
Sacred Heart University Sacred Heart University

DigitalCommons@SHU DigitalCommons@SHU

School of Computer Science & Engineering
Faculty Publications School of Computer Science and Engineering

7-10-2003

On the Intrinsic Complexity of Learning Recursive Functions On the Intrinsic Complexity of Learning Recursive Functions

Sanjay Jain
National University of Singapore

Efim Kinber
Sacred Heart University

Christophe Papazian
Ecole Normale Supérieure de Lyon

Carl Smith
University Of Maryland College Park

Rolf Wiehagen
Universitat Kaiserslautern

Follow this and additional works at: https://digitalcommons.sacredheart.edu/computersci_fac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kinber, E., Papazian, C., Smith, C., & Wiehagen, R. (1999). On the intrinsic complexity of learning recursive
functions. Proceedings of the Twelfth Annual Conference on Computational Learning Theory - COLT '99.
doi:10.1145/307400.307465

This Peer-Reviewed Article is brought to you for free and open access by the School of Computer Science and
Engineering at DigitalCommons@SHU. It has been accepted for inclusion in School of Computer Science &
Engineering Faculty Publications by an authorized administrator of DigitalCommons@SHU. For more information,
please contact ferribyp@sacredheart.edu, lysobeyb@sacredheart.edu.

http://digitalcommons.sacredheart.edu/
http://digitalcommons.sacredheart.edu/
https://digitalcommons.sacredheart.edu/
https://digitalcommons.sacredheart.edu/computersci_fac
https://digitalcommons.sacredheart.edu/computersci_fac
https://digitalcommons.sacredheart.edu/computersci
https://digitalcommons.sacredheart.edu/computersci_fac?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ferribyp@sacredheart.edu,%20lysobeyb@sacredheart.edu

Information and Computation 184 (2003) 45–70

www.elsevier.com/locate/ic

On the intrinsic complexity of learning recursive functions

Sanjay Jain,a Efim Kinber,b Christophe Papazian,c Carl Smith,d,∗
and Rolf Wiehagene

aSchool of Computing, National University of Singapore, 119260 Singapore
bComputer Science Department, Sacred Heart University, Fairfield, CT 06432–1000, USA

cDépartement de Mathématique et d’Informatique, Ecole Normale Supérieure de Lyon, F-69364 Lyon Cedex 07, France
dDepartment of Computer Science, University of Maryland, College Park, MD 20742, USA

eFachbereich Informatik, Universität Kaiserslautern, D-67653 Kaiserslautern, Germany

Received 13 August 1999; revised 2 November 1999

Abstract

The intrinsic complexity of learning compares the difficulty of learning classes of objects by using some re-
ducibility notion. For several types of learning recursive functions, both natural complete classes are exhibited
and necessary and sufficient conditions for completeness are derived. Informally, a class is complete iff both its
topological structure is highly complex while its algorithmic structure is easy. Some self-describing classes turn
out to be complete. Furthermore, the structure of the intrinsic complexity is shown to be much richer than the
structure of the mind change complexity, though in general, intrinsic complexity and mind change complexity can
behave “orthogonally”.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

The problem of learning infinite objects from growing finite samples of their behavior has attracted
much attention in recent decades. In inductive inference the objects to be learned are recursive functions,
i.e., computable functions being everywhere defined on the setN of natural numbers. The finite samples
given to the learning machine are just initial segments of the infinite sequence of all the values of the cor-
responding function. The machine is said to learn that function if when fed increasing initial segments,
it eventually produces a program of the corresponding function and never changes its mind thereafter.

∗ Corresponding author. Fax: 1-301-405-6707.
E-mail addresses: sanjay@comp.nus.edu.sg (S. Jain), KinberE@sacredheart.edu (E. Kinber), cpapazia@ens-lyon.fr

(C. Papazian), smith@cs.umd.edu (C. Smith), wiehagen@informatik.uni-kl.de (R. Wiehagen).

0890-5401/03/$ - see front matter © 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0890-5401(03)00059-2

46 S. Jain et al. / Information and Computation 184 (2003) 45–70

A machine learns a class of functions if it learns every function from that class. This is basically the
concept of learning in the limit introduced in [13]. Other criteria for learning have been studied, see the
surveys [2,4,7,12,15,21,24].

In studying any model of learning, two fundamental aspects must be addressed; the qualitative aspect,
i.e., which object classes are learnable and which are not, and the quantitative aspect, i.e., how complex
are the learning tasks. There has been prior work on trying to get at the complexity of learning, see
for example [4–6,13,14]. Our work is different in that we use reducibilities as in both recursion theory
[27] and complexity theory [11]. The main idea of the so-called intrinsic complexity introduced in [8]
is to compare the complexity of learning problems. This is achieved by adopting some formal notion
of reducibility between learning problems. Namely, if for classesU,V of recursive functions to be
learned,U is reducible toV , then, informally,U is at most as hard to learn asV is. Clearly, with every
notion of reducibility comes a notion of completeness. A classV is complete for some learning type,
if all the classesU from that type are reducible toV . Our main goal consists of exhibiting natural
classes which turn out to be complete and characterizing completeness. Surprisingly, the characteristic
conditions do not depend much on the concrete learning type under consideration. Informally, these
properties consist in being both “topologically complex” and “algorithmically easy”. On the one hand,
it seems reasonable that high topological complexity can make learning difficult. On the other hand, the
fact that high topological complexity has to be combined only with low algorithmic complexity may
seem surprising and, in a sense, counterintuitive. We give some explanation of this fact below, when we
will have the corresponding proofs at hand.

Furthermore, we study the relationship between intrinsic complexity and mind change complexity.
Under some natural conditions greater mind change complexity is shown to imply greater intrinsic com-
plexity. Moreover, these conditions are necessary to this end. In general, intrinsic complexity and mind
change complexity behave “orthogonally” to each other.

In [16–18] the approach of intrinsic complexity was studied for language identification. The problem
of characterizing complete classes was not addressed in these papers. There has been one prior study
of reductions between learnable classes, see [25]. However, this approach differs from the approach of
intrinsic complexity in a fundamental way (see [8] for a more detailed discussion). The rest of this paper
is organized as follows. In Section 2 the necessary notation and definitions will be given, including
the formalization of the approach of intrinsic complexity. In Section 3 some natural function class and
its derivatives are shown to be complete for several learning types. Section 4 is devoted to derive the
corresponding characterizations of completeness for these learning types. In Section 5 the intrinsic com-
plexity is compared with the mind change complexity. Finally, in Section 6 we summarize our results
and discuss some of their consequences as well as possible future work.

2. Preliminary definitions and notation

For setsA,B,A ⊆ B andA ⊂ B will denote inclusion and proper inclusion, respectively.A \ B =
{x|x ∈ A, x /∈ B} denotes the difference ofA and B. ∅ stands for the empty set. Bycard A, the
cardinality ofA will be denoted. ForA ⊆ N,maxA and minA will stand for the maximum ofA and
the minimum ofA, respectively. The set of all finite sequences of natural numbers is denoted byN∗.

Let R denote the set of all (total) recursive functions of one argument. Forf ∈ R andn ∈ N, let
f n = (f (0), f (1), . . . , f (n)) be the initial segment off up ton. For any functionsf, g ∈ R andn ∈ N,

S. Jain et al. / Information and Computation 184 (2003) 45–70 47

let f =n g iff f n = gn, i.e., if f andg coincide up ton; andf /=n g otherwise. Letf n � g iff f =n g.
In this case we say also that the functiong extends the initial segmentf n, or thatg is an extension of
f n. Analogously,f n � gm iff n = min{n,m} andf =n g. At several places below we will identify a
recursive function with the infinite sequence of its values. Thus, for example, 0∞ stands for the every-
where zero function and 0i10∞ stands for the functionf such thatf (x) = 1, if x = i, andf (x) = 0
otherwise. Furthermore, letdist (f, g) = card{x|f (x) /= g(x)} denote thedistance betweenf andg.
The following classes of recursive functions will be used frequently in the sequel:
• the classFINSUP = {f |f ∈ R, dist (f, 0∞) < ∞} of the functions of finite support, i.e., the class

of all recursive functions that have a non-zero value at no more than finitely many arguments,
• the subclassesFINSUPm = {f |f ∈ R, 1 � dist (f, 0∞) � m+ 1} of FINSUP for anym ∈ N;

note that 0∞ /∈ FINSUPm by definition.
LetU ⊆ R andf ∈ R. Thenf is called anaccumulation point of U iff for any n ∈ N, there exists a

functiong ∈ U such thatg =n f butg /= f . Notice thatf can belong toU or not.U is calleddense iff
U is non-empty and, for anyf ∈ U, f is an accumulation point ofU . Clearly, any dense class must be
infinite.U is calleddiscrete iff U does not contain any accumulation point ofU .

Discrete and dense classes are opposites of each other in the very strong sense that discrete sets contain
no accumulation points and dense sets containonly accumulation points. However, one can show how to
build large collections of accumulation points only from discrete sets. We proceed by example. Notice
that we will rely on this example in Section 4.

LetFi denote the largest subset ofFINSUP containing only functions that have exactlyi + 1 support
points. The classesFi are discrete. For example,F0 contains the functions with exactly one support point
and can be graphically represented in a fashion suggestive of an effective enumeration,f0, f1, . . . , see
Fig. 1. Each row of Fig. 1 represents a function and thexth value in that row contains the value of the
function on argumentx. Notice the regularity of Fig. 1. For everyx, there is aj such that

fj (y) =
{

1 if y = x;
0 otherwise.

In fact,j is easily calculated from onlyx.

j = x +
x−1∑
k=1

k = x2 + x

2
.

We have used the convention that ifx − 1 < 1 then the sum evaluates to 0. Leth denote the function
that takesx to (x2 + x)/2.

Supposeσ is the lengthn initial segment of 0∞. Notice further thatfh(n) agrees withσ , butfh(n) /=
0∞. We have just shown (even effectively) that 0∞ is an accumulation point ofF0.

