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Abstract

Intrinsic complexity is used to measure the complexity of learning areas limited by broken-straight lines
(called open semi-hulls) and intersections of such areas. Any strategy learning such geometrical concepts can
be viewed as a sequence of primitive basic strategies. Thus, the length of such a sequence together with the
complexities of the primitive strategies used can be regarded as the complexity of learning the concepts in
question. We obtained the best possible lower and upper bounds on learning open semi-hulls, as well as
matching upper and lower bounds on the complexity of learning intersections of such areas. Surprisingly,
upper bounds in both cases turn out to be much lower than those provided by natural learning strategies.
Another surprising result is that learning intersections of open semi-hulls turns out to be easier than
learning open semi-hulls themselves.
r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Learning geometrical concepts from examples is a popular topic in Computational
Learning Theory (see for example, [BEHW89,BGGM98,BGM98,CA99,CM94,DG95,Fis95,
GG94,GGDM94,GGS96,GKS01,GS99,Heg94]). The above-listed papers mostly dealt with finite
geometric concepts. The goal of this paper is to quantify the complexity of algorithmic learning of
infinite geometrical concepts from growing finite segments. For this purpose, we will be using the
learning in the limit model.
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Consider, for example, an open semi-hull representing the space consisting of all points ðx; yÞ
with integer components x; y in the first quadrant of the plane bounded by the y-axis and the
broken line passing through some points ða0; c0Þ; ða1; c1Þ;y; ðan; cnÞ; ai; ciAN; aioaiþ1; 0pion:
The line is straight between any points ðai; ciÞ; ðaiþ1; ciþ1Þ and begins at ða0; c0Þ ¼ ð0; 0Þ; further
we assume that the slope of the broken line is monotonically non-decreasing—that is
ðciþ1 � ciÞ=ðaiþ1 � aiÞ is non-decreasing in i (we need this for learnability of the semi-hull). For
technical ease we further assume that the first line segment ð0; 0Þ; ða1; c1Þ is adjacent to the x-axis,
that is, c1 ¼ 0: (See example semi-hull figure in Fig. 1.) Note that each break point in the
boundary of the semi-hull defines an angle in the semi-hull. Any such open semi-hull can be easily
learned in the limit by the following strategy: given growing finite sets of points in the open semi-
hull (potentially getting all points), learn the first break point ða1; c1Þ: Here, under our
assumption, c1 must be 0, therefore, we change our mind every time when we get in the input a
new point ða; 0Þ with the value a greater than all values b in the points ðb; 0Þ seen so far. Now, once
the first break point has been learned, we can try to learn the first slope ðc2 � c1Þ=ða2 � a1Þ: The
more points we get in the input, the more our hypothetical border line may bend towards the x-
axis. Since it can never cross the x-axis and since the points in the concept to be learned have
integer components, we will eventually learn the slope. Now, moving along the border line as
more points on it become available from the input, we can learn the second break point ða2; c2Þ:
Then we can learn the second slope ðc3 � c2Þ=ða3 � a2Þ; etc. Is this strategy the best possible? Do
there exist easier strategies of learning such geometrical concepts? How do we measure the
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Fig. 1. Open semi-hull.
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complexity of learning such concepts? As we are interested in learning infinite objects from
infinitely growing finite segments, we use inductive inference as our learning paradigm. This
paradigm suggests several ways to quantify the complexity of learning. Among them are:
(a) counting the number of mind changes [BF72,CS83,LZ93] the learner makes before arriving

at the correct hypothesis;
(b) measuring the amount of so-called long-term memory the learner uses [KS95];
(c) reductions between different learning problems (classes of languages) and respective degrees

of the so-called intrinsic complexity [FKS95,JS96,JS97].
There have been other notions of the complexity of learning in the limit considered in literature

(for example see [DS86,Gol67,Wie86]).
The first two approaches, however, cannot capture the complexity of learning open semi-hulls

with different numbers of angles: the number of mind changes cannot be bounded by any
reasonable function (even for learning the very first break point), and the long-term memory is
maximum (linear) even for one angle. Thus, we have chosen reductions as the way to measure the
(relative) complexity of geometrical concepts like open semi-hulls. An important issue here is
which classes of languages can be used as a scale for quantifying the complexity of open semi-
hulls. One such scale, that turned out to be appropriate for our goal, had been suggested in
[JKW99,JKW00]. This scale is a hierarchy of degrees of intrinsic complexity composed of simple
natural ground degrees. Every such natural ground degree represents a natural type of learning
strategy. For example, the degree INIT represents a strategy that tries to use a sequence of
hypotheses equivalent to a sequence of monotonically growing finite sets. Another such strategy,
COINIT, tries to use a sequence of hypotheses equivalent to a sequence of monotonically growing
sets Na ¼ fxjxAN;xXag: Intuitively, capabilities of INIT- and COINIT-strategies must be
different (this has been formally established in [JS96]). For example, when a COINIT-strategy
learns the language f5; 6; 7;yg; it actually tries to find the minimum number in this set (5 in our
case). When the first number, say, 17 appears in the input, the strategy can immediately use it as
the upper bound on its conjectures: no number greater than 17 can possibly be the desired
minimum. Note also that the strategy is aware of the absolute lower bound 0 for all its
conjectures. On the other hand, an INIT-strategy learning, say, the set f0; 1; 2; 3; 4; 5; 6; 7g tries to
find the maximum number 7. While, every next inputted number may increase the lower bound on
its final conjecture, the strategy never is aware of any upper bound on it.
It has been demonstrated in [JS96] that many important simple learning problems (in

particular, pattern languages) can be handled by strategies of these basic types. Now, the
corresponding degrees of complexity INIT and COINIT can be used to form a complex hierarchy
of degrees as follows. Imagine a three-dimensional language L: Suppose an INIT-type strategy M1

can be used to learn its first dimension, L1: Once this dimension has been learned, a strategy of a
different (or even same) type, say, COINIT can pick the grammar learned by M1 and use this
information to learn the second dimension L2: Consequently, the grammar learned by the
COINIT-strategy M2 can be used to learn the third dimension L3 by a strategy M3 of type, say,
INIT. Thus, we get a strategy of the type ðINIT ;COINIT ; INITÞ; where information learned by
the learner Mi is relayed to the learner Miþ1 making it possible to learn the next dimension. This
idea can be naturally extended to any (finite) number of dimensions and to any sequences Q ¼
ðq1; q1;y; qkÞ of strategies qiAfINIT ;COINITg: It has been shown in [JKW00] that the degrees
of complexity (classes of languages) corresponding to such Q-strategies form a rich hierarchy. For
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example, some classes learnable by ðINIT ;COINIT ; INITÞ-type strategies cannot be learned by
any ðINIT ;COINITÞ-strategy. In other words, such a class can be learned by a strategy that first
works as an INIT-strategy, then it changes to a COINIT-strategy to learn another aspect of the
concept, and then it changes to a INIT-strategy to learn the last component of the concept. On the
other hand, changing strategies only one time (from INIT to COINIT) is not enough.

How can one apply the above hierarchy to quantify the complexity of learning semi-hulls? Let
us take a closer look at the strategy learning semi-hulls (described in the beginning of the paper).
The reader may have noticed that the strategy learning the first break point (as well as any other
break point) is an INIT-type strategy: it tries to find the maximum number in a growing finite set.
Now, once a break point has been found, what strategy can learn the slope? Let us assume that the
slopes come from the set N,f1=n j nANg (actually, sets of possible slopes in our model will be

equivalent to this set). Suppose the actual slope to be learned is 1
7
: Suppose also that, based on

some initial portion of the input, we conjectured the slope 5. That tells us that the actual slope

cannot be greater than 5. Therefore, every following conjecture will be a number between 5 and 1
7;

getting closer and closer to 1
7
; but never being aware of any lower bound on its final guess 1

7
: This

strategy seems to be similar to a COINIT-strategy discussed above. However, unlike a COINIT-
strategy, it is never aware of any lower bound on possible conjectures. One can easily see that a
very similar (equivalent) strategy can learn sets fy� k;�ðk � 1Þ;y0; 1; 2; 3;yg: Based on this
observation, we call such strategies HALF-strategies (learning ‘‘halfs’’ of the set of integers). We
also show that these strategies, while being still quite primitive, are more powerful than COINIT-
strategies (moreover, in certain sense, they can be regarded as Cartesian products of INIT- and
COINIT-strategies).

Thus, to learn the first break point we use an INIT-strategy, then we use a HALF-strategy to
learn the first slope, then we change back to an INIT-strategy to learn the second break point,
then to a HALF-strategy to learn the second slope, etc. If, for example, a semi-hull has two angles
(the border line has two break points), then we use the sequence of strategies INIT, HALF, INIT,
HALF. In other words, the corresponding learning problem belongs to the level
ðINIT ;HALF ; INIT ;HALFÞ of the above-mentioned hierarchy. Obviously, learning the semi-
hulls with two angles by an ðINIT ;HALF ; INITÞ-strategy (if possible) can be viewed as more
efficient. We will show, however, that such a strategy is not possible. Another question is if semi-
hulls with two angles are learnable by an ðINIT ;COINIT ; INIT ;COINITÞ-strategy. One must
again agree that this strategy can be considered as a more efficient than our
ðINIT ;HALF ; INIT ;HALFÞ-strategy, since, as we mentioned above, COINIT-strategies
generally are more primitive (less capable) than HALF-strategies. We will show that such a
strategy does exist for semi-hulls with two angles (Theorem 3; it is somewhat less intuitive than
our original ðINIT ;HALF ; INIT ;HALFÞ-strategy). We will also show that for example, neither
ðCOINIT ; INIT ;COINIT ; INITÞ-strategy nor any strategy with a number of components (from
INIT ;COINIT ;HALF ) smaller than 4 can learn the given class, as it easily follows from
Corollary 6. In general, for every class of semi-hulls with fixed numbers of angles (two, or three, or
four, etc.) we establish upper and lower bounds of this type.

