operat@r. Let o be anyE X“-admissible sequence for a function
O(f) wheref € U. ThenE (o) can be defined as follows:

e Search for the limit ob, say j; note thatlist (¢;, ©(f)) < a, hencep; ) = 0 for almost allX € N,
since®(f) € FINSUP,

e search for the maximat € N such that within the intervak,, the functiony; takes a non-zero
value at least: + 1 times; note that this interval corresponds to the final hypothesis produced by
Mon f,

e find the onlyy > 0 such that withinX{, the functiony; takes that valug on at least: 4+ 1 arguments,

e converge toy — 1.

Clearly,y — 1 is just the final hypothesis produced by the iMn the functionf. Consequently, the
classU is E X“-reducible toFINSUP by the operator® and&. O

As we have seen above, the intervAls of finite length 2: + 1 were sufficient to overcome the diffi-
culties caused by the anomalies within the final hypothesé&sXsf-learning, wher is a fixed number.
Now, for E X*-learning, we will need intervals affinite length instead. In the following definition,
the sets of powers of the prime numbers will play this role of intervals of infinite length. Therefore let
QUASFINSUP denote the set of all recursive functiofissuch that:

1. Foreveryr € N, if x is not a power of a prime number, theiix) = 0.
2. For all but finitely many prime numbeys f(p*) = 0 forallk € N.
3. For every prime numbeyr, there arey, n € N such that either

f(phH =y forallk>1,
or

)y fFl<k<n
f(p)—{o otherwise.

Thus, for any sequence, p2, p3, ..., either the values of are equal on all arguments from the se-
quence, or they are equal to a non-zero number on the arguments from a finite initial segment of the
sequence and are zero on the arguments from the rest of the sequence.

Note thatQUAS FINSUP is an r.e. class.
Theorem 3.3. QUASIFINSUP is E X*-complete.
Proof. Obviously, QUASFINSUP is E X*-learnable, aQUASFINSUP is r.e. Now letU be an arbi-
trary class fromt X*. LetM be any IIM thatE X *-learnsU . Without loss of generality assume thiadoes

not output ? on any input. Les; denote theth prime number, whergg = 2. Then, for any function
f € U and anyx € N, define an operata® as follows:
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O(f)(x)="Let i < x be the maximal number such that 0 orm(f%) # M(fi‘l).
If x =pf.‘ for somek >1, then |et®(f)(x)=M(fi) + 1. Otherwise, le® (f)(x)=0".

Clearly, ® is a recursive operator mappiig to QUASIFINSUP. Note that for any functiory € U,
there is exactly one numbersuch that® (f)(x) # 0 for all x = pf, k > 1, namely just that where
the machinet makes its last mind change on the functign Moreover, by the definition o®, for
every other primep + p;, there can be at most finitely many arguments: p* with ©(f)(x) # 0.
Finally, by the definition ofQUASIFINSUP, for all but finitely many primesgp, ®(f)(x) = 0 for all
x = pk, k > 1. Hence, the number of non-zero values@(f) on the interval of the powers of;
will eventually exceed the corresponding number of non-zero valugs(gh on any other interval
of prime powers. Clearly, this property remains valid for every function which differs f8oyi) on
at most finitely many arguments, i.e., especially, for every functiprwhere j is the limit of any
E X*-admissible sequence fay(f). This suggests the following definition of the operatrLet o
be any E X*-admissible sequence for a functi@ /) where f € U. Then E(c) can be defined as
follows:

e Search forthe limit o, sayj; note thatlist (¢, ®(f)) is finite; hencep; has the property mentioned
above,
e search for the only numbeérsuch that on the arguments= pl’F, k>1, the functiony; takes more

non-zero values than on the arguments p* for any other primep + p;,

e find the valuey that will be taken byp; on all but finitely many arguments= pf, k>1,
e converge toy — 1.

Clearly,y — 1 is just the hypothesis the machineonverges to on the functiofi. Consequently, the

classU is E X*-reducible toQUAS FINSUP by the operator® and&. [

In order to exhibit classes which are complete fox,,, m € N, we will modify the standard defini-
tion of E X,,-completeness by defining the notion & X-completeness fok X,,,".

Definition 3.1. Letm € N. A classV of recursive functions is callefl X-complete forEX,, iff V €
EX,, and, for any clas¥ € EX,,, U is EX-reducible toV.

Informally, by definition, E X-completeness foE X,, allows all the admissible sequences to be of
“ E X-style” rather than E X,,,-style”, thus giving the reducing operatdEssome more freedom.

Now, recall that for anyn, FINSUP,, denotes the subclass BfNSUP consisting of all functions
which contain at least one and at mast- 1 non-zero points; formally,

FINSUP, ={f|f € FINSUP, 1< card{x|f(x) #0} <m+ 1}.
Recall that each of the classeENSUP,,, is r.e.

Theorem 3.4. For anym € N, FINSUP,, is E X-complete for EX,,.

The proof of Theorem 3.4 is pretty analogous to the proof of Theorem 3.1 (see [8]) and therefore
omitted.
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4. Characterizations of complete classes

Now we are going to characterize completeness for all the identification fyfe® X“, EX*, and
EX,,, wherea, m € N.

Theorem 4.1. For anyclassU € EX, U is EX-completeiff U containsan r.e. dense subclass.

Proof. Necessity: LetU be E X-complete. TherFINSUP is E X-reducible toU by recursive opera-
tors® and E. Clearly, ®(FINSUP) C U and® is injective. MoreoverFINSUP is r.e. and dense.
Consequently@ (FINSU P) is r.e. and dense by Lemma 2.1.