Suppose now thatk > 0 andf ∈ Fk−1. Thenf has exactlyk support points. Letσ be the lengthn+ 1
initial segment off , wheren is an arbitrary natural number. Thenσ has exactlyi support points, for
somei � k. Defineg = σ1k−i+10∞. Sog has thei support points fromσ and exactlyk − i + 1 others.
Hence,g ∈ Fk. Furthermore,g =n f by definition of g. Finally, g /= f , sincef has fewer support
points. Consequently,f is an accumulation point ofFk. Sincef was chosen somewhat arbitrarily, we
have established that, for allk > 0, any function inFk−1 is an accumulation point ofFk.

A non-empty classU ⊆ R is calledrecursively enumerable (r.e.) iff there is a universal recursive
functionu of U ; i.e.,u is a recursive function of two arguments enumerating exactly the classU, {ui |i ∈

48 S. Jain et al. / Information and Computation 184 (2003) 45–70

N} = U whereui = λxu(i, x). Thenu is called a (recursive)numbering of U . Furthermore, iff ∈ U

andui = f theni is called au-index (or au-number) off . Note that every infinite r.e. class possesses a
one-one numberingu, i.e., a numbering such thatui /= uj for anyi /= j , see [20]. Clearly,FINSUP and
all the classesFINSUPm, m ∈ N, are r.e.

Let ϕ be any acceptable programming system or, equivalently, any Gödel numbering of all the partial
recursive functions of one argument, see [22,26,28]. The natural numbers will then serve as names for
programs, andϕi will denote the function computed by programi. As above,i is called aϕ-index or aϕ-
number of a functionf iff ϕi = f . We will useϕ as the basic hypothesis space for all the learning types
below. Note that this allows the learning machines to work subsequently in other suitable hypothesis
spaces such as in recursive numberingsu as well, since anyu-index can be effectively translated into an
equivalentϕ-index.

Gold, in a seminal paper [13], defined the notion calledidentification in the limit. This definition
concerned learning by algorithmic devices now calledinductive inference machines (IIMs). An IIM
inputs the graph of a recursive function, an ordered pair at a time, and, while doing so, outputs com-
puter programs. Since we will only discuss the inference of (total) recursive functions, we may assume,
without loss of generality, that the input is received by an IIM in its natural domain increasing order,
f (0), f (1), . . . On input from a functionf , an IIM M will output an infinite sequence of programs
p0 = M(f 0), p1 = M(f 1), . . . The IIM converges iff there is a programp such that for all but finitely
manyi, pi = p. Then we say that the IIM converges top. In general, there is no effective way to tell
when, and if, an IIM has converged.

Fig. 1. The classF0.

S. Jain et al. / Information and Computation 184 (2003) 45–70 49

Following Gold, we say that an IIMM EX-identifies a functionf (written:f ∈ EX(M)), if, whenM is
given the graph off as input, it converges to a programp that computesf , i.e.,ϕp = f . More formally,
M is an operator which takes as input the functionf , and outputs the sequence(M(f n))n∈N of programs,
denoted byM(f).

Each IIM will learn some set of recursive functions. The collection of all such sets, over the universe
of effective algorithms viewed as IIMs, serves as a characterization of the learning power inherent in the
Gold model. This collection is symbolically denoted byEX and is defined rigorously byEX = {U |U ⊆
R, ∃M(U ⊆ EX(M))}. Note that any r.e. class of recursive functions belongs toEX, see [13].

Now let a ∈ N. Then we say that an IIMM EXa-identifies a functionf ∈ R (written: f ∈ EXa(M))
iff the sequenceM(f) converges to a programp such thatdist (ϕp, f) � a; i.e., EXa-learning allows
final hypotheses with at mosta anomalies. LetEXa = {U |U ⊆ R, ∃M(U ⊆ EXa(M))}.

We say that an IIMM EX∗-identifies a functionf ∈ R (written: f ∈ EX∗(M)) iff M(f) converges to
a programp such thatdist (ϕp, f) < ∞; i.e.,EX∗-learning allows final hypotheses with an arbitrary
finite number of anomalies. LetEX∗ = {U |U ⊆ R, ∃M(U ⊆ EX∗(M))}.

In order to define learning with a bounded number of mind changes, notice that without loss of
generality we can allow an IIM to output a special symbol ? for a while at the beginning of the learn-
ing process. ? can be interpreted as “I don’t know yet”. Clearly, this does not change the limit of the
corresponding sequenceM(f). On the other hand, this can save one unnecessary mind change, namely
the very first one, which could be forced by requiring to makeM(f 0) a real hypothesis fromN. Also
without loss of generality, we can assume thatM after producing a first hypothesis fromN will never
output ? again. Actually, by simply repeating its actual hypothesis,M can avoid undesired mind changes
without outputting ? again. This way we can also ensure thatM is defined on all possible input segments
just by outputting either ? or a hypothesis fromN. Now, for anym ∈ N, we say that an IIMM EXm-
identifies a functionf ∈ R (written:f ∈ EXm(M)) iff M(f) converges to a programp such thatϕp = f

and card{n|? /= M(f n) /= M(f n+1)} � m; i.e., on the functionf , the machineM changes its mind no
more thanm times. LetEXm = {U |U ⊆ R, ∃M(U ⊆ EXm(M))}.

Theorem 2.1 shows the relationships between the identification types defined above.

Theorem 2.1 [4].
1.EX0 ⊂ EX1 ⊂ · · · ⊂ EXm ⊂ EXm+1 ⊂ · · · ⊂ EX

2.EX = EX0 ⊂ · · · ⊂ EXa ⊂ EXa+1 ⊂ · · · ⊂ EX∗

In this paper we will be concerned only with the identification typesEX, EXa, EX∗, andEXm as
defined above. Subsequently, we letI stand for any one of these types.

Proposition 2.1. There exists an r.e. sequence M0, M1, M2, . . ., of inductive inference machines such that,
for any identification type I considered in this paper, for all C ∈ I, there exists an i ∈ N such that
C ⊆ I(Mi).

Ref. [15] shows the above forI = EX. Essentially, the same proof can be used for allI considered
in this paper. We assumeM0, M1, M2, . . . to be one such sequence of machines.

In the following we need the notion of admissible sequences of hypotheses as introduced in [8].
Informally, for an identification typeI, anI-admissible sequence for a recursive functionf is a sequence
of hypotheses which is “successful” when learningf in the sense ofI. For example, anEX-admissible

50 S. Jain et al. / Information and Computation 184 (2003) 45–70

sequence forf ∈ R is any sequence of programsp0, p1, . . . converging to somep such thatϕp = f .
Clearly, using this notion one could redefine the identification typeEX as follows:U ∈ EX iff there is
an IIM M such that for any functionf ∈ U, M(f) is anEX-admissible sequence forf . For the other
identification typesI, the notion ofI-admissible sequences is defined analogously.

Besides the notion of admissible sequences we need yet the concept of recursive operators in order to
give the basic definition of intrinsic complexity.

Definition 2.1 [27]. A recursive operator is an effective total mapping,), from (possibly partial)
functions to (possibly partial) functions, which satisfies the following properties:
(a) Monotonicity: For all functionsη, η′, if η ⊆ η′ then)(η) ⊆)(η′).
(b) Compactness: For allη, if (x, y) ∈)(η), then there exists a finite functionα ⊆ η such that(x, y) ∈

)(α).
(c) Recursiveness: For all finite functionsα, one can effectively enumerate (inα) all (x, y) ∈)(α).

In this paper we are concerned with the behavior of) on total functions only. Thus, without loss
of generality, in (c) above we may additionally assume that)(α) is finite for all finiteα, and one can
effectively determinecard)(α) (in addition to being able to enumerate)(α)).

We now present some easy results which will be used several times in the sequel. These results show
that to some extent, recursive operators preserve the structure of the classes they map. As it will be
clear from Lemma 2.1, structure can mean both algorithmic and topological structure. The proof of this
lemma is obvious and therefore omitted.

Lemma 2.1. Let U be any class of recursive functions, and let) be any recursive operator mapping
every function from U to a recursive function, i.e.)(U) ⊆ R. Then:
1. If U is r.e., then)(U) is r.e.
2. If h ∈ U is an accumulation point of U and) is injective, then)(h) is an accumulation point of

)(U).

3. If U is not discrete and) is injective, then)(U) is not discrete.
4. If U is dense and) is injective, then)(U) is dense.

On the other hand, recursive operators can map discrete classes to non-discrete classes as well. Actu-
ally, letU = {0i10∞|i ∈ N}. ThenU is both r.e. and discrete. Define a recursive operator) as follows:
)(10∞) = 0∞, and)(0i10∞) = 0i10∞ for any i > 0. Then) is injective and)(U) is not discrete,
since this class contains its accumulation point 0∞.

We now come to the basic definition of intrinsic complexity.

Definition 2.2. SupposeI is an identification type andU,V ∈ I. ThenU is said to beI-reducible to
V (written:U �I V) iff there exist recursive operators) and, such that for any functionf ∈ U ,
1.)(f) ∈ V ,
2. for anyI-admissible sequenceσ for)(f), ,(σ) is anI-admissible sequence forf .

Notice that unlike [8] in the definition above we do not require) to be injective. This is due to the
fact that in learning with anomalies one and the same sequence can be admissible for infinitely many
functions. Consequently, there is no ultimate need for the operator) to be injective. On the other hand,

S. Jain et al. / Information and Computation 184 (2003) 45–70 51

for the other identification typesI considered in this paper,I-reducibility ofU toV by operators) and
, obviously implies the injectivity of).

Intuitively, if U is I-reducible toV thenV is at least as difficult to learn in the sense ofI asU is.
Actually, for any IIM M thatI-learnsV , one can easily construct an IIMM′ thatI-learnsU as follows:
M′(f) = ,(M()(f))). Consequently, in that senseV is most difficult for I-learning ifall classesU ∈ I
areI-reducible toV .

For an identification typeI, a classV ⊆ R is calledI-complete iff V ∈ I and any classU ∈ I is
I-reducible toV .

For an identification typeI and classesU,V ∈ I, U andV are said to beI-comparable, I-incom-
parable, andI-equivalent, respectively, iff (1)U �I V or V �I U , (2) neitherU �I V norV �I U ,
(3)U �I V andV �I U , respectively. Finally,U <I V iff U �I V , but notV �I U .