We submit that this approach to measuring the complexity of learning is very reasonable for
geometrical concepts of this and similar types. As we already mentioned, some more traditional
measures of complexity (like the number of mind changes) are not applicable, since these
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measures cannot make distinction between learning one-angle semi-hulls and, say, three-angle
ones.
We use also a similar approach to examine the power of learning semi-hulls (and other figures)

from a slightly different perspective. Namely, suppose we are given some strategy to learn two-
angle semi-hulls. How can knowledge of such a strategy help us to learn problems like
ðINIT ;COINIT ; INITÞ (viewed this time as families of languages rather than strategies)? We can
show that, being armed with such a strategy, one can learn, for example, the class of languages
ðHALF ; INITÞ (Theorem 5). On the other hand, being able to learn two-angle semi-hulls does not
help to learn the class ðINIT ; INIT ; INITÞ (Corollary 7) or ðCOINIT ; INIT ; INITÞ (Corollary 8).
It also does not help to learn any similar class with COINIT as the second component (Corollaries
9 and 10). In this respect, ðHALF ; INITÞ can be regarded as a lower bound on the power of
learning two-angle semi-hulls.
The paper has the following structure. Section 2 introduces notations and preliminaries. In

Section 3, we define the reductions and the degrees of complexity. In Section 4, we give formal
definition of the Q-classes and degrees. This definition extends the definition of the Q-classes in
[JKW00]: in addition to the classes INIT and COINIT, we use in vectors Q a new class of
strategies/languages, HALF, that turns out to be different from INIT and COINIT and is useful
for classifying geometrical concepts. In Section 5, we show that the Q-hierarchy can be
appropriately extended to the class of learning strategies/languages involving HALF. In Section 6,
we define the classes of the type SEMI HULL that formalize intuitive geometrical concepts
described above. In this section, we also prove some useful technical propositions. In Sections 7
and 8 we establish upper and lower bounds for the SEMI HULL degrees in terms of the
Q-hierarchy. In particular, we establish that semi-hulls with n angles can be learned by a
ðINIT ;COINIT ;y; INIT ;COINITÞ-strategy with 2n components (Theorem 3). On the other
hand, no strategy, with alternating INITs and COINITs and a smaller number of components,
can learn such concepts (Corollary 6). We also examine how learning semi-hulls can help to learn
the Q-classes (Theorem 5). Corollaries 7–10 give examples of the Q-classes that cannot be learned
by strategies armed with a strategy capable of learning semi-hulls. These examples show that the
Q-classes found in Theorem 5 are the most complex Q-classes that can be learned using a strategy
for learning semi-hulls. Therefore, they can be regarded as the best possible lower bounds (based
on the Q-classes considered here) on the power of learning semi-hulls.
In Section 9, we introduce the classes coSEMI HULL that consist of complements of languages

in SEMI HULL. Sections 10 and 11 establish lower and upper bounds for coSEMI HULLs in
terms of the Q-hierarchy. In particular, we show that the most efficient strategy for learning
complements of semi-hulls with n angles is ðINIT ;COINIT ;y;COINITÞ with n occurrences of
COINIT (Theorem 10). We also give examples of the Q-classes that can and cannot be learned by
strategies having access to strategies learning coSEMI HULLs, providing the best possible lower
bounds for the learnability power of complements of semi-hulls.
Upper and lower bounds for SEMI HULLs and coSEMI HULLs come close, but do not

match (though, upper bounds are much lower than the ones suggested by intuitive strategies
learning the classes in question). In Section 12, we define the classes of open hulls formed by
intersections of languages in SEMI HULLs adjacent to x- and y-axis; Fig. 2 shows an example of
open hull. For the complexity of learning these classes, we have established matching upper and
lower bounds in terms of the Q-hierarchy. Namely, we show that the most efficient strategy for
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learning open hulls with at most n angles on each side is ðINIT ; INIT ;y; INITÞ with n
components INIT (Theorem 14). It turns out also (Theorem 13) that a strategy armed with a
strategy for learning open hulls can learn the class ðINIT ; INIT ;yINITÞ with n components. (It
seems a bit counterintuitive that open hulls can be learned by strategies simpler than semi-hulls.
We will give some intuition behind the corresponding strategy in Theorem 14).
In Section 13, we define the classes of languages formed by complements of open hulls and

establish matching upper and lower bounds for the corresponding degrees of intrinsic complexity.
All the above-mentioned upper bounds are much lower than the ones suggested by intuitive
learning strategies.

2. Notation and preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. The symbol N denotes the set of
natural numbers, f0; 1; 2; 3;yg: Z denotes the set of integers. Z� denotes the set of negative
integers. i ’� j is defined as follows:

i ’� j ¼
i � j; if iXj;

0; otherwise:

(

Symbols |; D; C; +; and * denote empty set, subset, proper subset, superset, and proper
superset, respectively. D0;D1;y; denotes a canonical recursive indexing of all the finite sets
[Rog67]. We assume that if DiDDj then ipj (the canonical indexing defined in [Rog67] satisfies
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this property). Cardinality of a set S is denoted by cardðSÞ: The maximum and minimum of a set

are denoted by maxð
Þ;minð
Þ; respectively, where maxð|Þ ¼ 0 and minð|Þ ¼ N:
We let /
; 
S stand for an arbitrary, computable, bijective mapping from N � N onto N

[Rog67]. We assume without loss of generality that /
; 
S is monotonically increasing in both its
arguments. We define p1ð/x; ySÞ ¼ x and p2ð/x; ySÞ ¼ y: /
; 
S can be extended to n-tuples in a
natural way (including n ¼ 1; where /xS may be taken to be x). Projection functions p1;y;pn

corresponding to n-tuples can be defined similarly (where the tuple size would be clear from
context). Due to above isomorphism between Nn and N; we often identify ðx1;y;xnÞ with
/x1;y; xnS: Thus we can say L1 � L2 ¼ f/x; yS j xAL1; yAL2g:
By j we denote a fixed acceptable programming system for the partial computable functions:

N-N [Rog67,MY78]. By ji we denote the partial computable function computed by the
program with number i in the j-system. Symbol R denotes the set of all total computable
functions. By F we denote an arbitrary fixed Blum complexity measure [Blu67,HU79] for the j-
system. By Wi we denote domainðjiÞ: Wi is, then, the r.e. set/language ðDNÞ accepted (or
equivalently, generated) by the j-program i: We also say that i is a grammar for Wi: Symbol E
will denote the set of all r.e. languages. Symbol L; with or without decorations, ranges over E: By
%L; we denote the complement of L; that is N � L: Symbol L; with or without decorations, ranges
over subsets of E: We denote by Wi;s the set fxos jFiðxÞosg:
k denotes defined or converges. m denotes undefined or diverges.
A partial function F from N to N is said to be partial limit recursive, iff there exists a recursive

function f from N � N to N such that for all x; FðxÞ ¼ limy-N f ðx; yÞ:Here if FðxÞ is not defined
then limy-N f ðx; yÞ; must also be undefined. A partial limit recursive function F is called (total)

limit recursive function, if F is total.
We now present concepts from language learning theory. The next definition introduces the

notion of a sequence of data.

Definition 1. (a) A finite sequence s is a mapping from an initial segment of N into ðN,f#gÞ: The
empty sequence is denoted by L:
(b) The content of a finite sequence s; denoted contentðsÞ; is the set of natural numbers in the

range of s:
(c) The length of s; denoted by jsj; is the number of elements in s: So, jLj ¼ 0:
(d) For npjsj; the initial sequence of s of length n is denoted by s½n: So, s½0 is L:

Intuitively, #’s represent pauses in the presentation of data. We let s; t; and g; with or without
decorations, range over finite sequences. We denote the sequence formed by the concatenation of
t at the end of s by s}t: Sometimes we abuse the notation and use s}x to denote the
concatenation of sequence s and the sequence of length 1 which contains the element x: SEQ

denotes the set of all finite sequences.

Definition 2 (Gold [Gol67]). (a) A text T for a language L is a mapping from N into ðN,f#gÞ
such that L is the set of natural numbers in the range of T :
(b) The content of a text T ; denoted contentðTÞ; is the set of natural numbers in the range of T :
(c) T ½n denotes the finite initial sequence of T with length n:
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We let T ; with or without decorations, range over texts. We let T range over sets of texts.

Definition 3 (Gold [Gol67]). A language learning machine is an algorithmic device which
computes a mapping from SEQ into N:

We let M; with or without decorations, range over learning machines. MðT ½nÞ is interpreted as
the grammar (index for an accepting program) conjectured by the learning machine M on the

initial sequence T ½n: We say that M converges on T to i (written MðTÞk ¼ i) iff ð8
N

nÞ½MðT ½nÞ
¼ i:
There are several criteria for a learning machine to be successful on a language. Below we define

identification in the limit introduced by Gold [Gol67].

Definition 4 (Gold [Gol67], Case and Smith [CS83]). Suppose aAN,f�g:
(a) M TxtEx-identifies a text T if and only if ð(i j Wi ¼ contentðTÞÞð8

N

nÞ½MðT ½nÞ ¼ i:
(b) M TxtEx-identifies an r.e. language L (written: LATxtExðMÞÞ if and only if M TxtEx-

identifies each text for L:
(c) M TxtEx-identifies a class L of r.e. languages (written: LDTxtExðMÞ) iff M TxtEx-

identifies each LAL:
(d) TxtEx ¼ fLDE j ð(MÞ½LDTxtExðMÞg:

Other criteria of success are finite identification [Gol67], behaviorally correct identification
[CL82,Fel72,OW82], and vacillatory identification [Cas99,OW82]. In the present paper, we only
discuss results about TxtEx-identification.