Sufficiency: LetU € EX contain the r.e. dense subcldss Then it suffices to show thd&INSUP
is EX-reducible toV. Actually, sinceFINSUP is E X-complete by Theorem 3.1, this would imply
that bothV andU are E X-complete as well. We even prove a somewhat more general result name-
ly, that any infinite r.e. class isE X-reducible toV. Thus, letW be any infinite r.e. class, and let
be any one-one numbering &F. For anyi, j, i # j, let x;; denote the least number such that
w; (x) # w;(x). Furthermore, let be any one-one numbering ¥t Then inductively define the operator
© as follows:

©(wo) = vo;
and for anyi > 0,

®(w;) = “Search for the leastw-index k <i such thatw; is “most similar” to wj;,
i.e., xjr = max{xl-j|j <i}.
Then search for the leastindexm such that both
e v, is “sufficiently similar” to® (wy), i.e.,v, =y, O (wy);

Comment: This ensures the monotonicitycnf
e v, is notin the present range 6f, i.e.,v,, ¢ ® {wo, ..., w;_1});

Comment: This ensures the injectivity & Note thatv,, must exist, sinc& is dense. Moreovet,,

can effectively be found, sincé is r.e.
Define® (w;) = v,,”".

Clearly,® is a recursive operator mappifg injectively toV. Moreover, the following claim implied
by the definition of® will be useful to define the second operakr

Claim A. Given anyv-index m such thatv,, € ®(W), one can effectively find the corresponding
w-indexi such tha® (w;) = vy,.

Proof of Claim A. Consecutively, foi =0, 1, 2, ..., look at the function® (w;), as defined above,
until the rightw-indexi has been found. O

In order to define the operat@ we need yet another technical algorithm which, in the limit, allows
us to translat@-indices into equivalent-indices.

Claim B. For any r.e. sefS of recursive functions, given any numberingof S and anyg-index
J such thatyp; € S, one can effectively produce a sequences-afdices converging to am-index

Ofg[)j.
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Proof of Claim B. Given the numbering, the ¢-index j and anyn € N, definem, = min{i|i <
n,s; =, ¢;} U {n}. Thus,s,,, is the first function amongo, s1, ..., s,, if any, which coincides with
¢;j up ton. Clearly,m, can be found effectively, sinag; and all thes;, i € N, are recursive functions.
Moreover, obviously, the sequenge,),cyn converges to the leastindex of the functiorp;. [J

We now are ready to define the operatr Therefore, lets be any E X-admissible sequence of
p-indices for any functio®( f), f € W. ThenE (o) can be defined as follows:
e Search for the limit otr, sayj; note thatp; = ©(f),
in the limit, find av-indexm of ¢; by applying the algorithm from Claim B,
find thew-indexi such tha® (w;) = v,, by applying the algorithm from Claim A,
converge to &-index ofw;.
Clearly, sincev,, = ¢; = O(f), we getw; = f by the injectivity of®. This completes the proof that
W is E X-reducible toV by the operator® andg. [J

Next, we will present a characterization BX“-complete classes for amye N. Therefore, we need
an additional property of r.e. dense classes, namely that all the functions of such a class can be chosen to
have sufficiently large distance from each other. This property will enable the reducing operators to deal
with the anomalies allowed iR X“-learning. The following lemma just states that all r.e. dense classes
possess this property.

Lemmad4.l. For anyd € N, anyr.e. dense class contains an r.e. dense subclass where all the distinct
functions have distance at least d.

Proof. We start with the following Claim which, intuitively, states that given an r.e. dense Bleesd
a function f € W, one can find another functigne W such thatg both “arbitrarily much” coincides
with f and “arbitrarily much” differs fromf.

Claim. Let W be any r.e. dense class and letbe any numbering of¥. Then, given anyw-in-
dexi and anyn,m € N, one can effectively find a-index j such thatw; =, w; anddist(w;, w;)
> m.

Proof of Claim. Let W andw as above. Let, n € N be arbitrarily fixed; sef = w;. Then we proceed
by induction orw:. Obviously, form = 0, j = i suffices.

Now, by induction, suppose that for evesy< m, m > 1, one can effectively find a-index j, such
that wj, =n f anddist(wjp, f)=p. Leth=w;, ,.Clearly,h =, f anddist(h, f) >m — 1. Let
x > n be the least argument such thatd{y|y < x, h(y) # f(y)} > m — 1. Sinceh €¢ W andW is
dense, there must be a functigre W such thaig =, 4 andg # k. Moreover, sincéV is r.e., aw-index
of one suchg can easily be found by searching for the least N such thatw; =, » andw; # h.
Clearly,dist(g, f) > m ordist(h, ) > m. Furthermore, it is straightforward to effectively fix one of
the functionsg or h (and, hence, a-index of this function) with the desired distance property. This
completes the proof of the Claim.C]

Now let W be any r.e. dense class, and detbe any numbering oW. Furthermore, letl € N be
given. Then we can inductively define a numberingf a subclas®’ of W with the desired properties
as follows.
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Let (i5)seny denote the sequence® 1,0, 1,2,0,1, 2,3, ... in which every natural number occurs
infinitely often. Notice thal; < s foranys > 1.

Stage 0.
Definevg = wg, and go to stage 1.

Stages, s > 1.

By induction assume that for anyindexi < s, a w-indexi’ can effectively be computed such that
v; = wyr. Also by induction assume that for any distirictj < s, dist(v;, v;) > d. Then effectively
find an arbitrarys > s such that for any distinat j <s, card{x|x <n,v;(x) #v;(x)} >d, i.e., on
their initial segments of length the functions enumerated lyso far have pairwise distance at ledst
Now, by applying the Claim above, search fowandex j such that

Wj =n w(ij)/(z U,‘S) anddist(wj, w(l-s)/) >d.

Definevy; = w;, and go to stage + 1.

Clearly, V. = {v;|i € N} is an r.e. subclass d¥. Moreover, by the choice of both and vy, each
new functionv; has distance at leagt from all the previously enumerated functionsi < s, i.e.,
including v;,. This proves the desired distance propertyVofFinally, by the choice of the sequence
(is)sen, arbitrarily large initial segments of each functioni € N, will be extended. More exactly, for
each functiorv; and anyx € N, there is some stagesuch that; = i, vy =, v; andv, # v;. Hencev;
is an accumulation point df and, consequently, is dense. [

Then we get the following characterization BX“-completeness.

Theorem 4.2. For anya € N and for any classU € EX“, U is EX“-complete iff U containsanr.e.
dense subclass.