3. Natural examples of complete classes

In this section we will prove some natural classes complete for the typesEX, EXa, EX∗, andEXm.
Notice that these classes essentially differ from the so-called cylinder classes which were used in [8] in
order to construct a complete class for a given identification typeI in some uniform way. Informally,
to get such a cylinder class for a typeI each recursive function was combined with all the IIMs which
were capable to learn that function in the sense ofI. Thus, these cylinder classes very directly depend
on the learning type under consideration. In contrast, our classes presented below are not distinguished
by such a close and direct relationship to the corresponding learning type. Actually, all these classes
come from a common natural source, namely the classFINSUP of the functions of finite support, that is,
all functionsf ∈ R such thatcard{x|f (x) /= 0} < ∞, or, equivalently,dist (f, 0∞) is finite. This class
itself was shown to beEX-complete in [8].

Theorem 3.1. [8] FINSUP is EX-complete.

We show that the same classFINSUP is complete for all the typesEXa, a ∈ N, as well. Thus, sur-
prisingly,EX contains a class being complete for all theEXa, despite the fact thatEX is a smaller and
smaller subset of theEXa. For the typesEX∗ andEXm, m ∈ N, we then prove natural modifications
of FINSUP to be complete.

Theorem 3.2. For any a ∈ N, F INSUP is EXa-complete.

Proof. Let a ∈ N. ThenFINSUP ∈ EXa, sinceFINSUP is r.e., henceFINSUP ∈ EX, andEX ⊆
EXa. In order to show that every class fromEXa can be reduced toFINSUP, we need the following
partitioning of the set of all natural numbers into consecutive intervals of length 2a + 1. For anyn ∈ N,
let Xa

n denote the set{(2a + 1)n, (2a + 1)n+ 1, . . . , (2a + 1)n+ 2a} of cardinality 2a + 1. Clearly,
Xa
n ∩Xa

n′ = ∅ if n /= n′. Furthermore,
⋃

n�0X
a
n = N. Now letU be an arbitrary class fromEXa. Let M

be any IIM that identifiesU in EXa-style. Without loss of generality assume thatM does not output ? on
any input. Then, for anyx ∈ N, find the onlyn ∈ N such thatx ∈ Xa

n and define

)(f)(x) =
{
M(f n)+ 1 if n = 0 orM(f n) /= M(f n−1);
0 if n � 1 andM(f n) = M(f n−1).

52 S. Jain et al. / Information and Computation 184 (2003) 45–70

Clearly,) is a recursive operator mappingU to FINSUP, since the machineM changes its mind only
finitely often on any functionf ∈ U .

Intuitively,) encodes the sequence of hypotheses produced byM onf into the function)(f) in a way
that is “robust with respect to anomalies”. Actually, even if at mosta among the 2a + 1 consecutively
encoded hypotheses will be “destroyed” by the maximum of anomalies allowed inEXa-learning the
function)(f), the remaininga + 1 “undestroyed” hypotheses will keep the majority. This in turn sug-
gests the following definition of the operator,. Let σ be anyEXa-admissible sequence for a function
)(f) wheref ∈ U . Then,(σ) can be defined as follows:
• Search for the limit ofσ , sayj ; note thatdist (ϕj ,)(f)) � a, henceϕj(x) = 0 for almost allX ∈ N,

since)(f) ∈ FINSUP,
• search for the maximaln ∈ N such that within the intervalXa

n, the functionϕj takes a non-zero
value at leasta + 1 times; note that this interval corresponds to the final hypothesis produced by
M onf ,

• find the onlyy > 0 such that withinXa
n, the functionϕj takes that valuey on at leasta + 1 arguments,

• converge toy − 1.
Clearly,y − 1 is just the final hypothesis produced by the IIMM on the functionf . Consequently, the

classU isEXa-reducible toFINSUP by the operators) and,. �

As we have seen above, the intervalsXa
n of finite length 2a + 1 were sufficient to overcome the diffi-

culties caused by the anomalies within the final hypotheses ofEXa-learning, whena is a fixed number.
Now, for EX∗-learning, we will need intervals ofinfinite length instead. In the following definition,
the sets of powers of the prime numbers will play this role of intervals of infinite length. Therefore let
QUASIFINSUP denote the set of all recursive functionsf such that:
1. For everyx ∈ N, if x is not a power of a prime number, thenf (x) = 0.
2. For all but finitely many prime numbersp, f (pk) = 0 for all k ∈ N.
3. For every prime numberp, there arey, n ∈ N such that either

f (pk) = y for all k � 1,

or

f (pk) =
{
y if 1 � k � n;
0 otherwise.

Thus, for any sequencep, p2, p3, . . ., either the values off are equal on all arguments from the se-
quence, or they are equal to a non-zero number on the arguments from a finite initial segment of the
sequence and are zero on the arguments from the rest of the sequence.

Note thatQUASIFINSUP is an r.e. class.

Theorem 3.3. QUASIFINSUP is EX∗-complete.

Proof. Obviously,QUASIFINSUP is EX∗-learnable, asQUASIFINSUP is r.e. Now letU be an arbi-
trary class fromEX∗. LetM be any IIM thatEX∗-learnsU . Without loss of generality assume thatM does
not output ? on any input. Letpi denote theith prime number, wherep0 = 2. Then, for any function
f ∈ U and anyx ∈ N, define an operator) as follows:

S. Jain et al. / Information and Computation 184 (2003) 45–70 53

)(f)(x)=“Let i � x be the maximal number such thati = 0 orM(f i) /= M(f i−1).

If x=pki for somek�1, then let)(f)(x)=M(f i)+ 1. Otherwise, let)(f)(x)=0”.

Clearly,) is a recursive operator mappingU to QUASIFINSUP. Note that for any functionf ∈ U ,
there is exactly one numberi such that)(f)(x) /= 0 for all x = pki , k � 1, namely just thati where
the machineM makes its last mind change on the functionf . Moreover, by the definition of), for
every other primep /= pi , there can be at most finitely many argumentsx = pk with)(f)(x) /= 0.
Finally, by the definition ofQUASIFINSUP, for all but finitely many primesp,)(f)(x) = 0 for all
x = pk, k � 1. Hence, the number of non-zero values of)(f) on the interval of the powers ofpi
will eventually exceed the corresponding number of non-zero values of)(f) on any other interval
of prime powers. Clearly, this property remains valid for every function which differs from)(f) on
at most finitely many arguments, i.e., especially, for every functionϕj wherej is the limit of any
EX∗-admissible sequence for)(f). This suggests the following definition of the operator,. Let σ
be anyEX∗-admissible sequence for a function)(f) wheref ∈ U . Then,(σ) can be defined as
follows:
• Search for the limit ofσ , sayj ; note thatdist (ϕj ,)(f)) is finite; henceϕj has the property mentioned

above,
• search for the only numberi such that on the argumentsx = pki , k�1, the functionϕj takes more

non-zero values than on the argumentsx = pk for any other primep /= pi ,
• find the valuey that will be taken byϕj on all but finitely many argumentsx = pki , k � 1,
• converge toy − 1.

Clearly,y − 1 is just the hypothesis the machineM converges to on the functionf . Consequently, the
classU isEX∗-reducible toQUASIFINSUP by the operators) and,. �

In order to exhibit classes which are complete forEXm, m ∈ N, we will modify the standard defini-
tion ofEXm-completeness by defining the notion of “EX-completeness forEXm”.

Definition 3.1. Let m ∈ N. A classV of recursive functions is calledEX-complete forEXm iff V ∈
EXm and, for any classU ∈ EXm, U isEX-reducible toV .

Informally, by definition,EX-completeness forEXm allows all the admissible sequences to be of
“EX-style” rather than “EXm-style”, thus giving the reducing operators, some more freedom.

Now, recall that for anym, FINSUPm denotes the subclass ofFINSUP consisting of all functions
which contain at least one and at mostm+ 1 non-zero points; formally,

FINSUPm = {f |f ∈ FINSUP, 1 � card{x|f (x) /= 0} � m+ 1}.

Recall that each of the classesFINSUPm is r.e.

Theorem 3.4. For any m ∈ N, FINSUPm is EX-complete for EXm.

The proof of Theorem 3.4 is pretty analogous to the proof of Theorem 3.1 (see [8]) and therefore
omitted.

54 S. Jain et al. / Information and Computation 184 (2003) 45–70

4. Characterizations of complete classes

Now we are going to characterize completeness for all the identification typesEX,EXa,EX∗, and
EXm, wherea,m ∈ N.

Theorem 4.1. For any class U ∈ EX, U is EX-complete iff U contains an r.e. dense subclass.

Proof. Necessity: LetU beEX-complete. ThenFINSUP is EX-reducible toU by recursive opera-
tors) and,. Clearly,)(FINSUP) ⊆ U and) is injective. Moreover,FINSUP is r.e. and dense.
Consequently,)(FINSUP) is r.e. and dense by Lemma 2.1.

Sufficiency: LetU ∈ EX contain the r.e. dense subclassV . Then it suffices to show thatFINSUP
is EX-reducible toV . Actually, sinceFINSUP is EX-complete by Theorem 3.1, this would imply
that bothV andU areEX-complete as well. We even prove a somewhat more general result name-
ly, that any infinite r.e. class isEX-reducible toV . Thus, letW be any infinite r.e. class, and letw
be any one-one numbering ofW . For any i, j , i /= j , let xij denote the least numberx such that
wi(x) /= wj(x). Furthermore, letv be any one-one numbering ofV . Then inductively define the operator
) as follows:

)(w0) = v0;

and for anyi > 0,

)(wi) = “Search for the leastw-index k < i such that wk is “most similar” to wi ,
i.e.,xik = max{xij |j < i}.
Then search for the leastv-indexm such that both
• vm is “sufficiently similar” to)(wk), i.e.,vm =xik)(wk);

Comment: This ensures the monotonicity of).
• vm is not in the present range of), i.e.,vm /∈)({w0, . . . , wi−1});

Comment: This ensures the injectivity of). Note thatvm must exist, sinceV is dense. Moreover,vm
can effectively be found, sinceV is r.e.