3. Reductions

We first present some technical machinery.
We write sDt if s is an initial segment of t; and sCt if s is a proper initial segment of t:

Likewise, we write sCT if s is an initial finite sequence of text T : Let finite sequences s0;s1; s2;y
be given such that s0Ds1Ds2D? and limi-N jsij ¼ N: Then there is a unique text T such that
for all nAN; sn ¼ T ½jsnj: This text is denoted by

S
n s

n: Let T denote the set of all texts, that is,

the set of all infinite sequences over N,f#g:
We define an enumeration operator (or just operator), Y; to be an algorithmic mapping from

SEQ into SEQ such that for all s; tASEQ; if sDt; then YðsÞDYðtÞ: We further assume that for
all texts T ; limn-N jYðT ½nÞj ¼ N: By extension, we think of Y as also defining a mapping from
T into T such that YðTÞ ¼

S
n YðT ½nÞ:

A final notation about the operator Y: If for a language L; there exists an L0 such that for each
text T for L; YðTÞ is a text for L0; then we write YðLÞ ¼ L0; else we say that YðLÞ is undefined.
The reader should note the overloading of this notation because the type of the argument
to Y could be a sequence, a text, or a language; it will be clear from the context which usage is
intended.
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We let YðTÞ ¼ fYðTÞ j TATg; and YðLÞ ¼ fYðLÞ j LALg:
We also need the notion of an infinite sequence of grammars. We let a; with or without

decorations, range over infinite sequences of grammars. From the discussion in the previous
section, it is clear that infinite sequences of grammars are essentially infinite sequences over N:
Hence, we adopt the machinery defined for sequences and texts over to finite sequences of
grammars and infinite sequences of grammars. So, if a ¼ i0; i1; i2; i3;y; then a½3 denotes the
sequence i0; i1; i2; and að3Þ is i3: Furthermore, we say that a converges to i if there exists an n such
that, for all n0Xn; in0 ¼ i:
Let I be any criterion for language identification from texts, for example I ¼ TxtEx: We say

that an infinite sequence a of grammars is I-admissible for text T just in case a witnesses I-
identification of text T : So, if a ¼ i0; i1; i2;y is a TxtEx-admissible sequence for T ; then a
converges to some i such that Wi ¼ contentðTÞ; that is, the limit i of the sequence a is a grammar
for the language contentðTÞ:
Intuitively, a learning problem L1 is reducible to a learning problem L2 if, using a strategy

learning L1 one can learn L2:
We now formally introduce our reductions. Although in this paper we will only be concerned

with TxtEx-identification, we present the general case of the definition.

Definition 5 (Jain and Sharma [JS96]). Let L1DE and L2DE be given. Let identification
criterion I be given. Let T1 ¼ fT j T is a text for LAL1g: Let T2 ¼ fT j T is a text for

LAL2g: We say that L1pIL2 if and only if there exist operators Y and C such that, for
all T ;T 0AT1 and for all infinite sequences a of grammars, the following hold:

(a) YðTÞAT2 and
(b) if a is an I-admissible sequence for YðTÞ; then CðaÞ is an I-admissible sequence for T :
(c) if contentðTÞ ¼ contentðT 0Þ then contentðYðTÞÞ ¼ contentðYðT 0ÞÞ:

We say that L1 �I L2 iff L1pIL2 and L2pIL1:

The reduction defined above was called strong-reduction in [JS96]. The above reduction
without clause (c) was called weak reduction. Since in this paper we will be only concerned with
strong reductions, we just refer to them as reductions. (Weak reductions are not sharp enough to
provide real distinction between most of the classes considered in this paper).

Intuitively, L1pIL2 just in case there exists an operator Y that transforms texts for languages
in L1 into texts for languages in L2 and there exists another operator C that behaves as follows:
if Y transforms text T (for a language in L1) to text T 0 (for a language in L2), then C transforms
I-admissible sequences for T 0 into I-admissible sequences for T : Thus, informally, the operator C
has to work only on I-admissible sequences for such texts T 0: In other words, if a is a sequence of
grammars which is not I-admissible for any text T 0 in fYðTÞ j contentðTÞAL1g; then CðaÞ can be
defined arbitrarily. This property will be used implicitly at all places below where we have to define
operators C witnessing (together with operators Y) some reducibility. Note that this approach
both simplifies the corresponding definitions and preserves the computability of the so-defined
operators.
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Additionally different texts for some language LAL1; are transformed into (possibly different)
texts for same language L0AL2:
Now, a degree of learnability under our reduction is, naturally, a set of families L reducible to

each other (i.e. the equivalence class under the reduction considered).

Intuitively, for many identification criteria I such as TxtEx; if L1pIL2 then the problem of
identifying L2 in the sense of I is at least as hard as the problem of identifying L1 in the sense of
I; since the solvability of the former problem implies the solvability of the latter one. That is given
any machine M2 which I-identifies L2; one can construct a machine M1 which I-identifies L1: To

see this, for I ¼ TxtEx; suppose Y and C witness L1pIL2: M1ðTÞ; for a text T is defined as
follows. Let pn ¼ M2ðYðTÞ½nÞ; and a ¼ p0; p1;y : Let a0 ¼ CðaÞ ¼ p00; p

0
1;y : Then letM1ðTÞ ¼

limn-N p0
n: Consequently,L2 may be considered as a hardest problem for I-identification if for all

classes L1AI; L1pIL2 holds. If L2 itself belongs to I; then L2 is said to be complete. We now
formally define these notions of hardness and completeness for the above reduction.

Definition 6 (Jain and Sharma [JS96]). Let I be an identification criterion. Let LDE be given.

(a) If for all L0AI; L0pIL; then L is pI-hard.
(b) If L is pI-hard and LAI; then L is pI-complete.

Proposition 1 (Jain and Sharma [JS96]). pTxtEx is reflexive and transitive.

The above proposition holds for most natural learning criteria.

Proposition 2 (Based on [JS97]). Suppose LpIL0; via Y and C: Then, for all L;L0AL; LDL0 )
YðLÞDYðL0Þ:

We will be using Proposition 2 implicitly when we are dealing with reductions. Since, for

LpIL0 via Y and C; for all LAL; YðLÞ is defined (¼ some L0AL0), when considering
reductions, we often consider Y as mapping finite sets to (possibly infinite) sets instead of
mapping sequences to sequences.1 This is clearly without loss of generality, as one can easily
convert such Y to Y as in Definition 5 of reduction.

4. Q-classes

In this section, we introduce the classes of languages and corresponding degrees of intrinsic
complexity that form the scale being used for estimating the complexity of learning open semi-
hulls and open hulls. First, we define ground natural classes that are being used as bricks to build
our hierarchy of degrees.
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Definition 7. INIT ¼ fLDN j ð(iANÞ½L ¼ fxAN j xpigg:
COINIT ¼ fLDN j ð(iANÞ½L ¼ fxAN j xXigg:
HALF ¼ fLDZ j ð(iAZÞ½L ¼ fxAZ j xXigg:

Note that officially our definition for languages and r.e. sets as in Section 2, only allows subsets
of N: Since, one can easily code Z onto N; by slight abuse of convention, we can consider subsets
of Z also as languages. We thus assume an implicit coding of Z onto N whenever we deal with
languages and language classes involving HALF, without explicitly stating so.
In the sequel, we will use the above notation in two different contexts. Namely, we will use INIT

to denote the class of languages as defined above, and to denote the degree of all classes of
languages equivalent to the class INIT under our reductions. Similarly, we will use in two different
contexts COINIT, HALF and all their combinations defined below in this section. In every use of
this notation, the reader will be able to easily determine an appropriate context.
While both the classes INIT and COINIT are monotonically learnable, the types of conjectures

being used to learn INIT and, respectively, COINIT are obviously different. For INIT the
maximum element in the input gives a code for the language, whereas in COINIT the minimum
element gives the code. Note that the maximum element used in INIT strategy is unbounded,
whereas the minimum element for COINIT is bounded by 0: So, not surprisingly, the degrees of
INIT and COINIT were proven in [JS96] to be different.
Classes HALF and COINIT are learnable by similar strategies, however, the minimum element

in HALF is unbounded. We will formally prove below that degree of HALF is different from
degrees of both INIT and COINIT. Furthermore, we will show that the degree of HALF can be
viewed as a cross product of the degrees of INIT and COINIT.
There are several other natural classes considered in the literature such as FINITE (degree of

which is equivalent to INIT), SINGLE, COSINGLE, etc. but we will not be concerned with them
here since they will not be relevant to our results.
Now we define the cross product of arbitrary classes L1 and L2:

Definition 8. Let L1;L2 be two classes of languages. Then L1 �L2 ¼ fL1 � L2 j L1AL1;
L2AL2g:

This definition can be naturally extended to any finite number of dimensions. For example, one
can naturally define L1 �L2 �L3; etc.