Proof. Necessity: LeU be anyE X“-complete class; € N. Let V be any r.e. dense class such that for
any distinct functions’, g € V,dist(f, g) > 2a. Note thatV exists by Lemma 4.1. Clearly; € EX C
EX“, sinceV is r.e. Consequentlyy is EX“-reducible toU by some operator® and E. We claim
that ® has to be injective. Actually, otherwise distinct functiofix € V with ©(f) = ©(g) would
exist. Hence, for eack X“-admissible sequence for the functi® /) = ®(g), the operato& had to
construct a sequence beilgX¢-admissible for both functiong andg. But this is impossible, since
dist(f, g) > 2a by the definition ofV. This contradiction prove® to be injective. Henc® (V) C U

is r.e. and dense by Lemma 2.1.

Sufficiency: LetU € EX“,a € N, contain an r.e. dense subclasThen, by Theorem 3.2, it suffices
to show thatFINSUP is E X“-reducible toW. In order to do this, we need to map the functions from
FINSUP to an r.e. denseubclass V of W where for any distinct functiong, » € V, dist(g, h) > 2a.
Note that such a clags exists by Lemma 4.1. Informally, this additional propertylofvill enable the
second operatdE to identify the functionsf € FINSU P from any E X“-admissible sequence for the
function®(f). Formally, we need this property in the proof of Claim B.

For the following, letw denote any one-one numbering FINSUP, and letv denote any one-one
numbering ofV. Then, sinceV is both r.e. and dense, the operaican be defined in the same way as
in the proof of Theorem 4.1; agaify, is injective. Also, Claim A of that proof remains valid, even with
exactly the same proof.
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Claim A. Given anyv-indexm such that,, € ®(FINSU P), one can effectively find the correspond-
ing w-indexi such tha® (w;) = vy,.

Proof of Claim A. Consecutively, foi =0, 1, 2, ..., look at the function® (w;), as defined above,
until the rightw-indexi has been found. O

However, in contrast to the sufficiency proof of Theorem 4.1, the opeBtoow gets onlyE X“-
admissible sequences for the functiahsf) rather thant X-admissible ones. Hence, we have to modify
Claim B in the following way.

Claim B. Given anygp-index j such thatlist(¢;, g) < a for someg € V, one can effectively produce
a sequence af-indices converging to the-index of g.

Proof of Claim B. First note that the functiorg € V above is unique due to the property that the
distance of any distinct functions froin exceeds @. Second note that the functign may be undefined
on at mostz arguments. This leads to the following algorithm which, intuitively, keepswamdex s
until it will be clear thatdist (¢;, vs) > a, and hence,; must differ from the functiorg.

“Go to stage 0.

Stages, s > 0.

Outputs. Check if there are at least+ 1 arguments: such thatp; (x) is defined and
¢;j(x) # vs(x), in which case go to stage+ 1".

Clearly, due to the distance propertylof the algorithm above will converge to thendex ofg. [

Then the operatoE can be defined analogously to the sufficiency proof of Theorem 4.1 . Therefore,
leto be anyE X“-admissible sequence gfindices for any functio® (f), f € FINSU P. Then define
E (o) as follows:
Search for the limit ofr, say j; note thatdist (¢}, g) < a for some unique functiog € V,
in the limit, find thev-indexm of g by applying the algorithm from Claim B,
find thew-indexi such tha®® (w;) = v,, by applying the algorithm from Claim A,
converge to @-index ofw;.
Clearly, sinceg = v, = ©(w;), we getw; = f by the injectivity of®. ConsequenthfINSUP is E X“-
reducible toV (and hence taV) by the operator® andz. O

In order to characterizé& X*-complete classes in an analogous way as done in Theorem 4.2 for
E X“-complete classes, we would need the following strengthening of Lemma 4.1: Any r.e. dense class
contains an r.e. dense subclass where all the distinct functionsrfisnee distance. However, in general,
this strengthening is not valid. Actually, just the r.e. and dense El&SUP provides a counterexample,
since all the functions frorglNSUP havefinite distance from each other. On the other hand, this infinite
distance property turns out to be really necessary in order to deal Bth-admissible sequences.
Consequently, we have to insert this property directly into the characterization.

Theorem 4.3. ForanyclassU € EX*, U is EX*-completeiff U containsanr.e. dense subclass where
all the distinct functions have infinite distance.
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Proof. Necessity: LeUU be anyE X*-complete class. Then, by Theorem IRJASFINSUP is E X*-
reducible toU by some operator® andE. Let Q denote the subclass QUASIFINSUP such that for
any functionf € Q and any primep, the functionf takes the same value on all argumepits m > 1.
We claim that® (Q) will be the desired subclass bf. In order to show this note th@ is r.e. and dense.
Moreover, all the distinct functions fro® have infinite distance.

Claim. For any distinct functiong, g € O, dist(®(f), B(g)) = oc.

Proof of Claim. Assume to the contrary that for some distinct functighg € Q, dist(©(f), ©(g))

is finite. Then there is a sequengavhich is E X *-admissible for both function® (/) and®(g). Hence,

by definition, E (o) has to converge to some index of a function with finite distance from athdg.

But this is impossible, sincg € Q andg € Q are of infinite distance. This contradiction completes the
proof. [

The Claim above immediately implies that both the oper@&tas injective onQ and all the distinct
functions from® (Q) have infinite distance. Moreove® (Q) is r.e. and dense by Lemma 2.1. Thus,
®(Q) is the desired subclass bf.

Sufficiency: Informally, this proof follows the same line as the sufficiency proof of Theorem 4.2
replacing the distance bound af &om that proof by the infinite distance property. The latter leads to
some modification of both the statement of Claim B below and its proof. Furthern@QowS FINSUP
is used rather thaRINSUP, of course.

Let V be an r.e. dense subclasslofvhere all the distinct functions have infinite distance. L&k a
one-one numbering of . It suffices to show thaQUASFINSUP is E X *-reducible toV. Let w denote
any one-one numbering QUAS FINSUP. Define the operato® mappingQUASFINSUP to V as in
the sufficiency proof of Theorem 4.2, and hence as in the sufficiency proof of Theorem 4.10Tiken
injective.

Claim A. Given anyv-indexm such thatv,, € ®(QUASIFINSU P), one can effectively find the
correspondingu-indexi such tha® (w;) = v,,.