Define)(wi) = vm”.
Clearly,) is a recursive operator mappingW injectively toV . Moreover, the following claim implied

by the definition of) will be useful to define the second operator,.

Claim A. Given anyv-index m such thatvm ∈)(W), one can effectively find the corresponding
w-indexi such that)(wi) = vm.

Proof of Claim A. Consecutively, fori = 0, 1, 2, . . . , look at the functions)(wi), as defined above,
until the rightw-indexi has been found. �

In order to define the operator, we need yet another technical algorithm which, in the limit, allows
us to translateϕ-indices into equivalentv-indices.

Claim B. For any r.e. setS of recursive functions, given any numberings of S and anyϕ-index
j such thatϕj ∈ S, one can effectively produce a sequence ofs-indices converging to ans-index
of ϕj .

S. Jain et al. / Information and Computation 184 (2003) 45–70 55

Proof of Claim B. Given the numberings, the ϕ-index j and anyn ∈ N, definemn = min{i|i �
n, si =n ϕj } ∪ {n}. Thus,smn is the first function amongs0, s1, . . . , sn, if any, which coincides with
ϕj up ton. Clearly,mn can be found effectively, sinceϕj and all thesi , i ∈ N, are recursive functions.
Moreover, obviously, the sequence(mn)n∈N converges to the leasts-index of the functionϕj . �

We now are ready to define the operator,. Therefore, letσ be anyEX-admissible sequence of
ϕ-indices for any function)(f), f ∈ W . Then,(σ) can be defined as follows:
• Search for the limit ofσ , sayj ; note thatϕj =)(f),
• in the limit, find av-indexm of ϕj by applying the algorithm from Claim B,
• find thew-indexi such that)(wi) = vm by applying the algorithm from Claim A,
• converge to aϕ-index ofwi .

Clearly, sincevm = ϕj =)(f), we getwi = f by the injectivity of). This completes the proof that
W isEX-reducible toV by the operators) and,. �

Next, we will present a characterization ofEXa-complete classes for anya ∈ N. Therefore, we need
an additional property of r.e. dense classes, namely that all the functions of such a class can be chosen to
have sufficiently large distance from each other. This property will enable the reducing operators to deal
with the anomalies allowed inEXa-learning. The following lemma just states that all r.e. dense classes
possess this property.

Lemma 4.1. For any d ∈ N, any r.e. dense class contains an r.e. dense subclass where all the distinct
functions have distance at least d.

Proof. We start with the following Claim which, intuitively, states that given an r.e. dense classW and
a functionf ∈ W , one can find another functiong ∈ W such thatg both “arbitrarily much” coincides
with f and “arbitrarily much” differs fromf .

Claim. Let W be any r.e. dense class and letw be any numbering ofW . Then, given anyw-in-
dex i and anyn,m ∈ N, one can effectively find aw-index j such thatwj =n wi anddist (wj ,wi)

� m.

Proof of Claim. LetW andw as above. Leti, n ∈ N be arbitrarily fixed; setf = wi . Then we proceed
by induction onm. Obviously, form = 0, j = i suffices.

Now, by induction, suppose that for everyp < m, m � 1, one can effectively find aw-indexjp such
thatwjp =n f anddist (wjp, f) � p. Let h = wjm−1. Clearly,h =n f anddist (h, f) � m− 1. Let
x � n be the least argument such thatcard{y|y � x, h(y) /= f (y)} � m− 1. Sinceh ∈ W andW is
dense, there must be a functiong ∈ W such thatg =x h andg /= h. Moreover, sinceW is r.e., aw-index
of one suchg can easily be found by searching for the leastj ∈ N such thatwj =x h andwj /= h.
Clearly,dist (g, f) � m or dist (h, f) � m. Furthermore, it is straightforward to effectively fix one of
the functionsg or h (and, hence, aw-index of this function) with the desired distance property. This
completes the proof of the Claim.�

Now let W be any r.e. dense class, and letw be any numbering ofW . Furthermore, letd ∈ N be
given. Then we can inductively define a numberingv of a subclassV of W with the desired properties
as follows.

56 S. Jain et al. / Information and Computation 184 (2003) 45–70

Let (is)s∈N denote the sequence 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, . . . in which every natural number occurs
infinitely often. Notice thatis < s for anys � 1.

Stage 0.
Definev0 = w0, and go to stage 1.

Stages, s � 1.
By induction assume that for anyv-index i < s, a w-index i′ can effectively be computed such that
vi = wi′ . Also by induction assume that for any distincti, j < s, dist (vi, vj) � d. Then effectively
find an arbitraryn � s such that for any distincti, j < s, card{x|x � n, vi(x) /= vj (x)} � d, i.e., on
their initial segments of lengthn the functions enumerated byv so far have pairwise distance at leastd.
Now, by applying the Claim above, search for aw-indexj such that

wj =n w(is)′(= vis) anddist (wj ,w(is)′) � d.

Definevs = wj , and go to stages + 1.
Clearly,V = {vi |i ∈ N} is an r.e. subclass ofW . Moreover, by the choice of bothn andvs , each

new functionvs has distance at leastd, from all the previously enumerated functionsvi, i < s, i.e.,
including vis . This proves the desired distance property ofV . Finally, by the choice of the sequence
(is)s∈N, arbitrarily large initial segments of each functionvi, i ∈ N, will be extended. More exactly, for
each functionvi and anyx ∈ N, there is some stages such thatis = i, vs =x vi andvs /= vi . Hencevi
is an accumulation point ofV and, consequently,V is dense. �

Then we get the following characterization ofEXa-completeness.

Theorem 4.2. For any a ∈ N and for any class U ∈ EXa, U is EXa-complete iff U contains an r.e.
dense subclass.

Proof. Necessity: LetU be anyEXa-complete class,a ∈ N. LetV be any r.e. dense class such that for
any distinct functionsf, g ∈ V , dist (f, g) > 2a. Note thatV exists by Lemma 4.1. Clearly,V ∈ EX ⊆
EXa, sinceV is r.e. Consequently,V is EXa-reducible toU by some operators) and,. We claim
that) has to be injective. Actually, otherwise distinct functionsf, g ∈ V with)(f) =)(g) would
exist. Hence, for eachEXa-admissible sequence for the function)(f) =)(g), the operator, had to
construct a sequence beingEXa-admissible for both functionsf andg. But this is impossible, since
dist (f, g) > 2a by the definition ofV . This contradiction proves) to be injective. Hence)(V) ⊆ U

is r.e. and dense by Lemma 2.1.
Sufficiency: LetU ∈ EXa, a ∈ N, contain an r.e. dense subclassW . Then, by Theorem 3.2, it suffices

to show thatFINSUP is EXa-reducible toW . In order to do this, we need to map the functions from
FINSUP to an r.e. densesubclass V of W where for any distinct functionsg, h ∈ V , dist (g, h) > 2a.
Note that such a classV exists by Lemma 4.1. Informally, this additional property ofV will enable the
second operator, to identify the functionsf ∈ FINSUP from anyEXa-admissible sequence for the
function)(f). Formally, we need this property in the proof of Claim B.

For the following, letw denote any one-one numbering ofFINSUP, and letv denote any one-one
numbering ofV . Then, sinceV is both r.e. and dense, the operator) can be defined in the same way as
in the proof of Theorem 4.1; again,) is injective. Also, Claim A of that proof remains valid, even with
exactly the same proof.

S. Jain et al. / Information and Computation 184 (2003) 45–70 57

Claim A. Given anyv-indexm such thatvm ∈)(FINSUP), one can effectively find the correspond-
ingw-indexi such that)(wi) = vm.

Proof of Claim A. Consecutively, fori = 0, 1, 2, . . . , look at the functions)(wi), as defined above,
until the rightw-indexi has been found. �

However, in contrast to the sufficiency proof of Theorem 4.1, the operator, now gets onlyEXa-
admissible sequences for the functions)(f) rather thanEX-admissible ones. Hence, we have to modify
Claim B in the following way.

Claim B. Given anyϕ-indexj such thatdist (ϕj , g) � a for someg ∈ V , one can effectively produce
a sequence ofv-indices converging to thev-index ofg.

Proof of Claim B. First note that the functiong ∈ V above is unique due to the property that the
distance of any distinct functions fromV exceeds 2a. Second note that the functionϕj may be undefined
on at mosta arguments. This leads to the following algorithm which, intuitively, keeps anyv-index s
until it will be clear thatdist (ϕj , vs) > a, and hencevs must differ from the functiong.

“Go to stage 0.
Stages, s � 0.
Outputs. Check if there are at leasta + 1 argumentsx such thatϕj (x) is defined and
ϕj (x) /= vs(x), in which case go to stages + 1”.

Clearly, due to the distance property ofV , the algorithm above will converge to thev-index ofg. �

Then the operator, can be defined analogously to the sufficiency proof of Theorem 4.1 . Therefore,
letσ be anyEXa-admissible sequence ofϕ-indices for any function)(f), f ∈ FINSUP . Then define
,(σ) as follows:
• Search for the limit ofσ , sayj ; note thatdist (ϕj , g) � a for some unique functiong ∈ V ,
• in the limit, find thev-indexm of g by applying the algorithm from Claim B,
• find thew-indexi such that)(wi) = vm by applying the algorithm from Claim A,
• converge to aϕ-index ofwi .
Clearly, sinceg = vm =)(wi), we getwi = f by the injectivity of). Consequently,FINSUP isEXa-
reducible toV (and hence toW) by the operators) and,. �

In order to characterizeEX∗-complete classes in an analogous way as done in Theorem 4.2 for
EXa-complete classes, we would need the following strengthening of Lemma 4.1: Any r.e. dense class
contains an r.e. dense subclass where all the distinct functions haveinfinite distance. However, in general,
this strengthening is not valid. Actually, just the r.e. and dense classFINSUP provides a counterexample,
since all the functions fromFINSUP havefinite distance from each other. On the other hand, this infinite
distance property turns out to be really necessary in order to deal withEX∗-admissible sequences.
Consequently, we have to insert this property directly into the characterization.

Theorem 4.3. For any class U ∈ EX∗, U is EX∗-complete iff U contains an r.e. dense subclass where
all the distinct functions have infinite distance.