Theorem 1. HALF �TxtEx INIT � COINIT :

Proof of the above theorem is given in Appendix A.
Now, following [JKW00], we are going to combine the classes INIT, COINIT, and HALF to

form classes of multidimensional languages, where, to learn the dimension Lkþ1 of a language L;
the learner must first learn the parameters i1;y; ik of the dimensions L1;y;Lk; then Lkþ1 is the
projection fxkþ1j/i1;y; ik;xkþ1; xkþ2;y;xnSALg with a simple sublanguage whose description
is specified yet by i1;y; ik: Once it has been determined which projection must be learned, the
learner can use a predefined INIT-, COINIT-, or HALF-type strategy to learn the projection in
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question. For example, one can consider a class of two-dimensional languages ðINIT ;COINITÞ;
where the first dimension L1 ¼ fxj/x; ySALg of any language L belongs to INIT, and if i is the
parameter describing L1 (that can be learned by an INIT-type strategy) then the projection
fyj/i; ySALg is in COINIT.
Below for any tuples X and Y ; let X 
 Y denote the concatenation of X and Y : That is

if X ¼ /x1;x2;y;xnS and Y ¼ /y1; y2;y; ymS then X 
 Y ¼ /x1;y; xn; y1;yymS: Let
BASIC ¼ fINIT ;COINIT ;HALFg:
In part (c) of the following definition and in later situations in languages involving HALF we

sometimes abuse notation slightly and allow elements of Z as components of the pairing function
/?S: This is for ease of notation, and one could easily replace these by using some coding of Z

onto N:

Definition 9 (Jain et al. [JKW00]). Suppose kX1: Let QABASICk: Let IANk: Then inductively

on k; we define the languages L
Q
I and TðLQ

I Þ and PðLQ
I Þ as follows.

If k ¼ 1; then
(a) if Q ¼ ðINITÞ and I ¼ ðiÞ; iAN; then

TðLQ
I Þ ¼ f/xS j xAN; xoig; PðLQ

I Þ ¼ f/iSg and L
Q
I ¼ TðLQ

I Þ,PðLQ
I Þ:

(b) if Q ¼ ðCOINITÞ and I ¼ ðiÞ; iAN; then

TðLQ
I Þ ¼ f/xS j xAN; x4ig; PðLQ

I Þ ¼ f/iSg and L
Q
I ¼ TðLQ

i Þ,PðLQ
i Þ:

(c) if Q ¼ ðHALFÞ and I ¼ ðiÞ; iAZ; then

TðLQ
I Þ ¼ f/xS j xAZ;x4ig; PðLQ

I Þ ¼ f/iSg and L
Q
I ¼ TðLQ

i Þ,PðLQ
i Þ:

Now suppose we have already defined L
Q
I for kpn: We then define L

Q
I for k ¼ n þ 1 as follows.

Suppose Q ¼ ðq1;y; qnþ1Þ and I ¼ ði1;y; inþ1Þ: Let Q1 ¼ ðq1Þ and Q2 ¼ ðq2;y; qnþ1Þ: Let
I1 ¼ ði1Þ and I2 ¼ ði2;y; inþ1Þ: Then,

TðLQ
I Þ ¼ fX 
 Y j XATðLQ1

I1
Þ; or ½XAPðLQ1

I1
Þ and YATðLQ2

I2
Þg;

PðLQ
I Þ ¼ fX 
 Y j XAPðLQ1

I1
Þ and YAPðLQ2

I2
Þg;

and

L
Q
I ¼ TðLQ

I Þ,PðLQ
I Þ:

Intuitively, in the above definition TðLQ
I Þ denotes the terminating part of the language that is

specified yet by i1;y; in; inþ1; and PðLQ
I Þ denotes the propagating part of the language L

Q
I that

could be used for adding a language in dimension n þ 2: (See [JKW00] for more details and
motivation on the terminology of terminating and propagating.)

For ease of notation we often write L
Q

ði1;i2;y;ikÞ as L
Q
i1;i2;y;ik

:

Definition 10. Let kX1: Let Q ¼ ðq1;y; qkÞABASICk and R ¼ R1 � R2 �?� Rk; where for

1pipk; RiDN if qiAfINIT ;COINITg; and RiDZ; if qi ¼ HALF : Then the class LQ;R is
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defined as

LQ;R ¼ fL
Q
I j IARg:

For technical convenience, for Q ¼ ð Þ; I ¼ ð Þ; R ¼ fIg; we also define TðLQ
I Þ ¼ |; PðLI

QÞ ¼
f/Sg; and L

Q
I ¼ TðLQ

I Þ,PðLQ
I Þ; and LQ;R ¼ fL

Q
I g:

Note that we have used a slightly different notation for defining the classes LQ;R (for example

instead of INIT, we now use LðINITÞ;NÞ). This is for clarity of notation.
Also, our main interest is for Ri’s being N or Z (based on whether qiAfINIT ;COINITg or

qi ¼ HALF ), though (as the following proposition shows) it does not matter as long as Ri is (or
contains) an infinite recursive subset of N; if qiAfINIT ;COINITg; and Ri is (or contains) an
infinite recursive subset of Z with infinite intersection with both N and Z�; if qi ¼ HALF : The
usage of general R is more for ease of proving some of our theorems.

Proposition 3. Suppose kX1: Let QABASICk: Let R ¼ R1 � R2 �?� Rk; where each Ri is an
infinite recursive subset of N; if qiAfINIT ;COINITg and Ri is a recursive subset of Z; with infinite

intersection with both N and Z�; if qi ¼ HALF : Let R0 ¼ R0
1 � R0

2 �?� R0
k; where R0

i is N; if

qiAfINIT ;COINITg and R0
i is Z; if qi ¼ HALF : Then, LQ;R �TxtEx LQ;R0

:

For ease of notation, if Q ¼ ðq1; q2;y; qnÞ and R ¼ R1 � R2 �?� Rn; where Ri ¼ N if

qiAfINIT ;COINITg and Ri ¼ Z if qi ¼ HALF ; then we drop R from LQ;R; using just LQ:
The immediate question is which classes Q represent different degrees.

Proposition 4. Suppose Q ¼ ðq1;y; qk�1; qk; qkþ1;y; qlÞ and Q0 ¼ ðq1;y; qk�1; q
0; qkþ1;y; qlÞ;

where qkAfINIT ;COINITg and q0 ¼ HALF ; and other qiABASIC:

Then, LQpTxtExLQ0
:

Proof. The above can be easily shown using INITpTxtExHALF and COINITpTxtExHALF : &

Since INIT � COINITpTxtExLQ; for Q ¼ ðINIT ;COINITÞ; or Q ¼ ðCOINIT ; INITÞ
[JKW00], we have the following proposition.

Proposition 5. Suppose Q ¼ ðq1;y; qk�1;HALF ; qkþ1;y; qnÞ and Q0 ¼ ðq1;y; qk�1; INIT ;

COINIT ; qkþ1;y; qnÞ or Q0 ¼ ðq1;y; qk�1;COINIT ; INIT ; qkþ1;y; qnÞ: Then LQpTxtExLQ0
:

Proof. The above can be easily shown using HALFpTxtExðINIT ;COINITÞ and

HALFpTxtExðCOINIT ; INITÞ: &

Proposition 6 (Based on [JS96]). Suppose Q ¼ ðINITÞ; R ¼ R1; Q0 ¼ ðCOINITÞ; and R0 ¼ R0
1;

where R1 and R0
1 are infinite subsets of N: Then LQ;R4/ TxtExLQ0;R0

; and LQ0;R0
4/ TxtExLQ;R:
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The following technical definition introduces an ordering on all k-tuples of parameters i1;y; ik
of languages in an arbitrary class LQ: This ordering will be helpful for the result in the next
section.

Definition 11. Suppose Q ¼ ðq1;y; qkÞ; where each qiAfHALF ; INIT ;COINITg; for 1pipk:
Let Q0 ¼ ðq2;y; qkÞ: We say that /i1;y; ikSpQ/j1;y; jkS iff

(a) if q1 ¼ INIT ; then ½i1oj1 or ½i1 ¼ j1 and /i2;y; ikSpQ0/j2;y; jkS;
(b) if q1 ¼ COINIT or q1 ¼ HALF ; then ½i14j1 or ½i1 ¼ j1 and /i2;y; ikSpQ0/j2;y; jkS:

Here, for Q ¼ ðÞ; we assume that /SpQ/S:

5. Q-hierarchy involving HALF

In this section, we establish a hierarchy among the Q-classes that will serve as a scale for the
complexity of our geometrical concepts.

Definition 12. Q is said to be a pseudo-subsequence of Q0; iff there exists a subsequence Q00 of Q0;
such that Q00 is obtainable from Q by

(i) replacing some INIT with HALF ;
(ii) replacing some COINIT with HALF ;
(iii) replacing some HALF with ðCOINIT ; INITÞ; or
(iv) replacing some HALF with ðINIT ;COINITÞ:

For example, Q ¼ ðINIT ;HALF ;COINITÞ is a pseudo-subsequence of Q0 ¼
ðCOINIT ;HALF ;COINIT ; INIT ; INIT ;COINITÞ: dropping the first COINIT and the second
INIT from Q0; we get the subsequence Q00 ¼ ðHALF ;COINIT ; INIT ;COINITÞ; now Q can be
promoted to Q00 by replacing INIT with a more powerful HALF and replacing HALF (in its
middle) with a more powerful combination COINIT ; INIT :
In other words, a pseudo-subsequence of a vector Q is a subsequence where some HALFs are

replaced with more primitive INITs or COINITs and some combinations INIT ;COINIT or
COINIT ; INIT are replaced with more primitive HALFs.