Proof of Claim A. Consecutively, foi =0, 1, 2, ..., look at the function® (w;), as defined above,
until the rightw-indexi has been found. O

Claim B. Given anyp-index j such that/ist(¢;, g) < oo for someg € V, one can effectively produce
a sequence af-indices converging to the-index ofg.

Proof of Claim B. Note that the functiorg € V is unique, since all the distinct functions fravhhave
infinite distance. Moreover, the functigry may be undefined on at most finitely many arguments. This
leads to the following algorithm which, intuitively, comes back to eaghdex: arbitrarily often and
keeps the present indéxas long as no further point of difference betwegandg; will be developed.
Therefore, leti,) < denote the sequenceN 0, 1,2,0, 1, 2, 3,... in which every natural number oc-
curs infinitely often. For any € N, setX; = ¢; intuitively, X; will denote the set of all argumenis
developed so far on whichy andg; are different. Then the algorithm can be defined as follows.

“Go to stage 0.
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Stages, s > 0.
Outputis. Check if there is an ¢ X; such thatp; (x) is defined an@; (x) # v;, (x), in
which case sekX; = X; U {x} and go to stage + 1".

Now letm denote the onlw-index of the functiorg. Leti be an arbitrary number such thag m.
Sincedist (v;, v,) = co, each stage with iy = i entered by the algorithm above will eventually be
left. Hence the algorithm must reach some stageich thati;, = m and X; already contains all the
arguments: such that; (x) is defined ang; (x) # v, (x). Consequently, stagewill never be left, and
the algorithm converges . [

Now leto be anyE X*-admissible sequence for any functier /), f € QUASFINSUP. Then define
E (o) as follows:
Search for the limit ofr, sayj; note thatdisz (¢}, g) is finite for exactly one functiog € V,
e inthe limit, find thev-indexm of g by applying the algorithm from Claim B,
e find thew-indexi such that® (w;) = v, by applying the algorithm from Claim A,
e converge to @-index ofw;.

Sinceg = v, = O(w;), we getw; = f by the injectivity of ®. HenceQUASIFINSUP is E X*-re-
ducible toV by the operator® and&. 0

Finally, we will characterize£ X-completeness foE X,,. Therefore we have to modify the notion of
density in the following way.

Definition 4.1. LetU € R andm € N. ThenU is calledm-dense iff there are pairwise disjoint infi-
nite classed/p, U1, ..., U, such that J._,. U; = U, and, for anyi < m, each function fronU; is an
accumulation point ot/; ;1.

Furthermore, iU isr.e., therlg, Uy, ..., U, are r.e. as well.

i<m

Atypical example for am-dense class is just FINS}Psee the discussion around Fig. 1 in Section 2.

Theorem 4.4. Foranym € NandanyclassU € EX,,, U is EX-completefor EX,, iff U containsan
r.e. m-dense subclass.

For the proof of Theorem 4.4, the reader is referred to [19].

The characterization given by Theorem 4.4 is especially easy ferO, namely: For any class e
EXo, U is EX-complete forE X iff U contains an infinite r.e. subclass. This follows immediately from
Theorem 4.4 and the definition ef-density.

We now want to point out a consequence of our completeness characterizations above, namely that
there are classes which are both complete and “self-describing”. Actually, in [8] it was proved that the
standard self-describing class= {f|f € R, ¢r©) = f}, i.e., the class of all recursive functions that,
on argument O, return a program computing themselves, iEatomplete. However, this class is
E X-complete forE Xo. Indeed, by the Recursion Theorem [27], there is a fungiienR such that for
anyi € N, @) = g(i)i*. Hence, the clasig,;|i € N} is aninfinite r.e. subclass 6f Consequently,

S is EX-complete forE Xo. Moreover, classes which are both complete and self-describing exist at
the bottom of the mind change hierarchy, and also witwry level including the very top level of
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unbounded mind changes. In order to see the latter point, consider theCcladaip|la € N*,i >

2, p € Ro 1, ¢i = aip}, whereRp 1 denotes the set of all 0—1-valued functions fr@nClearly,C is a
self-describing class; in order ®©X-learn this class a learning machine has only to find the last value
i > 2 and to converge to this self-describing value. Moreogeis dense. This easily follows from the
fact thatC is “initially complete”, i.e., for every initial segmeit € N*, there is a function irC that is
consistent withx. Obviously, every initially complete class is dense. Furthermore, one can sho@ that
is not contained in any recursively enumerable class (otherRisewould be contained in an r.e. class,

a contradiction). Nevertheless,contains a subclag3 which is both r.e. and dense. In order to see this
note that by use of the Recursion Theorem, for@ary N*, one can uniformly construct ap € N such
thatwi, 0 € C. Hence the clas® = {«i,0®°|a € N*} is r.e. Moreover,D is initially complete and
hence dense. Consequentlyis E X-complete by Theorem 4.1. Analogously, one can show that for any
m > 1, theE X,,-versionsC,, of the clas< above, i.e.C,, = {f|f € C, card{x|f(x) > 2} < m + 1},
areE X-complete forE X,,.

5. Intrinsic complexity ver sus mind change complexity

In this section we mainly want to explore how intrinsic complexity and mind change complexity
relate to each other. First we will show that under some natural conditions, greater mind change com-
plexity implies greater intrinsic complexity, Theorem 5.1. However, greater mind change complexity
does not always imply greater intrinsic complexity, Theorem 5.2. Thus, mind change complexity and
intrinsic complexity are in a sense “orthogonal”. Nevertheless, further results, Theorems 5.3 and 5.4,
then yield that the structure of the intrinsic complexity is much richer than the quasi-linearly ordered
structure of the mind change complexity. Informally, these theorems state that on any levels of the mind
change hierarchy, there are classes which are intrinsically “unrelated”. Finally, we prove that in general,
maximal mind change complexity does not imply maximal intrinsic complexity, Theorem 5.5. This is
due to the fact that high mind change complexity does not always imply high topological complexity,
as it would be necessary for maximal intrinsic complexity by the results of Section 4. Notice that all
these results above can be shownriursively enumerable function classes, and hence for “natural”
classes.