58 S. Jain et al. / Information and Computation 184 (2003) 45–70

Proof. Necessity: LetU be anyEX∗-complete class. Then, by Theorem 3.3,QUASIFINSUP isEX∗-
reducible toU by some operators) and,. LetQ denote the subclass ofQUASIFINSUP such that for
any functionf ∈ Q and any primep, the functionf takes the same value on all argumentspm, m � 1.
We claim that)(Q) will be the desired subclass ofU . In order to show this note thatQ is r.e. and dense.
Moreover, all the distinct functions fromQ have infinite distance.

Claim. For any distinct functionsf, g ∈ Q, dist ()(f),)(g)) = ∞.

Proof of Claim. Assume to the contrary that for some distinct functionsf, g ∈ Q, dist ()(f),)(g))
is finite. Then there is a sequenceσ which isEX∗-admissible for both functions)(f) and)(g). Hence,
by definition,,(σ) has to converge to some index of a function with finite distance from bothf andg.
But this is impossible, sincef ∈ Q andg ∈ Q are of infinite distance. This contradiction completes the
proof. �

The Claim above immediately implies that both the operator) is injective onQ and all the distinct
functions from)(Q) have infinite distance. Moreover,)(Q) is r.e. and dense by Lemma 2.1. Thus,
)(Q) is the desired subclass ofU .

Sufficiency: Informally, this proof follows the same line as the sufficiency proof of Theorem 4.2
replacing the distance bound of 2a from that proof by the infinite distance property. The latter leads to
some modification of both the statement of Claim B below and its proof. Furthermore,QUASIFINSUP
is used rather thanFINSUP, of course.

Let V be an r.e. dense subclass ofU where all the distinct functions have infinite distance. Letv be a
one-one numbering ofV . It suffices to show thatQUASIFINSUP is EX∗-reducible toV . Letw denote
any one-one numbering ofQUASIFINSUP. Define the operator) mappingQUASIFINSUP to V as in
the sufficiency proof of Theorem 4.2, and hence as in the sufficiency proof of Theorem 4.1. Then) is
injective.

Claim A. Given anyv-indexm such thatvm ∈)(QUASIFINSUP), one can effectively find the
correspondingw-indexi such that)(wi) = vm.

Proof of Claim A. Consecutively, fori = 0, 1, 2, . . . , look at the functions)(wi), as defined above,
until the rightw-indexi has been found. �

Claim B. Given anyϕ-indexj such thatdist (ϕj , g) < ∞ for someg ∈ V , one can effectively produce
a sequence ofv-indices converging to thev-index ofg.

Proof of Claim B. Note that the functiong ∈ V is unique, since all the distinct functions fromV have
infinite distance. Moreover, the functionϕj may be undefined on at most finitely many arguments. This
leads to the following algorithm which, intuitively, comes back to eachv-index i arbitrarily often and
keeps the present indexi as long as no further point of difference betweenvi andϕj will be developed.
Therefore, let(is)s∈N denote the sequence 0, 1, 0, 1, 2, 0, 1, 2, 3, . . . in which every natural number oc-
curs infinitely often. For anyi ∈ N, setXi = ∅; intuitively, Xi will denote the set of all argumentsx
developed so far on whichvi andϕj are different. Then the algorithm can be defined as follows.

“Go to stage 0.

S. Jain et al. / Information and Computation 184 (2003) 45–70 59

Stages, s � 0.
Outputis . Check if there is anx /∈ Xis such thatϕj (x) is defined andϕj (x) /= vis (x), in
which case setXis = Xis ∪ {x} and go to stages + 1”.

Now letm denote the onlyv-index of the functiong. Let i be an arbitrary number such thati /= m.
Sincedist (vi, vm) = ∞, each stages with is = i entered by the algorithm above will eventually be
left. Hence the algorithm must reach some stages such thatis = m andXis already contains all the
argumentsx such thatϕj (x) is defined andϕj (x) /= vm(x). Consequently, stages will never be left, and
the algorithm converges tom. �

Now letσ be anyEX∗-admissible sequence for any function)(f), f ∈ QUASIFINSUP. Then define
,(σ) as follows:
• Search for the limit ofσ , sayj ; note thatdist (ϕj , g) is finite for exactly one functiong ∈ V ,
• in the limit, find thev-indexm of g by applying the algorithm from Claim B,
• find thew-indexi such that)(wi) = vm by applying the algorithm from Claim A,
• converge to aϕ-index ofwi .

Sinceg = vm =)(wi), we getwi = f by the injectivity of). HenceQUASIFINSUP is EX∗-re-
ducible toV by the operators) and,. �

Finally, we will characterizeEX-completeness forEXm. Therefore we have to modify the notion of
density in the following way.

Definition 4.1. Let U ⊆ R andm ∈ N. ThenU is calledm-dense iff there are pairwise disjoint infi-
nite classesU0, U1, . . . , Um such that

⋃
i�m Ui = U , and, for anyi < m, each function fromUi is an

accumulation point ofUi+1.
Furthermore, ifU is r.e., thenU0, U1, . . . , Um are r.e. as well.

A typical example for anm-dense class is just FINSUPm, see the discussion around Fig. 1 in Section 2.

Theorem 4.4. For any m ∈ N and any class U ∈ EXm, U is EX-complete for EXm iff U contains an
r.e. m-dense subclass.

For the proof of Theorem 4.4, the reader is referred to [19].

The characterization given by Theorem 4.4 is especially easy form = 0, namely: For any classU ∈
EX0, U isEX-complete forEX0 iff U contains an infinite r.e. subclass. This follows immediately from
Theorem 4.4 and the definition ofm-density.

We now want to point out a consequence of our completeness characterizations above, namely that
there are classes which are both complete and “self-describing”. Actually, in [8] it was proved that the
standard self-describing classS = {f |f ∈ R, ϕf (0) = f }, i.e., the class of all recursive functions that,
on argument 0, return a program computing themselves, is notEX-complete. However, this class is
EX-complete forEX0. Indeed, by the Recursion Theorem [27], there is a functiong ∈ R such that for
anyi ∈ N, ϕg(i) = g(i)i∞. Hence, the class{ϕg(i)|i ∈ N} is an infinite r.e. subclass ofS. Consequently,
S is EX-complete forEX0. Moreover, classes which are both complete and self-describing exist at
the bottom of the mind change hierarchy, and also withinevery level including the very top level of

60 S. Jain et al. / Information and Computation 184 (2003) 45–70

unbounded mind changes. In order to see the latter point, consider the classC = {αip|α ∈ N∗, i �
2, p ∈ R0,1, ϕi = αip}, whereR0,1 denotes the set of all 0–1-valued functions fromR. Clearly,C is a
self-describing class; in order toEX-learn this class a learning machine has only to find the last value
i � 2 and to converge to this self-describing value. Moreover,C is dense. This easily follows from the
fact thatC is “initially complete”, i.e., for every initial segmentα ∈ N∗, there is a function inC that is
consistent withα. Obviously, every initially complete class is dense. Furthermore, one can show thatC

is not contained in any recursively enumerable class (otherwise,R0,1 would be contained in an r.e. class,
a contradiction). Nevertheless,C contains a subclassD which is both r.e. and dense. In order to see this
note that by use of the Recursion Theorem, for anyα ∈ N∗, one can uniformly construct aniα ∈ N such
that αiα0∞ ∈ C. Hence the classD = {αiα0∞|α ∈ N∗} is r.e. Moreover,D is initially complete and
hence dense. Consequently,C isEX-complete by Theorem 4.1. Analogously, one can show that for any
m � 1, theEXm-versionsCm of the classC above, i.e.,Cm = {f |f ∈ C, card{x|f (x) � 2} � m+ 1},
areEX-complete forEXm.

5. Intrinsic complexity versus mind change complexity

In this section we mainly want to explore how intrinsic complexity and mind change complexity
relate to each other. First we will show that under some natural conditions, greater mind change com-
plexity implies greater intrinsic complexity, Theorem 5.1. However, greater mind change complexity
does not always imply greater intrinsic complexity, Theorem 5.2. Thus, mind change complexity and
intrinsic complexity are in a sense “orthogonal”. Nevertheless, further results, Theorems 5.3 and 5.4,
then yield that the structure of the intrinsic complexity is much richer than the quasi-linearly ordered
structure of the mind change complexity. Informally, these theorems state that on any levels of the mind
change hierarchy, there are classes which are intrinsically “unrelated”. Finally, we prove that in general,
maximal mind change complexity does not imply maximal intrinsic complexity, Theorem 5.5. This is
due to the fact that high mind change complexity does not always imply high topological complexity,
as it would be necessary for maximal intrinsic complexity by the results of Section 4. Notice that all
these results above can be shown forrecursively enumerable function classes, and hence for “natural”
classes.

Note that for mind changes bounded byordinal numbers (see [9]), there are results similar to those
announced above, but we do not include them here because of the technical machinery which would be
necessary to state and to prove these results. We only want to mention one fact in this respect. In [1] it
is shown (within the framework of learning languages from text) that a class is learnable with an ordinal
mind change bound if this class is learnable by a machine which converges on any input sequence, even
on non-computable ones. Using this result one can prove that no dense class, in particular no complete
class, can be learned with an ordinal mind change bound. Thus, mind change bounds are always a sign
for incompleteness.

In order to state and to prove the first result of this section we need a few more notions. Suppose
U ∈ EX. If U ∈ ⋃

m�0EXm, then definemcc(U) = min{m|U ∈ EXm}, wheremcc stands for “mind
change complexity”. IfU ∈ EX\ ⋃

m�0EXm, then letmcc(U) = ∗. By definition,m < ∗ for anym ∈
N. Now, letV be any non-empty class of recursive functions. The classV is calledbounded iff for any
functionf ∈ V and anyn ∈ N, there are at most finitely many valuesy ∈ N such thatf ny � g for some
functiong ∈ V ; furthermore an upper bound on suchy can be effectively found fromf n. That is, for

S. Jain et al. / Information and Computation 184 (2003) 45–70 61

any initial segmentf n from V , one can effectively determine ab such that, for anyy > b, no extension
of f ny belongs toV . For example, all classes of predicates (i.e., functions taking only the values 0, 1)
are bounded. Note that, in definition of bounded class above, we allow{f (0)|f ∈ V } to be unbounded.
Though this is not crucial for our results, it makes some of the proofs easier. Another consequence of a
class being bounded is that the tree formed by this class is of bounded degree (except, possibly, at the
root). This allows to apply König’s Lemma, as we will do below.