Proposition 7. Suppose Q;Q0;Q00ABASIC�: Then if Q is a pseudo-subsequence of Q0 and Q0 is a

pseudo-subsequence of Q00; then Q is a pseudo-subsequence of Q00:

Proof. Follows from definition of pseudo-subsequence. &

Proposition 8. Suppose Q;Q0ABASIC� and Q is a pseudo-subsequence of Q0: Then LQpTxtExLQ0
:
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Proof. Follows from definition of pseudo-subsequence, Propositions 4 and 5. &

Proposition 9. Suppose Q ¼ ðq1; q2;y; qkÞ and Q0 ¼ ðq01; q0
2;y; q0

lÞ; where each qi; q0iABASIC:
(a) If q1 ¼ q0

1; then ðq2;y; qkÞ is a pseudo-subsequence of ðq0
2;y; q0

lÞ; iff Q is a pseudo-

subsequence of Q0:
(b) Suppose q1; q01AfINIT ;COINITg; but q1aq01: Then, Q is a pseudo-subsequence of Q0 iff Q is

a pseudo-subsequence of Q00 ¼ ðq0
2; q03;y; q0lÞ:

(c) Suppose q1 ¼ HALF : Then, Q is a pseudo-subsequence of Q0 implies ðINIT ; q2;y; qkÞ is a
pseudo-subsequence of Q0:
(d) Suppose q1 ¼ HALF : Then, Q is a pseudo-subsequence of Q0 implies ðCOINIT ; q2;y; qkÞ is a

pseudo-subsequence of Q0:
(e) Suppose q0

1 ¼ HALF : Then, Q is a pseudo-subsequence of Q0 iff ðq2; q3;y; qkÞ is a pseudo-

subsequence of ðq0
2; q03;y; q0lÞ:

Proof. Follows from the definition of pseudo-subsequence. &

Proposition 10. Suppose Q ¼ ðq1; q2;y; qkÞ and Q0 ¼ ðq01; q0
2;y; q0

lÞ; where each qi; q
0
iABASIC:

Suppose Q is not a pseudo-subsequence of Q0:
(a) If q1 ¼ q0

1AfINIT ;COINITg; q2AfINIT ;COINITg; and q2aq1; then Q00 ¼ ðq2; q3;y; qkÞ is

not a pseudo-subsequence of Q0:
(b) If q1 ¼ HALF ; and q01 ¼ INIT ; then Q00 ¼ ðCOINIT ; q2;y; qkÞ is not a pseudo-subsequence

of Q0:
(c) If q1 ¼ HALF ; and q01 ¼ COINIT ; then Q00 ¼ ðINIT ; q2;y; qkÞ is not a pseudo-subsequence

of Q0:
(d) If q1 ¼ q0

1AfINIT ;COINITg; q2 ¼ HALF ; lX2; and q02AfINIT ;HALFg; then Q00 ¼
ðq1;COINIT ; q3; q4;y; qkÞ is not a pseudo-subsequence of Q0:
(e) If q1 ¼ q01AfINIT ;COINITg; q2 ¼ HALF ; lX2; and q02AfCOINIT ;HALFg; then Q00 ¼

ðq1; INIT ; q3; q4;y; qkÞ is not a pseudo-subsequence of Q0:

Proof. We show parts (a), (b) and (d). Proof of part (c) is similar to part (b) and proof of part (e)
is similar to part (d).
(a) Let Q000 ¼ ðq0

2; q03;y; q0lÞ: Now by Proposition 9(a), Q is a pseudo-subsequence of Q0 iff Q00 is
pseudo-subsequence of Q000: By Proposition 9(b), Q00 is pseudo-subsequence of Q000 iff Q00

is pseudo-subsequence of Q0: Thus, since Q is not a pseudo-subsequence of Q0 it follows that
Q00 is not a pseudo-subsequence of Q0:
(b) Suppose by way of contradiction that ðCOINIT ; q2;y; qkÞ is a pseudo-subsequence of Q0:

Then by applying Proposition 9(b), we have that ðCOINIT ; q2;y; qkÞ is a pseudo-subsequence of
ðq0

2; q03;y; q0lÞ: Thus, by Proposition 9(a) we have ðINIT ;COINIT ; q2;y; qkÞ is a pseudo-

subsequence of ðq0
1; q

0
2;y; q0

lÞ: But since ðHALF ; q2;y; qkÞ is a pseudo-subsequence of

ðINIT ;COINIT ; q2;y; qkÞ we have, Q ¼ ðHALF ; q2;y; qkÞ is a pseudo-subsequence of Q0 ¼
ðq0

1; q02; q03; q
0
4;y; q0

lÞ: A contradiction to the hypothesis. Part (b) follows.

(d) Let Q000 ¼ ðq0
2; q03;y; q0lÞ: We consider two cases.
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Case 1: q02 ¼ HALF :
By Proposition 9(a), Q is a pseudo-subsequence of Q0 iff ðq2;y; qkÞ is a pseudo-subsequence of

Q000: By Proposition 9(e), ðq2; q3;y; qkÞ is a pseudo-subsequence of Q000; iff ðCOINIT ; q3;y; qkÞ is
a pseudo-subsequence of Q000: Thus, since Q is not a pseudo-subsequence of Q0 it follows that
ðCOINIT ; q3;y; qkÞ is not a pseudo-subsequence of Q000: Thus, by Proposition 9(a), it follows that
ðq1;COINIT ; q3;y; qkÞ is not a pseudo-subsequence of Q0:

Case 2: q02 ¼ INIT :
By hypothesis and Proposition 9(a) we have that ðq2; q3;y; qkÞ is not a pseudo-subsequence of

ðq0
2; q03;y; q0lÞ: Thus, by part (b) ðCOINIT ; q3;y; qkÞ is not a pseudo-subsequence of

ðq0
2; q03;y; q0lÞ: Thus, by Proposition 9(a) ðq1;COINIT ; q3;y; qkÞ is not a pseudo-subsequence

of Q0: &

The following theorem shows that reducing any Q0-vector to its proper pseudo-subsequence Q

results in the degree of learnability that is properly below the degree defined by the
Q0-class.

Theorem 2. Suppose Q ¼ ðq1;y; qkÞABASICk and Q0 ¼ ðq0
1;y; q0

lÞABASICl: Let R ¼ R1 �
R2 �?� Rk; R0 ¼ R0

1 � R0
2 �?� R0

l; where each Ri ðR0
iÞ is an infinite subset of N; if

qiAfINIT ;COINITg ðq0iAfINIT ;COINITgÞ; and Ri ðR0
iÞ is a subset of Z; with infinite

intersection with both N and Z�; if qi ¼ HALF ðq0
i ¼ HALFÞ:

If Q is not a pseudo-subsequence of Q0 then LQ;R4/ TxtExLQ0;R0
:

Proof of the above Theorem is given in Appendix A.

Corollary 1. Suppose QABASICk and Q0ABASICl : Then, LQpTxtExLQ0
iff Q is a pseudo-

subsequence of Q0:

6. Definitions for open semi-hull and some propositions

Let rat denote the set of non-negative rationals. ratþ ¼ rat� f0g; denotes the set of positive
rationals.
Any language SEMI HULLn

y
defined below is a geometrical figure semi-hull, collection of

points in the first quadrant of the plane bounded by the y-axis and a broken line that consists
of a straight fragment l0 of the x-axis (starting from origin) followed by a straight fragment
l1 that makes an angle d1o90� with the x-axis, followed by a fragment l2 that makes an angle
d24d1 with the x-axis, etc. (In the above, the angle is being measured anti-clockwise from the
positive x-axis).

Definition 13. Suppose a1;y; anAN and b1;y; bnAratþ; where 0oa1oa2oyoan:

SEMI HULLn
a1;b1;a2;b2;y;an;bn

¼ fðx; yÞAN2 j yX
P

1pipn bi � ðx ’�aiÞg:
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Note that SEMI HULL0 ¼ N2: Also, note that though SEMI HULLn above are subsets of N2;
one can easily consider them as languages DN; by using pairing function. We assume such

implicit coding whenever we are dealing with sets DN2:
Parameters ai in the above definition specify x-coordinates of break points of the border line,

while the bi specify the slopes that are being added to the slope of the border line after every break
point.
To make our classes of languages learnable, we have to impose certain restrictions on the

parameters ai; bi: First, we want both coordinates a and c of break points ða; cÞ to be integers.
Secondly, for all languages in our classes, we fix a subset S from which slopes bi may come from.
(In the following definition, S may be an arbitrary subset of ratþ; however, later we will impose
additional restrictions on S). The definition of valid sequences of parameters ai; bi accomplishes
this goal.

Definition 14. Suppose a1;y; anAN and b1;y; bnAratþ; where 0oa1oa2o?oan: Suppose
SDratþ:
We say that ða1; b1;y; an; bnÞ is valid iff for 1pjpn; ½

P
1pipn bi � ðaj ’�aiÞAN: Additionally, if

each biAS; then we say that ða1; b1;y; an; bnÞ is S-valid.
Let VALID ¼ fða1; b1;y; an; bnÞ j ða1; b1;y; an; bnÞ is validg:
Let VALIDS ¼ fða1; b1;y; an; bnÞ j ða1; b1;y; an; bnÞ is S-validg:

Note that the empty sequence ðÞ is both valid and S-valid. Also we require a140: This is for
technical convenience, and crucial for some of our results.
Now we define the class of languages we are going to explore.

Definition 15. Suppose SDratþ: Then

SEMI HULLn;S ¼ fSEMI HULLn
a1;b1;y;an;bn

j ða1; b1;y; an; bnÞAVALIDSg:

Now we formulate and prove a number of useful technical propositions (few of them
immediately follow from the relevant definitions).