Note that for mind changes bounded drglinal numbers (see [9]), there are results similar to those
announced above, but we do not include them here because of the technical machinery which would be
necessary to state and to prove these results. We only want to mention one fact in this respect. In [1] it
is shown (within the framework of learning languages from text) that a class is learnable with an ordinal
mind change bound if this class is learnable by a machine which converges on any input sequence, even
on non-computable ones. Using this result one can prove that no dense class, in particular no complete
class, can be learned with an ordinal mind change bound. Thus, mind change bounds are always a sign
for incompleteness.

In order to state and to prove the first result of this section we need a few more notions. Suppose
UecEX. IfU €,-9 EXm, then definencc(U) = min{m|U € EX,,}, wheremcc stands for “mind
change complexity”. IV € EX\ {J,,-0 E X, then letmcc(U) = . By definition,m < x for anym e
N. Now, letV be any non-empty class of recursive functions. The dasscalledbounded iff for any
function f € V and any: € N, there are at most finitely many valugs N such thatf”y C g for some
functiong € V; furthermore an upper bound on sugltan be effectively found fronf”. That is, for
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any initial segmeny” from V, one can effectively determinebasuch that, for any > b, no extension
of f"y belongs toV. For example, all classes of predicates (i.e., functions taking only the valdgs O
are bounded. Note that, in definition of bounded class above, we &fiody| f € V} to be unbounded.
Though this is not crucial for our results, it makes some of the proofs easier. Another consequence of a
class being bounded is that the tree formed by this class is of bounded degree (except, possibly, at the
root). This allows to apply Kénig’'s Lemma, as we will do below.

The classV is said to beclosed iff V contains all of its accumulation points. Equivalently, for any
function f € R, if every initial segmen{f”, n € N, can be extended to a function frovh then f itself
must belong td/ as well. For example, all of the classE$NSU P,,, m € N, are not closed, since, by
definition, they all do not contain their accumulation poifit.(However,FFI N SU Py U {0°°} is closed.
Also FINSUP is not closed, sincevery recursive function is an accumulation pointFlNSUP; hence,
the “closure” ofFINSUP would be the seR of all recursive functions.

Finally, we call the clas¥ decidable iff the set{ /| f € V andn € N} of all the initial segments of
functions fromV is decidable. In other words, for an arbitrary initial segment, one can effectively find
out if there is a function from the class which extends that initial segment.

Theorem 5.1. For any E X-comparable classes U, V such that V is bounded, closed, and decidable,
if mec(U) < mec(V)thenU <gx V.

Proof. Let U, V be anyE X-comparable classes such thatis bounded, closed, and decidable. For
simplicity we below assume that is “binarily bounded”, i.e.V is a class of predicates (x) < {0, 1}
for any f € V and anyx € N). Using the decidability oV the proof can straightforwardly be gener-
alized to arbitrary bounded classes. Furthermorentet(U) < mcc(V). Consequently, for some <
N,U € EX,, andV € EX\EX,,. SinceU, V are E X-comparable, it suffices to prove thdt<gx U
does not hold. Assume to the contrary tWa g x U by operator® andg; clearly,® must be injective.
We will show that this implied € EX,,, a contradiction.

Suppose that/ is E X,,-identified by an [IMM. Without loss of generality we may assume that
makes no more thanm mind changes oany input function. Consider the treg formed by all the initial
segments of functions fro (including the empty segmentwhich forms the root of7’) where each
initial segmentf™, f € V andn € N, is represented by a node h. SinceV is closed,V consists
of all the infinite branches 7. Also, there is no leaf ir/, i.e., every node ir¥” has at least one
child. We call a nodef” in 7 marked iff M(O(f")) = MO ("~ 1)); for n = 0, £° will be marked iff

M(O(f9) # 2.

Claim A. For any nodef” in 7 and any distinct extensions 2 € V of f", at least one of the nodes
from {g"|r > n} U {h"|r > n}is marked.

Proof of Claim A. Otherwisex would notE X -identify at least one of the distinct (by the injectivity of
®) functions®(g) and® (h), a contradictiontd/ € EX. [

Claim B. Any infinite branch of7 has at mos#: + 1 marked nodes.

Proof of Claim B. This follows immediately from the hypothesis thathanges its mind at most
times. O
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The next claim informally says that all branches on at least one side of anyffiod€” cause a mind
change before some > n. For proving this claim, we need th#itis bounded, since we apply Konig's
Lemma.

Claim C. For any nodef” in 7, there exists’ > n such thata” |»" in 7, f"0 C k" and no one of

L pnt2 gt is marked) = @
or
{R"|h" in T, f*1C k" and no one of™*1, n"*2 . h" is marked} = @.

Proof of Claim C. Otherwise, by Kdnig’'s Lemma, botf*0 and /"1 are extended by infinite branches
in 7 with no marks beyond™”. This contradicts Claim A. [

Now, define a functioProg such that for any markegd” in 7', the following holds:
1. Forx <n, (ppmg(fn)(x) = f(x)
2. SUppPOS&p e (x) has been defined for all < y (below Iet<pi,mg(fn) be denoted by”). Search
forn’ > y such that ‘
(2.1) {h" |h" inT, g0 C 1" and no one ofi’*1, WY *2, ... 1" is marked} = @, or
(2.2) {h"'|h" inT, g1 C 1" and no one ofi’*1, WY *2, ... 1" is marked} = @.
In case (2.1) lepp,og(r(y) = 1, and in case (2.2) l@tp o4 (1) (y) = 0.
Intuitively, Prog chooses the branch (if any) which does not seem to cause any mind change.
3. Goto step 2.
Clearly, by the decidability o, the functionProg is computable.

Claim D. Foranyf"in T and anyg € V extending/” such that no node frorx” |n’ > n} is marked
INT, prrogsm = 8-

Proof of Claim D. This easily follows from Claim C by induction. [

Now define an IIMY" as follows:

Prog(f*), wherex < nis the maximal number (if any)
M(f") = such thatf* is marked in7”
? otherwise.