The classV is said to beclosed iff V contains all of its accumulation points. Equivalently, for any
functionf ∈ R, if every initial segmentf n, n ∈ N, can be extended to a function fromV , thenf itself
must belong toV as well. For example, all of the classesFINSUPm,m ∈ N, are not closed, since, by
definition, they all do not contain their accumulation point 0∞. However,FINSUP0 ∪ {0∞} is closed.
Also FINSUP is not closed, sinceevery recursive function is an accumulation point ofFINSUP; hence,
the “closure” ofFINSUP would be the setR of all recursive functions.

Finally, we call the classV decidable iff the set{f n|f ∈ V andn ∈ N} of all the initial segments of
functions fromV is decidable. In other words, for an arbitrary initial segment, one can effectively find
out if there is a function from the class which extends that initial segment.

Theorem 5.1. For any EX-comparable classes U,V such that V is bounded, closed, and decidable,
if mcc(U) < mcc(V) then U <EX V.

Proof. Let U,V be anyEX-comparable classes such thatV is bounded, closed, and decidable. For
simplicity we below assume thatV is “binarily bounded”, i.e.,V is a class of predicates(f (x) ∈ {0, 1}
for anyf ∈ V and anyx ∈ N). Using the decidability ofV the proof can straightforwardly be gener-
alized to arbitrary bounded classes. Furthermore, letmcc(U) < mcc(V). Consequently, for somem ∈
N, U ∈ EXm andV ∈ EX\EXm. SinceU,V areEX-comparable, it suffices to prove thatV �EX U

does not hold. Assume to the contrary thatV �EX U by operators) and,; clearly,)must be injective.
We will show that this impliesV ∈ EXm, a contradiction.

Suppose thatU is EXm-identified by an IIMM. Without loss of generality we may assume thatM
makes no more thanm mind changes onany input function. Consider the treeT formed by all the initial
segments of functions fromV (including the empty segmentλ which forms the root ofT) where each
initial segmentf n, f ∈ V andn ∈ N, is represented by a node inT . SinceV is closed,V consists
of all the infinite branches inT . Also, there is no leaf inT , i.e., every node inT has at least one
child. We call a nodef n in T marked iff M()(f n)) /= M()(f n−1)); for n = 0, f 0 will be marked iff
M()(f 0)) /= ?.

Claim A. For any nodef n in T and any distinct extensionsg, h ∈ V of f n, at least one of the nodes
from {gr |r > n} ∪ {hr |r > n} is marked.

Proof of Claim A. OtherwiseM would notEX-identify at least one of the distinct (by the injectivity of
)) functions)(g) and)(h), a contradiction toU ∈ EX. �

Claim B. Any infinite branch ofT has at mostm+ 1 marked nodes.

Proof of Claim B. This follows immediately from the hypothesis thatM changes its mind at mostm
times. �

62 S. Jain et al. / Information and Computation 184 (2003) 45–70

The next claim informally says that all branches on at least one side of any nodef n in T cause a mind
change before somen′ > n. For proving this claim, we need thatV is bounded, since we apply König’s
Lemma.

Claim C. For any nodef n in T , there existsn′ > n such that{hn′ |hn′
in T , f n0 � hn

′
and no one of

hn+1, hn+2, . . . , hn
′
is marked} = ∅

or
{hn′ |hn′

in T , f n1 � hn
′
and no one ofhn+1, hh+2, . . . , hn

′
is marked} = ∅.

Proof of Claim C. Otherwise, by König’s Lemma, bothf n0 andf n1 are extended by infinite branches
in T with no marks beyondf n. This contradicts Claim A. �

Now, define a functionProg such that for any markedf n in T , the following holds:
1. Forx � n, ϕProg(f n)(x) = f (x).
2. SupposeϕProg(f n)(x) has been defined for allx � y (below letϕyProg(f n) be denoted bygy). Search

for n′ > y such that
(2.1) {hn′ |hn′

in T , gy0 � hn
′
and no one ofhy+1, hy+2, . . . , hn

′
is marked} = ∅, or

(2.2) {hn′ |hn′
in T , gy1 � hn

′
and no one ofhy+1, hy+2, . . . , hn

′
is marked} = ∅.

In case (2.1) letϕProg(f n)(y) = 1, and in case (2.2) letϕProg(f n)(y) = 0.
Intuitively, Prog chooses the branch (if any) which does not seem to cause any mind change.

3. Go to step 2.
Clearly, by the decidability ofV , the functionProg is computable.

Claim D. For anyf n in T and anyg ∈ V extendingf n such that no node from{gn′ |n′ > n} is marked
in T , ϕP rog(f n) = g.

Proof of Claim D. This easily follows from Claim C by induction. �

Now define an IIMM′ as follows:

M′(f n) =
{
Prog(f x), wherex � n is the maximal number (if any)

such thatf x is marked inT
? otherwise.

Clearly, by Claim B, on any functiong ∈ V, M′ outputs at mostm+ 1 hypotheses, thus making at
mostm mind changes. Moreover, by Claim D, the final hypothesis output byM′ ong is aϕ-program for
g. Consequently,V isEXm-identified byM′, a contradiction toV /∈ EXm. �

Roughly, Theorem 5.1 says that under some natural conditions greater mind change complexity im-
plies greater intrinsic complexity. On the other hand, the conditions provided by Theorem 5.1 (bounded-
ness, closedness, and decidability) turn out to be really necessary, as we will see below. In other words,
in general, greater mind change complexity does not imply greater intrinsic complexity. Actually, there
are classesU,V such thatmcc(U) < mcc(V) but V �EX U ; see Theorem 5.2. Thus, mind change
complexity and intrinsic complexity are in a sense “orthogonal” to each other.

S. Jain et al. / Information and Computation 184 (2003) 45–70 63

Theorem 5.2. There are classes U,V ∈ EX such that mcc(U) < mcc(V) but V �EX U.

Proof. Let (Mi)i∈N denote an effective enumeration of IIM’s as in Proposition 2.1. First, we will define
the classV by some explicit diagonalization procedure yielding among others thatmcc(V) > 1. More
exactly,V will be the union of classesVi, i ∈ N, where eachVi is defined by uniformly diagonalizing
against the machineMi . Then the classU will be defined just as)(V), where) simultaneously serves
as the first operator realizing theEX-reduction ofV toU =)(V). Moreover, this definition will yield
mcc(U) = 1.

Definition of Vi, i ∈ N.

Vi =

{(i + 4)∞} if for all k ∈ N, Mi((i + 4)k) = ?

{(i + 4)k0∞}∪ if k � 1 is the least number such that for
{(i + 4)k0r1∞|r � 1}∪ somej ∈ N, Mi((i + 4)k) = j and, for
{(i + 4)k1r0∞|r � 1} this j, ϕj (k) is undefined orϕj (k) /= 0

{(i + 4)k1∞}∪ if k � 1 is the least number such that for
{(i + 4)k0r1∞|r � 1}∪ somej ∈ N, Mi((i + 4)k) = j and, for
{(i + 4)k1r0∞|r � 1} this j, ϕj (k) = 0.

Let V = ⋃
i�0Vi .

Notice thatV is r.e. by construction. HenceV ∈ EX.
Now we define an operator) as follows:
)((i + 4)k) = (i + 4)k,
)((i + 4)k0r) =)((i + 4)k1r) = (i + 4)k0r , for anyr ∈ N.
Comment: This definition will not violate the injectivity of) on the classV , since by definition, for

any i ∈ N, at most one of the functions(i + 4)k0∞ and(i + 4)k1∞ belongs toV . On the other hand,
mapping both functions(i + 4)k0∞ and(i + 4)k1∞ to the only function(i + 4)k0∞ just allows to save
one mind change in learning)(V) compared to learningV itself, as it follows from the proof of Claim
B below.
)((i + 4)k0r1s) = (i + 4)k0r2s , for anyr, s � 1.
)((i + 4)k1r0s) = (i + 4)k0r3s , for anyr, s � 1.
Clearly,) is a recursive operator which injectively maps the classV to some class)(V) ⊆ R. Define

U =)(V).

Claim A. V �EX U

Proof of Claim A. Let) be the operator from the definition ofU . The operator, is defined as follows.
Let σ be anyEX-admissible sequence for a functiong ∈ U whereg =)(f), f ∈ V . Then, by defini-
tion,ϕw = g wherew is the limit ofσ . Onσ the operator, searches forw (and findsw in the limit) and
evaluates the functionϕw in order to identify the corresponding functionf whereg is “coming from”.
The following cases are possible:

Case 1.ϕw behaves as(i + 4)k, k � 1.
Then, outputs a fixedϕ-program for(i + 4)∞.

64 S. Jain et al. / Information and Computation 184 (2003) 45–70

Case 2.ϕw behaves as(i + 4)k0r2s, r, s � 1.
Then, outputs a fixedϕ-program for(i + 4)k0r1∞.
Case 3.ϕw behaves as(i + 4)k0r3s, r, s � 1.
Then, outputs a fixedϕ-program for(i + 4)k1r0∞.
Case 4.ϕw behaves as(i + 4)k0r , r � 1.
Then, outputs a fixedϕ-program for(i + 4)k0∞. In parallel,, checks ifϕMi ((i+4)k)(k) = 0 in which

case, stops outputting the program for(i + 4)k0∞ and outputs a fixedϕ-program for(i + 4)k1∞
instead. Comment: Case 4 occurs iff = (i + 4)k0∞ or f = (i + 4)k1∞. The additional check allows
, to find out the “right” functionf .

Clearly, the operators) and, witnessV �EX U . �

Claim B. mcc(U) � 1

Proof of Claim B. For anyi ∈ N, letpi denote aϕ-program such that

ϕpi =

(i + 4)∞ if Mi ((i + 4)k) = ? for allk ∈ N,

(i + 4)k0∞ if k � 1 is the least number such that
Mi ((i + 4)k) /= ?