Proposition 11. (a) Suppose ða1; b1;y; aj; bj; ajþ1; bjþ1ÞAVALID: Then

SEMI HULL
jþ1
a1;b1;y;aj ;bj ;ajþ1;bjþ1

CSEMI HULL
j
a1;b1;y;aj ;bj

:

(b) Suppose ða1; b1;y; aj�1; bj�1; aj; bjÞ and ða1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞAVALID; and ajpa0

j;

bjXb0
j: Then, SEMI HULL

j
a1;b1;y;aj ;bj

DSEMI HULL
j
a1;b1;y;a0

j
;b0

j
:

Proof. Follows from definitions. &

Definition 16. Suppose a1; b1;y; ; aj; bj are given such that ða1; b1;y; aj; bjÞAVALID: Then, let
INTERða1; b1;y; aj; bjÞ ¼T
fSEMI HULLn

a1;b1;y;aj ;bj ;y;an;bn
j nXj4ða1; b1;y; aj; bj;y; an; bnÞAVALIDg:
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Intuitively, INTERða1; b1;y; aj; bjÞ; denotes the common portion of all

SEMI HULLn
a0
1
;b0

1
;y;a0

j
;b0

j
;y; with ai ¼ a0

i and bi ¼ b0
i for 1pipj:

Proposition 12. (a) Suppose 1pjpn; and ða1; b1;y; aj; bj;y; an; bnÞAVALID: Then

INTERða1; b1;y; aj; bjÞDSEMI HULLn
a1;b1;y;;aj ;bj ;y;an;bn

:

(b) Suppose ða1; b1;y; aj; bj; ajþ1; bjþ1Þ is valid. Then, INTERða1; b1;y; aj; bjÞD
INTERða1; b1;y; aj; bj; ajþ1; bjþ1Þ:

Proof. Follows from definitions. &

Definition 17. Suppose ða1; b1;y; aj; bjÞAVALID: Then let maxinterða1; b1;y; aj; bjÞ denote the

least natural number x4aj such that
P

1pipj bi � ðx ’�aiÞAN:

Proposition 13. Suppose a1; b1;y; ; aj; bj are given such that ða1; b1;y; aj; bjÞAVALID: Then,

INTERða1; b1;y; aj; bjÞ ¼ SEMI HULLn
a1;b1;y;aj ;bj

-fðx; yÞAN2 j xpmaxinterða1; b1;y; aj; bjÞg:

Proof. Follows from definitions. &

Proposition 14. Suppose a1; b1;y; aj�1; bj�1; aj; bj; a
0
j; b

0
j are given, where ða1; b1;y; aj�1;

bj�1; aj; bjÞ; and ða1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞ are valid. If INTERða1; b1;y; aj�1; bj�1; a0

j; b
0
jÞD

SEMI HULLn
a1;b1;y;aj�1;bj�1;aj ;bj

:

Then
(i) a0

jpaj and

(ii) b0j � ðmaxinterða1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞ ’�a0jÞXbj � ðmaxinterða1; b1;y; aj�1; bj�1; a

0
j; b

0
jÞ ’�ajÞ:

Proof. Suppose that a1; b1;y; aj�1; bj�1; a0j; b0j; aj; bj are as given in the hypothesis.

If ajoa0j; then ða0j;
P

1pioj bi � ða0j ’�aiÞÞ belongs to INTERða1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞ but does

not belong to SEMI HULLn
a1;b1;y;aj�1;bj�1;aj ;bj

(since ða0
j;
P

1pioj bi � ða0j ’�aiÞÞ is below the last

fragment of the border line for SEMI HULLn
a1;b1;y;aj�1;bj�1;aj ;bj

).

Thus, we must have a0jpaj:

Let x ¼ maxinterða1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞ: Let y ¼ b0

j � ðx ’�a0jÞ þ
P

1pioj bi � ðx ’�aiÞÞ:
Now, ðx; yÞ belongs to INTERða1; b1;y; aj�1; bj�1; a0j; b0jÞ: If ðx; yÞ belongs to

SEMI HULL
j
a1;b1;y;aj�1;bj�1;aj ;bj

then by definition of SEMI HULLj; we must have y ¼
b0j � ðx ’�a0jÞ þ

P
1pioj bi � ðx ’�aiÞXbj � ðx ’�ajÞ þ

P
1pioj bi � ðx ’�aiÞ: Thus, b0

jðx ’�a0jÞXbjðx ’�ajÞ:
The proposition follows. &

The following two corollaries have obvious geometrical interpretation.
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Corollary 2. Suppose ða1; b1;y; aj�1; bj�1; a
0
j; b

0
j;y; a0

n; b
0
nÞ and ða1; b1;y; aj�1; bj�1; a00j ; b00j ;y;

a00n; b00nÞ are valid.

(a) If a0joa00
j ; then SEMI HULLn

a1;b1;y;aj�1;bj�1;a
00
j
;b00

j
;y;a00n ;b

00
n
D/ SEMI HULLn

a1;b1;y;aj�1;bj�1;a
0
j
;b0

j
;y;a0n;b

0
n
:

(b) If a0j ¼ a00
j and b0

j4b00j then

SEMI HULLn
a1;b1;y;aj�1;bj�1;a

00
j
;b00

j
;y;a00n ;b

00
n
D/ SEMI HULLn

a1;b1;y;aj�1;bj�1;a
0
j
;b0

j
;y;a0n;b

0
n
:

Proof. If SEMI HULLn
a1;b1;y;aj�1;bj�1;a

00
j
;b00

j
;y;a00n ;b

00
n
DSEMI HULLn

a1;b1;y;aj�1;bj�1;a
0
j
;b0

j
;y;a0n;b

0
n
; then it

follows that INTERða1; b1;y; aj�1; bj�1; a00j ; b00j ÞDSEMI HULLn
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
: Thus, it follows

from Proposition 14 that a00j pa0
j and if a00

j ¼ a0
j; then b00j Xb0

j: The corollary follows. &

Corollary 3. Suppose ða1; b1;y; an; bnÞ and ða01; b0
1;y; a0n; b

0
nÞ are valid. Suppose

SEMI HULLn
a1;b1;y;an;bn

CSEMI HULLn
a0
1
;b0

1
;y;a0n;b

0
n
: Let i be the minimum value such that aiaa0

i

or biab0i: Then, aioa0i or ½ai ¼ a0i and bi4b0
i:

Proof. Note that for the least j such that ða0
j; b

0
jÞaðaj; bjÞ; we must have

INTERn
a1;b1;y;aj ;bj

DSEMI HULLn
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
: The corollary now follows from Proposi-

tion 14. &

Proposition 15. Suppose 1pjpn: Suppose ða1; b1;y; aj�1; bj�1; aj; bj;y; an; bnÞ and

ða1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞ are valid.

(a) If a0jpaj and b0
jX

P
jpipn bi; then

SEMI HULL
j
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
DSEMI HULLn

a1;b1;y;aj ;bj ;y;an;bn
:

(b) If a0jpaj and b0
j4

P
jpipn bi; then

SEMI HULL
j
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
CSEMI HULLn

a1;b1;y;aj ;bj ;y;an;bn
:

Proof. (a) SEMI HULL
j
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
¼ fðx; yÞAN2 j yXb0jðx ’�a0

jÞ þ
P

1pioj bi � ðx ’�aiÞg:
SEMI HULLn

a1;b1;y;an;bn
¼ fðx; yÞAN2 j yX

P
jpipn bi � ðx ’�aiÞ þ

P
1pioj bi � ðx ’�aiÞg:

Part (a) follows since b0
jðx ’�a0

jÞXb0
jðx ’�ajÞX

P
jpipn bi � ðx ’�ajÞX

P
jpipn bi � ðx ’�aiÞ:

(b) Follows from part (a) and Corollary 2. &

Now we are at the point when our results require additional constraint on the set S (of slopes).
Intuitively, the set S satisfying the constraints cover the positive rational numbers, and can be
algorithmically listed in a monotonic order on a two-sided-infinite tape. A natural example of set
S satisfying the constraint below is the set N,f1=xjxANg: Although our results below hold for
any fixed set S of rationals satisfying the constraint in question, we suggest the reader to keep in
mind the above set when reading the proofs.
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Definition 18. A set SDratþ is said to be ratþ-covering iff there exists a recursive bijection f from
Z to S such that,

(i) for i; jAZ; ioj iff f ðiÞof ðjÞ:
(ii) for every xAratþ; there exist y; y0AS such that yoxoy0:

A natural choice for a set S (which does not satisfy the above constraint) seems to be the set
ratþ: However, in this case, a complete class of languages fLy ¼ fxjxAratþ; xXyg j yAratþg (see

[JKW00]) would be trivially reducible to any class of languages-figures considered in our paper,
thus making all of them of the same complexity. The use of ratþ-covering sets S gives us
opportunity to capture differences in learnability of different geometrical concepts observed in
our paper.
Our results below hold for any ratþ-covering set S: However, it is open at present whether

SEMI HULLn;S �TxtEx SEMI HULLn;S0
; for arbitrary ratþ-covering sets S and S0:

Note that, for any given nAN; and ratþ-covering set S; there exists a limiting partial recursive

function F such that, if i is a grammar for some SEMI HULL
n;S
a1;b1;y;an;bn

; where ða1; b1;y; an; bnÞ
being S-valid, then FðiÞ converges to ða1; b1;y; an; bnÞ: That is one can determine the parameters

limit-effectively from any grammar for SEMI HULL
n;S
a1;b1;y;an;bn

: This fact will be implicitly used in

construction of C in some of our proofs.
Intuitively, the following technical proposition claims that, given a point ðx0; y0Þ in a language

SEMI HULL
j�1
a1;b1;y;aj�1;bj�1

; one can effectively find a lower bound on the boundary slopes bj of all

languages SEMI HULL
j
a1;b1;y;aj�1;bj�1;aj ;bj ;y

which do not contain ðx0; y0Þ:

Proposition 16. Suppose ða1; b1;y; aj�1; bj�1Þ is valid. Let ðx0; y0ÞAN2 be such that

y04
P

1pioj biðx0 ’�aiÞ: Then, there exists a B0Aratþ obtainable effectively from a1; b1;y; aj�1;

bj�1; x0 and y0 such that for any ða0
j; b0

jÞ; if ða1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞ; is valid and x0pa0j or b0

joB0;

then, ðx0; y0ÞAINTER
j
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
:

Proof. If a0
jXx0; then we would have y0X

P
1pioj biðx0 ’�aiÞ ¼ b0jðx0 ’�a0

jÞ þ
P

1pioj biðx0 ’�aiÞ:
Thus, ðx0; y0ÞAINTER

j
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
:

Now fix any a0
jox0: If ða1; b1;y; aj�1; bj�1; a0j; b0jÞ is valid, but ðx0; y0ÞeINTER

j
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
;

then either (a) maxinterða1; b1;y; aj�1; bj�1; a0j; b0
jÞox0; or (b) y0ob0jðx0 ’�a0

jÞ þ
P

1pioj biðx0 ’�aiÞ:
Let Bða0

jÞ ¼ ðy0 �
P

1pioj biðx0 ’�aiÞÞ=ðx0 ’�a0
jÞ: Now for (b) to be true b0

j must be greater

than Bða0
jÞ: We now consider which b0

jpBða0jÞ can satisfy (a). Let x1 ¼
maxinterða1; b1;y; aj�1; bj�1; a0j; b0

jÞ; and y1 ¼ b0j � ðx1 ’�a0jÞ þ
P

1pioj bi � ðx1 ’�aiÞ: For b0jpBða0
jÞ

to satisfy (a), ðx1; y1Þ must lie in the intersection of the following three regions:

(A) y4
P

1pioj biðx ’�aiÞ;
(B) xpx0; and
(C) ypBða0jÞ � ðx ’�a0jÞ þ

P
1pioj biðx ’�aiÞ:
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Since the above intersection is finite, there are only finitely many possibilities for ðx1; y1Þ;
and thus for b0j: Thus, let B1ða0

jÞpBða0
jÞ; be a positive rational number, such that

maxinterða1; b1;y; aj�1; bj�1; a0j; b0
jÞox0 implies b0

j4B1ða0
jÞ: Note that such a B1ða0jÞ exists and

can be obtained effectively from a1; b1;y; aj�1; bj�1; x0; y0:
Now taking B0 ¼ minðfB1ða0

jÞ j aj�1oa0jox0gÞ; witnesses the proposition. &

Corollary 4. Suppose ða1; b1;y; aj; bjÞ is valid. Then, one can effectively (in a1; b1;y; aj; bj) obtain

a B0Aratþ such that following property is satisfied.
For any ða1; b1;y; aj�1; bj�1; a

0
j; b

0
jÞ which is valid, if INTERða1; b1;y; aj�1; bj�1; a

0
j; b

0
jÞD

SEMI HULLn
a1;b1;y;aj�1;bj�1;aj ;bj

; then b0jXB0 and a0jpaj:

Proof. Pick ðx0; y0ÞAN2 such that x04aj; and
P

1pioj biðx0 ’�aiÞoy0o
P

1pipj biðx0 ’�aiÞ:
Corollary, now follows from Propositions 14 and 16. &

Proposition 18 below will play an important role in some of our proofs. Imagine that, in the
process of learning, SEMI HULLn

a1;b1;y;aj�1;bj�1;aj ;bj ;y;an;bn
; the learner has already learned the

parameters a1; b1;y; aj�1; bj�1; and is now trying to learn the parameters aj; bj: Our aim is to use a

ðINIT ;COINITÞ-type strategy to learn ðaj; bjÞ (instead of the trivial ðINIT ;HALFÞ-type strategy
mentioned in the introduction).
Since we intend to use ðINIT ;COINITÞ-type strategy, we need to be safe in choosing the

parameters. That is, choosing ðaj; bjÞ must imply that any ða0
j; b

0
jÞ smaller than ðaj; bjÞ must be

inconsistent with the input, (smaller in the sense of some ðINIT ;COINITÞ-type ordering of all
pairs ða00j ; b00j Þ).
This is achieved in two steps. First we order ða00j ; b00j Þ; with b00j pB; for some fixed positive rational

number B in a INIT like fashion. Then, we order b00j 4B; in a COINIT like fashion. This latter

ordering is easily achievable (as will be seen in the proof of Theorem 3 below). For the former
ordering, if b0

j; bjpB; then we make sure that if INTERða1; b1;y; aj�1; bj�1; a0j; b0jÞ is a subset of

SEMI HULLn
a1;b1;y;aj�1;bj�1;aj ;bj

; then ordering places ða0j; b0jÞ below ðaj; bjÞ: Proposition 18 (which is

based on Corollary 5 and Proposition 17 below) shows that this is achievable. Note that this
ordering depends on ða1; b1;y; aj�1; bj�1Þ:

Corollary 5. Suppose 1pjpn: Let S be any ratþ-covering set, and BAS:
Suppose a1; b1;y; aj�1; bj�1 aj; bj are given, where ða1; b1;y; aj�1; bj�1; aj; bjÞ is S-valid.

Then, there exist only finitely many ða0j; b0jÞ; such that

(i) ða1; b1;y; aj�1; bj�1; a0j; b0jÞ is S-valid,

(ii) b0
jpB; and

(iii) INTERða1; b1;y; aj�1; bj�1; a0
j; b

0
jÞDSEMI HULL

j
a1;b1;y;aj�1;bj�1;aj ;bj

:
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Moreover, canonical index for the finite set of a0j; b0j satisfying above three conditions can be

obtained effectively from B; a1; b1;y; aj�1; bj�1; aj; bj:
Furthermore, for any a0

j; b
0
j satisfying the above three conditions, a0

jpaj; and if a0
j ¼ aj;

then b0
jXbj:

Proof. Furthermore clause follows from Proposition 14.
By Corollary 4, one can effectively find a B0Aratþ such that any ða0j; b0jÞ satisfying (i) and (iii)

must satisfy b0jXB0 and a0jpaj: Corollary now follows since there are only finitely many ða0
j; b

0
jÞ

such that a0
jpaj; B0pb0

jpB; and b0jAS and for any ða0j; b0jÞ; one can effectively test whether ða0
j; b

0
jÞ

satisfies clauses (i) to (iii) in the corollary. &

The above corollary together with the following technical proposition will enable us to impose
a suitable ordering on ða1; b1;y; aj; bjÞ with an upper bound B on slopes bj: Think of

ða1; b1;y; aj�1; bj�1Þ as already fixed.

Proposition 17. Suppose R is a partial order over an r.e. set A; and F is a partial recursive function

with domain A such that, for any xAA;

(i) fx0 j x0Rxg is finite and

(ii) FðxÞ is the canonical index for fx0AA j x0Rxg:

Then, effectively from a program for F ; one can obtain a program for a 1–1, partial recursive
function h with domain A and range DN; such that x0Rx implies hðx0ÞphðxÞ: Moreover, if A is
infinite, then range of h is N:

Proof. Let f be a recursive function such that rangeð f Þ ¼ A: Define h as follows. Let cur ¼ 0: Go
to stage 0:

Stage s
(� In this stage we make sure that hð f ðsÞÞ; along with hðxÞ; for all x such that xR f ðsÞ; are defined
appropriately. �)

If hð f ðsÞÞ has already been defined, then go to stage s þ 1:
Otherwise let X ¼ fx j xRf ðsÞg (note that one can effectively obtain X from f ðsÞ by
assumption (ii) of the hypothesis; also note that f ðsÞAX ; since f ðsÞRf ðsÞ).
Let x0;x1;y;xm be listing of members of X such that xiRxj implies ipj (note that one

can easily get such an ordering since X is finite).
For j ¼ 0 to m do

If hðxjÞ has not been defined then

let hðxjÞ ¼ cur; cur ¼ cur þ 1:
EndFor
(� Note that hð f ðsÞÞ along with hðxÞ; for all x such that xRf ðsÞ; have been defined. �)

End Stage s
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It is easy to verify that h satisfies the properties required in the proposition. &

Proposition 18. Let S be any ratþ-covering set. Then, there exists a recursive function code with

domain rat� VALIDS; and range DN such that following is satisfied.
Suppose 1pjpn; BAS; and ða1; b1;y; aj�1; bj�1Þ is S-valid.

(A) Suppose ða1; b1;y; aj�1; bj�1; aj; bjÞ and ða1; b1;y; aj�1; bj�1; a0j; b0jÞ are S-valid.