Clearly, by Claim B, on any functiog € V, M outputs at mostz + 1 hypotheses, thus making at
mostm mind changes. Moreover, by Claim D, the final hypothesis output loy g is ag-program for
g. Consequentlyy is E X,,-identified byM’, a contradictiontd/ ¢ EX,,. O

Roughly, Theorem 5.1 says that under some natural conditions greater mind change complexity im-
plies greater intrinsic complexity. On the other hand, the conditions provided by Theorem 5.1 (bounded-
ness, closedness, and decidability) turn out to be really necessary, as we will see below. In other words,
in general, greater mind change complexity does not imply greater intrinsic complexity. Actually, there
are classed/, V such thatncc(U) < mcc(V) but V <gx U; see Theorem 5.2. Thus, mind change
complexity and intrinsic complexity are in a sense “orthogonal” to each other.
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Theorem 5.2. ThereareclassesU, V € EX suchthat mcc(U) < mec(V) but V <gx U.

Proof. Let (M;);cn denote an effective enumeration of 1IM’s as in Proposition 2.1. First, we will define
the classV by some explicit diagonalization procedure yielding among othersiithatV) > 1. More
exactly,V will be the union of classeg;, i € N, where eaclV; is defined by uniformly diagonalizing
against the machinie . Then the clasg/ will be defined just a® (V), where® simultaneously serves
as the first operator realizing tleX-reduction ofV to U = ® (V). Moreover, this definition will yield
mcc(U) = 1.

Definition of V;, i € N.

{(i + 4>} ifforall k e N, M;((i +4)%) =2

{(i +dF0>}U if Kk > 1is the least number such that for
(i +HF01®°)r > 1JU  somej € N, 1;((i +4)¥) = j and, for
Vi = {{G +H*1"0°|r > 1}  thisj, ¢;(k) is undefined op; (k) # 0

{(i + dF1°)U if Kk > 1is the least number such that for
(i +HF01°)r > 13U  somej € N, ;((i +4)*) = j and, for
{( +HF10®°r > 1}  thisj,¢;k) =0.

LetV = U, Vi
Notice thatV is r.e. by construction. Hendé € EX.

Now we define an operat@ as follows:

(i + 45 = (i + »F,

O(i +dH*0") = O((i +d*1") = (i + H*0’, for anyr € N.

Comment: This definition will not violate the injectivity & on the clasd/, since by definition, for
anyi € N, at most one of the functiong + 4)0> and (i + 4)¥1> belongs toV. On the other hand,
mapping both functiong + 4)0> and(i + 4)¥1° to the only function(i + 4)0> just allows to save
one mind change in learning(V) compared to learniny itself, as it follows from the proof of Claim
B below.

Ol +dH*0r1°) =  +d*0r2s, foranyr,s > 1.

O +4*1'0°) = (i + H*0r3*, foranyr,s > 1.

Clearly,® is a recursive operator which injectively maps the clde some clas® (V) C R. Define
U=06().

ClamA. V<gx U

Proof of Claim A. Let® be the operator from the definition of. The operatoE is defined as follows.
Let o be anyE X-admissible sequence for a functigre U whereg = ®(f), f € V. Then, by defini-
tion, ¢, = g wherew is the limit ofo. Ono the operato& searches fow (and findsw in the limit) and
evaluates the functiog,, in order to identify the corresponding functighwhereg is “coming from”.
The following cases are possible:

Case 1¢, behaves ag§ + 4%, k > 1.

Then E outputs a fixedy-program for(i + 4)°°.
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Case 2¢,, behaves a§ + 40’25, r, s > 1.

Then Z outputs a fixedp-program for(i + 4)¥071°.

Case 3¢, behaves a§ + 4)*0’3*,r, s > 1.

Then E outputs a fixedp-program for(i + 4)¥170%.

Case 4¢,, behaves a§ + 4) 0", r > 1.

ThenZ outputs a fixed-program for(i + 4)¥0°°. In parallel,Z checks ifpy, ((i+ayk) (k) = 0in which
caseZ stops outputting the program far + 4)¥0> and outputs a fixeg-program for (i + 4)¥1>°
instead. Comment: Case 4 occursfit= (i + 40> or f = (i + 4)¥1*°. The additional check allows
E to find out the “right” functionf.

Clearly, the operator® and g witnessV <gx U. [

ClamB. mcc(U) <1
Proof of Claim B. For anyi € N, let p; denote ap-program such that
(i + 4> if M@ +4F =72 forallk e N,

YPi =Y +4k0® if k> 1isthe least number such that
M (G + HF) # 2

Now, for allk, r, s > 1, define an lIMu as follows:
M((i + D) = pi,
M((i + H*0) = p;,
M((i + k0 2%) = fixed p-program for(i + 4)K0 2,
M((i + k0 3*) = fixed p-program for(i + 4)K0 3%,
Then, on any function froni/, the machiner makes at most one mind change. Furthermore, by the
definition of U and thep;’s, M clearly E X-identifiesU. HenceU € EX1 andmcc(U) < 1. O

Obviously,mcc(U) = 1, but for proving the theoremcc(U) < 1 suffices.
ClamC. mcc(V) > 1.

Proof of Claim C. Assume to the contrary thaf € EX1(;) for somei € N. Then there must be
a least numbek > 1 such thaty; ((i + 4)%) + ?, since otherwis&; would not identify the function
(i+4® e V; CV.Letj=M(G+4F5). Now the following cases are possible.

Case 11 ((i + H*0") + 1;((i + 4)*) for somer.

Thenyy; fails to E X 1-identify all but at most one of the functions frofti + 4)K0'1®°|r > r} C V.

Case 2. Not Case 1, i.ef;((i + 4*0") =;((i +4F) forallr e N,

Case 2.1¢; (k) is undefined op; (k) # 0.

Thenyy; fails to E X-identify the function(i + 4)K0® e V.

Case 2.2¢;(k) = 0.

Theny; either fails toE X -identify the function(i + 4)¥1> e V, or (in cases; makes a mind change
on (i + 4)%1* for somes > 1) 1; fails to E X1-identify all but at most one of the functions frof +
HE10®|r >5). O
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The theorem immediately follows from Claims A, B, and CO

We proceed with some remarks concerning Theorem 5.2 and its consequences. First notice that the
classed/, V were built “near the bottom” of th& X, -hierarchy. However, by correspondingly modify-
ing the proof, the same effect can be proved on any higher level of this hierarchy. Next notice that the
classV and, by Lemma 2.1, also the clas= ®(V) are both r.e. Hence these classes are in a sense
“natural”. Furthermore, note that the clagss bounded and decidable, but not closed. In other words,
V missesexactly one of the conditions from Theorem 5.1, which results in that Theorem 5.1 does not
remain valid then. Analogously, we can show that Theorem 5.1 will no longer be true, if one of the
other two conditions is violated. Thus, the three conditions provided by Theorem 5.1, i.e., boundedness,
closedness, and decidability f, turn out to be really necessary for making this result hold. Hence, in
this sense, Theorem 5.1 is optimal.