Now, for all k, r, s � 1, define an IIMM as follows:
M((i + 4)k) = pi ,
M((i + 4)k0r) = pi ,
M((i + 4)k0r2s) = fixedϕ-program for(i + 4)k0r2∞,
M((i + 4)k0r3s) = fixedϕ-program for(i + 4)k0r3∞.
Then, on any function fromU , the machineM makes at most one mind change. Furthermore, by the
definition ofU and thepi ’s, M clearlyEX-identifiesU . HenceU ∈ EX1 andmcc(U) � 1. �

Obviously,mcc(U) = 1, but for proving the theoremmcc(U) � 1 suffices.

Claim C. mcc(V) > 1.

Proof of Claim C. Assume to the contrary thatV ∈ EX1(Mi) for somei ∈ N. Then there must be
a least numberk � 1 such thatMi((i + 4)k) /= ?, since otherwiseMi would not identify the function
(i + 4)∞ ∈ Vi ⊆ V . Let j = Mi ((i + 4)k). Now the following cases are possible.

Case 1.Mi((i + 4)k0r) /= Mi ((i + 4)k) for somer.
ThenMi fails toEX1-identify all but at most one of the functions from{(i + 4)k0t1∞|t � r} ⊆ V .
Case 2. Not Case 1, i.e.,Mi((i + 4)k0r) = Mi ((i + 4)k) for all r ∈ N.
Case 2.1.ϕj (k) is undefined orϕj (k) /= 0.
ThenMi fails toEX-identify the function(i + 4)k0∞ ∈ V .
Case 2.2.ϕj (k) = 0.
ThenMi either fails toEX-identify the function(i + 4)k1∞ ∈ V , or (in caseMi makes a mind change

on (i + 4)k1s for somes � 1) Mi fails toEX1-identify all but at most one of the functions from{(i +
4)k1t0∞|t � s}. �

S. Jain et al. / Information and Computation 184 (2003) 45–70 65

The theorem immediately follows from Claims A, B, and C.�

We proceed with some remarks concerning Theorem 5.2 and its consequences. First notice that the
classesU,V were built “near the bottom” of theEXm-hierarchy. However, by correspondingly modify-
ing the proof, the same effect can be proved on any higher level of this hierarchy. Next notice that the
classV and, by Lemma 2.1, also the classU =)(V) are both r.e. Hence these classes are in a sense
“natural”. Furthermore, note that the classV is bounded and decidable, but not closed. In other words,
V missesexactly one of the conditions from Theorem 5.1, which results in that Theorem 5.1 does not
remain valid then. Analogously, we can show that Theorem 5.1 will no longer be true, if one of the
other two conditions is violated. Thus, the three conditions provided by Theorem 5.1, i.e., boundedness,
closedness, and decidability ofV , turn out to be really necessary for making this result hold. Hence, in
this sense, Theorem 5.1 is optimal.

Notice that Theorem 5.1 is also “optimal” concerning another detail, namely in assuming that the
classesU,V areEX-comparable. Actually, in general,mcc(U) < mcc(V) does not implyU �EX V

(even ifV is bounded, closed, and decidable), as our next result will show immediately for “arbitrarily
different” levels of theEXm-hierarchy.

Theorem 5.3. For any m ∈ N, there exist r.e. classes V ∈ EXm+1 \ EXm and U ∈ EX1 such that U
is not EX-reducible to V.

Proof. Let m ∈ N. Let (Mi)i∈N be an effective enumeration of IIMs as in Proposition 2.1. Then, for
anyi ∈ N, by straightforward diagonalization againstMi , one can uniformly generate a finite classVi of
recursive functions such that
1. card Vi � m+ 2,

2. for anyf ∈ Vi , f (0) = i anddist (f, i∞) � m+ 1,

3. Vi �⊆ EXm(Mi).
Let V = ⋃

i∈N Vi . Obviously,V is r.e. andV ∈ EXm+1 \ EXm. Note thatV does not possess any
accumulation point. Now consider the classU = {0r10∞|r ∈ N} ∪ {0∞}. Clearly,U is r.e. andU ∈
EX1. However,U contains its accumulation point 0∞. Consequently,U is notEX-reducible toV by
Lemma 2.1. �

Clearly, since the classesVi from the proof of Theorem 5.3 above are all finite and functions from
differentVi differ on input 0, the classV = ⋃

i�0Vi is bounded, closed, and decidable, thus fulfilling
these conditions of Theorem 5.1. Nevertheless, this does not guarantee thatU �EX V holds. In a sense,
Theorem 5.3 may be interpreted in that the structure of the intrinsic complexity is much richer than the
quasi-linearly ordered structure of the mind change complexity. Our next result emphasizes this point of
view by stating that each levelm > 0 of the mind change hierarchy contains r.e. classes which turn out
to beEX-incomparable.

Theorem 5.4. For any m > 0, there are r.e. EX-incomparable classes U,V ∈ EXm \ EXm−1.

Proof. We will consider only them = 1 case . The construction can be easily extended to anym >

1. Let U = {0i10∞|i ∈ N} ∪ {0∞}. Obviously,U is r.e. Furthermore,U ∈ EX1 andU /∈ EX0. The
latter follows from the fact thatU is not discrete, since it contains its accumulation point 0∞. On

66 S. Jain et al. / Information and Computation 184 (2003) 45–70

the other hand, any class fromEX0 must be discrete, see [10]. Now, letK = {x|ϕx(x) is defined}
be the halting set. LetV = {k0∞|k ∈ N} ∪ {k0i10∞|k ∈ K,ϕk(k) halts in exactlyi steps}. Clearly,
V is both r.e. and discrete. Moreover,V ∈ EX1 andV /∈ EX0, where the latter follows by a similar
argument as below. Actually, any IIM that wouldEX0-learn the classV could be used to decideK,
a contradiction. SinceV is discrete whileU is not,U cannot beEX-reduced toV by Lemma 2.1
(Clause 3). Now assume to the contrary thatV is EX-reducible toU . Let) be the first reducing
operator. As) is injective, we have)(k0∞) /= 0∞ for all but, may be, onek ∈ N. Then the following
algorithm can be used to decide the halting setK (except maybe for one elementk): “For anyk ∈ N,
find the minimalj ∈ N such that)(k0j) = 0i1 for somei ∈ N. Then k ∈ K iff ϕk(k) terminates
in at mostj steps”. Indeed, ifϕk(k) would terminate int > j steps then, by the monotonicity of
),)(k0t10∞) =)(k0∞), a contradiction to the injectivity of). Consequently,V is notEX-reducible
toU . �

In a sense, Theorem 5.4 shows that, as far as learning functions from finite samples is concerned,
“poor” topological structure (the classV is discrete) and relatively “high” algorithmic complexity (the
classV simulates the halting problem) cannot be traded for “rich” topological structure (the classU con-
tains an accumulation point) and “low” algorithmic complexity (the classU has a computable numbering
that provides complete finite descriptions for every function in the class).

Note that Theorem 5.4 does not remain valid forEX0. Actually, recall that all infinite r.e. classes from
EX0 areEX-complete forEX0, as it directly follows from Theorem 4.4. Thus, these classes are equiv-
alent rather than incomparable. Consequently,EX0 is a “singular point” among all the identification
typesEXm, m ∈ N, with respect to the properties exhibited by Theorems 5.3 and 5.4.

Finally, we want to point out another difference between mind change complexity and intrinsic
complexity. Informally, we will show that in general, maximal mind change complexity does not im-
ply maximal intrinsic complexity. More exactly, we will exhibit a classU from EX \ ⋃

m�0EXm,
i.e., with unbounded and hence “maximal” mind change complexity. Moreover,U itself is r.e. On the
other hand,U is far from being of maximal intrinsic complexity, i.e., far from beingEX-complete.
Actually, U does not only not contain any dense subclass (as it would be necessary for beingEX-
complete by Theorem 4.1), butU even does not contain (even does not possess!) any accumulation
point.

Theorem 5.5. There is an r.e. class U of recursive functions such that
1. U ∈ EX\ ⋃

m�0EXm,

2. U is not EX-complete.

Proof. We need a slight generalization of the idea used in the proof of Theorem 5.3. Therefore, let〈., .〉
denote any effective bijection of all the pairs of natural numbers onto the natural numbers. Let(Mi)i∈N be
any effective enumeration of the IIMs as in Proposition 2.1. Then, for anyi, m ∈ N, by straightforward
diagonalization against the IIMMi , one can uniformly generate a finite classUi,m of recursive functions
such that
(a) card Ui,m � m+ 2,
(b) for any functionf ∈ Ui,m, f (0) = 〈i, m〉 anddist (f, 〈i, m〉∞) � m+ 1,
(c) Ui,m /∈ EXm(Mi).

Now defineU = ⋃
i�0,m�0Ui,m.

S. Jain et al. / Information and Computation 184 (2003) 45–70 67

Clearly,U is r.e., since all of the finite classesUi,m are uniformly effectively generable. HenceU ∈
EX, by [13]. On the other hand, due to condition (c),U cannot beEXm-learnable for anym ∈ N.

Moreover, by condition (b), for every natural numbery (= 〈i, m〉 for some uniquei, m ∈ N), there
are only finitely many functionsf ∈ U such thatf (0) = y. Hence the classU does not possess any
accumulation point. Thus,U cannot contain a dense subclass. Consequently, by Theorem 4.1,U cannot
beEX-complete. �

On the other hand, maximal intrinsic complexity always implies maximal mind change complexity.
Actually, it is very easy to show that any dense class cannot be identified with a bounded number of
mind changes.

6. Conclusions

We wanted to find out what makes classes of recursive functions most difficult to learn or, in a for-
mal sense, complete within the framework of intrinsic complexity [8]. Informally, the characteristic
properties for completeness consist in being both “topologically complex” and “algorithmically easy”.
Here topologically complex means being dense, i.e., consisting of accumulation points only, and al-
gorithmically easy means being recursively enumerable. Actually, the common structure of all of our
completeness characterizations is roughly the following: A class is complete if and only if this class
contains a recursively enumerable dense subclass.

On the one hand, it seems intuitively clear that the density of a class can make this class diffi-
cult to learn. It is well-known that not only density but already the presence of asingle accumula-
tion point can make learning impossible at all. Actually, this is true for learning superfinite classes of
languages in the limit from text (see [13]), as well as for finite learning of recursive functions (see
[10]).

On the other hand, we feel that some explanation is needed for the counterintuitive fact that the prop-
erty of high topological complexity has to be combined with the property of low algorithmic complexity,
namely recursive enumerability, in order to yield completeness. Here recursive enumerability is said to
be a property of low algorithmic complexity, since being r.e. is kind of being “well-structured” rather
than more or less “unstructured”, what one could expect when the most difficult learning situations
are to be described. One might argue that density yields already so much difficulty that it needs some
compensation in order to keep the class learnable at all. But this is at best half the truth, since, clearly,
the recursive enumerability of the characteristic subclass ensures the learnability ofthis subclass, but in
general this cannot guarantee the learnability of thewhole complete class. A better explanation stems
from the fact that our complete example classes from Section 3 have to be reducible to an arbitrary
complete class. Recall that all these concrete complete classes are r.e. themselves. Hence, by Lemma 2.1
(Clause 1), any reducing operator transmits this recursive enumerability to some subclass of any com-
plete class; moreover, by Lemma 2.1 (Clause 4), any injective reducing operator transmits the density
to the same subclass of the corresponding complete class. A final, substantial explanation of the fact
above is the following. In order to be a complete class, every class from the corresponding learning
type must be mapped to this class by some recursive operator. But to be able to do this the operator
must “know” which functions of the complete class it may choose as its “targets”. One possibility of
formalizing this “knowledge” consists just in getting the operator acquainted with a suitable recursively

68 S. Jain et al. / Information and Computation 184 (2003) 45–70

enumerable subclass of the complete class. Thus, informally, knowing such an r.e. subclass enables the
operator “to hit the target”. Conversely, one can provide technical evidence that thenon-existence of
such an r.e. subclass results just in “missing the target”. Actually, by (non-effectively) diagonalizing
against all the recursive operators, one can construct a subclass ofFINSUP which, though still being
dense, cannot be complete, since no injective recursive operator is able to map even the trivial class of
all constant functions to that class. Interestingly, a similar effect of being both topologically difficult
and algorithmically easy has been exhibited recently in the framework of classifying languages, see
[3,29].

A consequence of our completeness characterizations is the fact that there are classes which are
both complete and “self-describing”. Recall that it was commonly believed that self-describing clas-
ses are easy to learn. Specifically, the self-describing classC = {αip|α ∈ N∗, i � 2, p ∈ R0,1, ϕi =
αip} turned out to beEX-complete. Notice that this class is not only equally hard to learn as the
classFINSUP in a formal sense (both classes areEX-complete), but also in the followingintuitive
sense. When learningFINSUP one never can know if and when all the points of finite support have
been found; analogously, when learning the classC one never can know if and when the last value
exceeding 1 has been found. One might wish to further argue that learning the classC at all is “ar-
tificially/unnaturally easy”, since, for any function fromC, it suffices to findone only suitable value
of that function in order to know the whole function. This is formally correct. But, consider the class
of all polynomials on the reals. This class has an analogous property! Actually, for any polynomial
of degreen, an arbitrarily small interval, more exactly,finitely many points, evenarbitrary n+ 1 of
the denumerably many ones suffice to recreate (to learn) the whole function. Hardly, anyone would
call the polynomials an artificial or unnatural class therefore. Naturally, we cannot exclude that for
some approach to the complexity of learning, all the self-describing classes are really easy to learn.
Answering this question in a rigorous way would require toformalize the notion of self-description,
though.

In general, each approach to formalize the notion of complexity of learning will focus on specific
features of this broad and diverse notion and will also have its specific implications. In this sense, we
feel it quite justified to study further approaches to this notion which may more or less differ from the
approach of intrinsic complexity. Slight modifications of the present approach could consist in allowing
the first reducing operator to be limit-recursive when learning in the limit is considered, or to require that
this operator is “length-preserving” in a reasonable sense. On the other hand, the approach by Nessel [23]
formalizing the complexity of learning also in a reducibility fashion strongly differs from our approach
by showing that in that approach the classFINSUP is not only not complete, but it has evenminimal
complexity. This is due to the fact that there the learning of “basic rules” is considered as the main
goal (the basic rule for the whole classFINSUP is one and the same, namely the everywhere zero
function, and learning a single function is intuitively of minimal complexity, since it can be thought to
be known a priori), whereas collecting the finitely many and “arbitrarily chaotic” exceptions on which
any function ofFINSUP may differ from this basic rule is not taken into the complexity account by
definition. Also, in contrast to our r.e. property in the context of intrinsic completeness as considered
above, we cannot exclude that for other approaches just some kind ofhigh algorithmic complexity
will turn out to be necessary for a class to belong to the most difficult to learn ones. Thus, it would
be desirable to study alternative approaches to the complexity of learning as well in order to yield a
more complete picture and thus further deepen our understanding of the diverse nature of this important
notion.

S. Jain et al. / Information and Computation 184 (2003) 45–70 69

Acknowledgments

We thank the referees for several helpful comments which improved the presentation of the paper. The
first author was supported by NUS grant number R252-000-127-11Z. The second author was supported
by the URCG grant of Sacred Heart University. The fourth author was partly supported by the National
Science Foundation under grant CCR-9732692. The fourth and the fifth author would like to thank the
Deutsche Forschungsgemeinschaft (DFG) for supporting a guest professorship of the fourth author at
the University of Kaiserslautern.

References

[1] A. Ambainis, S. Jain, A. Sharma, Ordinal mind change complexity of language identification, Theoret. Comput. Sci. 220
(1999) 323–343.

[2] D. Angluin, C.H. Smith, Inductive inference: theory and methods, Comput. Surv. 15 (1983) 237–269.
[3] J. Case, E. Kinber, A. Sharma, F. Stephan, On the classification of computable languages, in: STACS 97, 14th Annual

Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 1200, Springer Verlag,
Berlin, 1997, pp. 225–236.

[4] J. Case, C.H. Smith, Comparison of identification criteria for machine inductive inference, Theoret. Comput. Sci. 25
(1983) 193–220.

[5] R.P. Daley, C.H. Smith, On the complexity of inductive inference, Inform. Control 69 (1986) 12–40.
[6] R. Freivalds, J. B̄arzdiņ̌s, K. Podnieks, Inductive inference of recursive functions: complexity bounds, in: Baltic Computer

Science, Lecture Notes in Computer Science, vol. 502, 1991, pp. 111–155.
[7] R. Freivalds, Inductive inference of recursive functions: qualitative theory, in: Baltic Computer Science, Lecture Notes in

Computer Science, vol. 502, 1991, pp. 77–110.
[8] R. Freivalds, E. Kinber, C.H. Smith, On the intrinsic complexity of learning, Inform. Comput. 123 (1995) 64–71.
[9] R. Freivalds, C. Smith, On the role of procrastination in machine learning, Inform. Comput. 107 (1993) 237–271.

[10] R. Freivalds, R. Wiehagen, Inductive inference with additional information, J. Inform. Process. Cybernet. (EIK) 15 (1979)
179–185.

[11] M.R. Garey, D.S. Johnson, Computers and Intractability, Freeman and Company, New York, 1979.
[12] W. Gasarch, C. Smith, Recursion theoretic models of learning: some results and intuitions, Ann. Math. Artif. Intell. 15

(1995) 151–166.
[13] E.M. Gold, Language identification in the limit, Inform. Control 10 (1967) 447–474.
[14] K.P. Jantke, H.-R. Beick, Combining postulates of naturalness in inductive inference, J. Inform. Process. Cybernet. (EIK)

17 (1981) 465–484.
[15] S. Jain, D. Osherson, J.S. Royer, A. Sharma, Systems that Learn, second ed., MIT Press, Cambridge, 1999.
[16] S. Jain, A. Sharma, The intrinsic complexity of language identification, J. Comput. System Sci. 52 (1996) 393–402.
[17] S. Jain, A. Sharma, The structure of intrinsic complexity of learning, J. Symbolic Logic 62 (1997) 1187–1201.
[18] S. Jain, A. Sharma, Elementary formal systems, intrinsic complexity, and procrastination, Inform. Comput. 132 (1997)

65–84.
[19] E. Kinber, C. Papazian, C. Smith, R. Wiehagen, On the intrinsic complexity of learning infinite objects from finite sam-

ples, Technical Report LSA-99-01E, Centre for Learning Systems and Applications, Department of Computer Science,
University of Kaiserslautern, 1999.

[20] M. Kummer, A learning-theoretic characterization of classes of recursive functions, Inform. Process. Lett. 54 (1995)
205–211.

[21] R. Klette, R. Wiehagen, Research in the theory of inductive inference by GDR mathematicians – a survey, Inform. Sci. 22
(1980) 149–169.

[22] M. Machtey, P. Young, An Introduction to the General Theory of Algorithms, North-Holland, New York, 1978.

70 S. Jain et al. / Information and Computation 184 (2003) 45–70

[23] J. Nessel, Birds can fly. . . , in: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, ACM
Press, New York, 1998, pp. 56–63.

[24] D. Osherson, M. Stob, S. Weinstein, Systems that Learn, MIT Press, Cambridge, 1986.
[25] L. Pitt, M.K. Warmuth, Prediction-preserving reducibility, J. Comput. System Sci. 41 (1990) 430–467.
[26] H. Rogers Jr., Gödel numberings of partial recursive functions, J. Symbolic Logic 23 (1958) 331–341.
[27] H. Rogers Jr., Theory of Recursive Functions and Effective Computability, McGraw Hill, New York, 1967.
[28] C. Smith, A Recursive Introduction to the Theory of Computation, Springer, Berlin, 1994.
[29] F. Stephan, On one-sided versus two-sided classification, Technical Report 25/1996, Mathematical Institute, University of

Heidelberg, 1996.

	On the Intrinsic Complexity of Learning Recursive Functions
	Recommended Citation

	doi:10.1016/S0890-5401(03)00059-2