Notice that Theorem 5.1 is also “optimal” concerning another detail, namely in assuming that the
classed/, V are E X-comparable. Actually, in generakcc(U) < mcc(V) does not implyU <gx V
(even if V is bounded, closed, and decidable), as our next result will show immediately for “arbitrarily
different” levels of theE X ,,,-hierarchy.

Theorem 5.3. Foranym € N, thereexistr.e. classesV € EX;,+1\ EX,, and U € EX; suchthat U
isnot EX-reducibleto V.

Proof. Letm € N. Let (M;);cny be an effective enumeration of IIMs as in Proposition 2.1. Then, for
anyi € N, by straightforward diagonalization agaimgt one can uniformly generate a finite cldgsof
recursive functions such that
1. card V; <m + 2,
2. foranyf e V;, f(0) =i anddist(f,i®) <m+ 1,
3. Vi € EXp ().

Let V = ;<\ Vi. Obviously,V is r.e. andV € EX,, 11\ EX,. Note thatV does not possess any
accumulation point. Now consider the clags= {0"10°|r € N} U {0°°}. Clearly, U is r.e. andU <
E X1. However,U contains its accumulation poinfQ Consequentlyl/ is not E X-reducible toV by
Lemma2.1. O

Clearly, since the classdg from the proof of Theorem 5.3 above are all finite and functions from
different V; differ on input O, the clas¥ = | J,.o Vi is bounded, closed, and decidable, thus fulfilling
these conditions of Theorem 5.1. Nevertheless, this does not guarant&ethat V holds. In a sense,
Theorem 5.3 may be interpreted in that the structure of the intrinsic complexity is much richer than the
quasi-linearly ordered structure of the mind change complexity. Our next result emphasizes this point of
view by stating that each level > 0 of the mind change hierarchy contains r.e. classes which turn out
to be E X-incomparable.

Theorem 5.4. For anym > O, therearer.e. EX-incomparableclassesU,V € EX,, \ EX;,_1.
Proof. We will consider only then = 1 case . The construction can be easily extended torany

1. Let U = {0'10®]i € N} U {0°°}. Obviously, U is r.e. Furthermorel/ € EX; andU ¢ E Xg. The
latter follows from the fact that/ is not discrete, since it contains its accumulation poifit @n
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the other hand, any class fromXy must be discrete, see [10]. Now, I&t = {x|¢.(x) is defined
be the halting set. LeV = {k0®|k € N} U {kO'10°|k € K, ¢x (k) halts in exactlyi steps. Clearly,
V is both r.e. and discrete. Moreovéf,e EX; andV ¢ E Xg, where the latter follows by a similar
argument as below. Actually, any IIM that wouldXg-learn the clasd could be used to decid¥,

a contradiction. Sinc& is discrete whileU is not, U cannot beE X-reduced toV by Lemma 2.1
(Clause 3). Now assume to the contrary tivais E X-reducible toU. Let ® be the first reducing
operator. A9 is injective, we have® (k0°°) # 0% for all but, may be, oné € N. Then the following
algorithm can be used to decide the halting Eetexcept maybe for one elemekt “For anyk € N,
find the minimalj € N such that®(k0/) = 0/1 for somei € N. Thenk € K iff ¢ (k) terminates
in at most; steps”. Indeed, ifp;(k) would terminate inr > j steps then, by the monotonicity of
©, O©k0'10™°) = ®(k0>), a contradiction to the injectivity &d. Consequentlyy is notE X-reducible
tou. 0O

In a sense, Theorem 5.4 shows that, as far as learning functions from finite samples is concerned,
“poor” topological structure (the cladsé is discrete) and relatively “high” algorithmic complexity (the
classV simulates the halting problem) cannot be traded for “rich” topological structure (theltless-
tains an accumulation point) and “low” algorithmic complexity (the clddsas a computable numbering
that provides complete finite descriptions for every function in the class).

Note that Theorem 5.4 does not remain valid oY . Actually, recall that all infinite r.e. classes from
E X are E X-complete forE Xo, as it directly follows from Theorem 4.4. Thus, these classes are equiv-
alent rather than incomparable. Consequerfl¥, is a “singular point” among all the identification
typesEX,,, m € N, with respect to the properties exhibited by Theorems 5.3 and 5.4.

Finally, we want to point out another difference between mind change complexity and intrinsic
complexity. Informally, we will show that in general, maximal mind change complexity does not im-
ply maximal intrinsic complexity. More exactly, we will exhibit a clagsfrom EX \ (.0 E X,

i.e., with unbounded and hence “maximal” mind change complexity. Moredvéself is r.e. On the
other handU is far from being of maximal intrinsic complexity, i.e., far from beidgX-complete.
Actually, U does not only not contain any dense subclass (as it would be necessary forEB&ing
complete by Theorem 4.1), biif even does not contain (even does not possess!) any accumulation
point.

Theorem 5.5. Thereisanr.e. class U of recursive functions such that
1. U € EX\U,po0 EXm.
2. U isnot E X-complete.

Proof. We need a slight generalization of the idea used in the proof of Theorem 5.3. Therefare) let
denote any effective bijection of all the pairs of natural numbers onto the natural numbets) Lgtbe
any effective enumeration of the [IMs as in Proposition 2.1. Then, fori anye N, by straightforward
diagonalization against the 1IM;, one can uniformly generate a finite cldss,, of recursive functions
such that
(@) card Uiy < m+ 2,
(b) for any functionf € U; p, f(0) = (i, m) anddist(f, (i, m)*°) <m + 1,
(C) Ui,m ¢ EXm(Ml)

Now definelU = {J;.q >0 Ui.m-
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Clearly, U is r.e., since all of the finite classés ,, are uniformly effectively generable. Hentee
E X, by [13]. On the other hand, due to condition (€) cannot beE X,,-learnable for anyz € N.
Moreover, by condition (b), for every natural numbe(= (i, m) for some unique, m € N), there
are only finitely many functiong € U such thatf (0) = y. Hence the clas& does not possess any
accumulation point. Thug¢/ cannot contain a dense subclass. Consequently, by Theorebi dahnot
be EX-complete. [

On the other hand, maximal intrinsic complexity always implies maximal mind change complexity.
Actually, it is very easy to show that any dense class cannot be identified with a bounded number of
mind changes.

6. Conclusions

We wanted to find out what makes classes of recursive functions most difficult to learn or, in a for-
mal sense, complete within the framework of intrinsic complexity [8]. Informally, the characteristic
properties for completeness consist in being both “topologically complex” and “algorithmically easy”.
Here topologically complex means being dense, i.e., consisting of accumulation points only, and al-
gorithmically easy means being recursively enumerable. Actually, the common structure of all of our
completeness characterizations is roughly the following: A class is complete if and only if this class
contains a recursively enumerable dense subclass.

On the one hand, it seems intuitively clear that the density of a class can make this class diffi-
cult to learn. It is well-known that not only density but already the presencednighe accumula-
tion point can make learning impossible at all. Actually, this is true for learning superfinite classes of
languages in the limit from text (see [13]), as well as for finite learning of recursive functions (see
[10]).

On the other hand, we feel that some explanation is needed for the counterintuitive fact that the prop-
erty of high topological complexity has to be combined with the property of low algorithmic complexity,
namely recursive enumerability, in order to yield completeness. Here recursive enumerability is said to
be a property of low algorithmic complexity, since being r.e. is kind of being “well-structured” rather
than more or less “unstructured”, what one could expect when the most difficult learning situations
are to be described. One might argue that density yields already so much difficulty that it needs some
compensation in order to keep the class learnable at all. But this is at best half the truth, since, clearly,
the recursive enumerability of the characteristic subclass ensures the learnabfiigsabclass, but in
general this cannot guarantee the learnability ofwhele complete class. A better explanation stems
from the fact that our complete example classes from Section 3 have to be reducible to an arbitrary
complete class. Recall that all these concrete complete classes are r.e. themselves. Hence, by Lemma 2.1
(Clause 1), any reducing operator transmits this recursive enumerability to some subclass of any com-
plete class; moreover, by Lemma 2.1 (Clause 4), any injective reducing operator transmits the density
to the same subclass of the corresponding complete class. A final, substantial explanation of the fact
above is the following. In order to be a complete class, every class from the corresponding learning
type must be mapped to this class by some recursive operator. But to be able to do this the operator
must “know” which functions of the complete class it may choose as its “targets”. One possibility of
formalizing this “knowledge” consists just in getting the operator acquainted with a suitable recursively
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enumerable subclass of the complete class. Thus, informally, knowing such an r.e. subclass enables the
operator “to hit the target”. Conversely, one can provide technical evidence thabriFexistence of

such an r.e. subclass results just in “missing the target”. Actually, by (non-effectively) diagonalizing
against all the recursive operators, one can construct a subcl&hsl8P which, though still being

dense, cannot be complete, since no injective recursive operator is able to map even the trivial class of
all constant functions to that class. Interestingly, a similar effect of being both topologically difficult
and algorithmically easy has been exhibited recently in the framework of classifying languages, see
[3,29].

A consequence of our completeness characterizations is the fact that there are classes which are
both complete and “self-describing”. Recall that it was commonly believed that self-describing clas-
ses are easy to learn. Specifically, the self-describing @ass{cip|le € N*, i > 2, p € Ro1, ¢i =
aip} turned out to beE X-complete. Notice that this class is not only equally hard to learn as the
classFINSUP in a formal sense (both classes afeX-complete), but also in the followingntuitive
sense. When learningINSUP one never can know if and when all the points of finite support have
been found; analogously, when learning the cl@ssne never can know if and when the last value
exceeding 1 has been found. One might wish to further argue that learning theCctdsall is “ar-
tificially/unnaturally easy”, since, for any function from, it suffices to findone only suitable value
of that function in order to know the whole function. This is formally correct. But, consider the class
of all polynomials on the reals. This class has an analogous property! Actually, for any polynomial
of degreen, an arbitrarily small interval, more exactlinitely many points, everarbitrary n + 1 of
the denumerably many ones suffice to recreate (to learn) the whole function. Hardly, anyone would
call the polynomials an artificial or unnatural class therefore. Naturally, we cannot exclude that for
some approach to the complexity of learning, all the self-describing classes are really easy to learn.
Answering this question in a rigorous way would requirgdamalize the notion of self-description,
though.

In general, each approach to formalize the notion of complexity of learning will focus on specific
features of this broad and diverse notion and will also have its specific implications. In this sense, we
feel it quite justified to study further approaches to this notion which may more or less differ from the
approach of intrinsic complexity. Slight modifications of the present approach could consist in allowing
the first reducing operator to be limit-recursive when learning in the limit is considered, or to require that
this operator is “length-preserving” in a reasonable sense. On the other hand, the approach by Nessel [23]
formalizing the complexity of learning also in a reducibility fashion strongly differs from our approach
by showing that in that approach the cl&d&SUP is not only not complete, but it has evemnimal
complexity. This is due to the fact that there the learning of “basic rules” is considered as the main
goal (the basic rule for the whole claB$NSUP is one and the same, namely the everywhere zero
function, and learning a single function is intuitively of minimal complexity, since it can be thought to
be known a priori), whereas collecting the finitely many and “arbitrarily chaotic” exceptions on which
any function of FINSUP may differ from this basic rule is not taken into the complexity account by
definition. Also, in contrast to our r.e. property in the context of intrinsic completeness as considered
above, we cannot exclude that for other approaches just some kihigjrofilgorithmic complexity
will turn out to be necessary for a class to belong to the most difficult to learn ones. Thus, it would
be desirable to study alternative approaches to the complexity of learning as well in order to yield a
more complete picture and thus further deepen our understanding of the diverse nature of this important
notion.
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