(A.1) If bj; b
0
jpB and INTERða1; b1;y; aj�1; bj�1; a

0
j; b

0
jÞDSEMI HULL

j
a1;b1;y;aj�1;bj�1;aj ;bj

; then

codeðB; a1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞpcodeðB; a1; b1;y; aj�1; bj�1; aj; bjÞ:

(A.2) If bj; b0jpB and ðaj; bjÞaða0
j; b

0
jÞ; then

codeðB; a1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞacodeðB; a1; b1;y; aj�1; bj�1; aj; bjÞ:

(A.3) fcodeðB; a1; b1;y; aj�1; bj�1; a00j ; b00j Þ j ða1; b1;y; aj�1; bj�1; a00j ; b00j ÞAVALIDS and b00
j pBg

¼ N:
(B) Suppose ða1; b1;y; aj; bjÞ is S-valid. If bj4B; then codeðB; a1; b1;y; aj�1; bj�1; aj; bjÞ ¼

codeðB; a1; b1;y; aj�1; bj�1; aj;BÞ:

Proof. Fix a1; b1;y; aj�1; bj�1 and B as in the hypothesis. Let us first define a relation Rel on

N � S-frArat j rpBg as follows:

ða0; b0ÞRelða; bÞ iffINTERða1; b1;y; aj�1; bj�1; a
0; b0ÞDSEMI HULL

j
a1;b1;y;aj�1;bj�1;a;b

:

Note that (by Corollary 5) for each ða; bÞ; there are only finitely many ða0; b0Þ such that
ða0; b0ÞRelða; bÞ: Also, for each of these ða0; b0Þ; a0pa and either a0oa or b0

Xb: Furthermore,
canonical index for fða0; b0Þ j ða0; b0ÞRelða; bÞg; can be effectively obtained from ða; bÞ:
Let Rel� be transitive closure of Rel: It is easy to verify that Rel� is a partial order,

where for each ða; bÞ; there exists at most finitely many ða0; b0Þ such that ða0; b0ÞRel�ða; bÞ:
Moreover, canonical index for fða0; b0Þ j ða0; b0ÞRel�ða; bÞg; can be effectively obtained
from ða; bÞ:
Existence of code as required now follows from Proposition 17. &

7. Q-classes to which SEMI HULLn;S is reducible

Our goal in this section is to establish an upper bound on the SEMI HULLn;S degrees in terms
of the Q-hierarchy. To find such a bound, we actually have to design a learning strategy for

languages in SEMI HULLn;S that consists of qi-type strategies for some Q ¼ ðq1; q1;y; qkÞ; and
a grammar learned by every qi is used by qiþ1: A natural strategy of this type would be the
following ðq1; q2;y; q2n�1; q2nÞ-strategy, where q2iþ1 ¼ INIT and q2iþ2 ¼ HALF for ion: learn
the first break point a1 using an INIT-type strategy; once a1 has been learned, learn the first slope
b1 at the point ða1; 0Þ using a HALF -type strategy; then learn the second break point
ða2; b1 � ða2 � a1ÞÞ using an INIT-type strategy, etc. However, a much more efficient learning
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strategy is suggested by the following. Informally one can visualize this strategy as follows.
Assume that slope values come from the set N,f1=n j nANg: It may happen that in the
beginning the learner receives points ðx; yÞ indicating that the slope to be learned is greater or
equal 1. Then the learner uses an INIT-like strategy to learn a break and a COINIT-like strategy
(not a HALF -strategy as above!) to learn the slope: the slopes tend to 1 from above, and the
learner uses this assumption. If the slope gets smaller than 1, the learner then uses a combined
INIT-like strategy to learn the break point and the slope together: both of them change now in
INIT-fashion.
There is a slight problem though in the above strategy. It may be possible that slope at some

point seems less than 1, but later on when lots of new points ði; 0Þ come from the input,
slope again seems larger than 1. To prevent this from harming the learning process, the
learner uses the combined INIT-strategy in a safe fashion: Informally, suppose one has
learned the parameters, a1; b1;y; aj�1; bj�1; and is now trying to determine aj; bj: Now we need

to make sure that the combined INIT-strategy does not commit to ðaj; bjÞ being ða0j; b0jÞ before it
has been able to determine that input data cannot be from SEMI HULLn

a1;b1;y;aj�1;bj�1;a
00
j
;b00

j
;y;

for any other a00j ; b00j ;y; which satisfies SEMI HULLn
a1;b1;y;aj�1;bj�1;a

00
j
;b00

j
;yC

SEMI HULLn
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
;a0

jþ1
;b0

jþ1
;y; for some value of the parameters a0

jþ1; b
0
jþ1;y: It is

possible to achieve this by using Proposition 18.
The actual proof of the theorem technically looks somewhat different, and the above method is

a bit hidden.

Theorem 3. Suppose S is ratþ-covering. Suppose Q ¼ ðq1; q2;y; q2n�1; q2nÞ; where q2iþ1 ¼ INIT

and q2iþ2 ¼ COINIT ; for ion: Then SEMI HULLn;SpTxtExLQ:

Proof. Fix S which is ratþ-covering. Let h be a recursive bijection from Z to S such that
hðiÞohði þ 1Þ: Let B ¼ hð0Þ:
The intuitive idea of the learning strategy is as follows. Suppose we have already learned

ða1; b1;y; aj�1; bj�1Þ: Then, we use INIT like strategy to learn any pair ðaj; bjÞ; if bjpB ¼ hð0Þ;
and use COINIT-type strategy to learn bj if bj4B: The former is done using code

as in Proposition 18. The latter can be done easily by using h to form a COINIT-like
strategy.
Going through the proof below (and the proofs for other upper bounds in this paper) one must

be aware of the fact that, though intuitively we do use INIT/COINIT (or whatever—in other
proofs) strategy for learning each successive parameter, in the actual proof we do it by choosing
an appropriate minimal consistent SEMI HULL on every step and INIT/COINIT strategy is in
some sense hidden.
Now we proceed with the formal construction.
Fix code as in Proposition 18. Let g be a function from S to N such that gðbÞ ¼ 0; if bpB; and

gðbÞ ¼ h�1ðbÞ; otherwise. (Note that g is monotonically non-decreasing).
The following claim utilizes the construction of Proposition 18 to show that the values

ðcodeðB; a1; b1;y; aj; bjÞÞ can be used as conjectures by INIT-type substrategies, and the values

gðbjÞ can be used as conjectures by COINIT-type substrategies.
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Claim 1. Suppose ða1; b1;y; aj�1; bj�1; aj; bjÞ; ða1; b1;y; aj�1; bj�1; a0j; b0jÞAVALIDS; where ðaj; bjÞa
ða0

j; b
0
jÞ: Suppose INTERða1; b1;y; aj�1; bj�1; aj; bjÞCSEMI HULLn

a1;b1;y;aj�1;bj�1;a
0
j
;b0

j
:

Then,
(i) codeðB; a1; b1;y; aj�1; bj�1; aj; bjÞocodeðB; a1; b1;y; aj�1; bj�1; a

0
j; b

0
jÞ; or

(ii) codeðB; a1; b1;y; aj�1; bj�1; aj; bjÞ ¼ codeðB; a1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞ; and gðbjÞ4gðb0jÞ:

Proof. By Proposition 14 we have that ajpa0j:

We now consider following cases:
Case 1: bj; b0jpB:

Since, INTERða1; b1;y; aj; bjÞDSEMI HULL
j
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
; we have codeðB; a1; b1;y;

aj�1; bj�1; aj; bjÞocodeðB; a1; b1;y; aj�1; bj�1; a0j; b0jÞ (by Proposition 18; for getting o instead of

p use the fact that ðaj; bjÞaða0
j; b

0
jÞ).

Case 2: bjpBob0j:

In this case ajoa0
j by Proposition 14.

Also, INTERða1; b1;y; aj; bjÞDSEMI HULL
j
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
DSEMI HULL

j
a1;b1;y;aj�1;bj�1;a

0
j
;B:

Thus, codeðB; a1; b1;y; aj�1; bj�1; aj; bjÞocodeðB; a1; b1;y; aj�1; bj�1; a
0
j;BÞ ¼ codeðB; a1; b1;y;

aj�1; bj�1; a
0
j; b

0
jÞ (by Proposition 18; for getting o instead of p use the fact that ðaj; bjÞaða0

j;BÞ).
Case 3: b0jpBobj:

In this case, INTERða1; b1;y; aj;BÞDSEMI HULL
j
a1;b1;y;aj�1;bj�1;aj ;B

D

SEMI HULL
j
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
: Thus, codeðB; a1; b1;y; aj�1; bj�1; aj; bjÞ ¼ codeðB; a1; b1;y; aj�1;

bj�1; aj;BÞpcodeðB; a1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞ (by Proposition 18). Also gðb0jÞ ¼ 0ogðbjÞ:

Case 4: Bobjpb0j:

In this case ajoa0
j by Proposition 14. Thus, INTERða1; b1;y; aj;BÞD

SEMI HULL
j
a1;b1;y;aj�1;bj�1;aj ;B

DSEMI HULL
j
a1;b1;y;aj�1;bj�1;a

0
j
;B: Thus, codeðB; a1; b1;y; aj�1; bj�1;

aj; bjÞ ¼ codeðB; a1; b1;y; aj�1; bj�1; aj;BÞocodeðB; a1; b1;y; aj�1; bj�1; a0j;BÞ ¼ codeðB; a1; b1;y;

aj�1; bj�1; a
0
j; b

0
jÞ (by Proposition 18; for getting o instead of p use the fact that ðaj;BÞaða0

j;BÞ).
Case 5: Bob0

jpbj:

If ajoa0j; then INTERða1; b1;y; aj;BÞDSEMI HULL
j
a1;b1;y;aj�1;bj�1;aj ;B

D

SEMI HULL
j
a1;b1;y;aj�1;bj�1;a

0
j
;B: Thus, codeðB; a1; b1;y; aj�1; bj�1; aj; bjÞ ¼ codeðB; a1; b1;y;

aj�1; bj�1; aj;BÞocodeðB; a1; b1;y; aj�1; bj�1; a0j;BÞ ¼ codeðB; a1; b1;y; aj�1; bj�1; a0j; b0jÞ (by Pro-

position 18; for getting o instead of p use the fact that ðaj;BÞaða0j;BÞ).
If aj ¼ a0

j; then b0jobj (by Proposition 14). Thus, gðbjÞ4gðb0jÞ: Also,

INTERða1; b1;y; aj;BÞDSEMI HULL
j
a1;b1;y;aj�1;bj�1;a

0
j
;B: Thus, codeðB; a1; b1;y; aj�1; bj�1; aj; bjÞ

¼ codeðB; a1; b1;y; aj�1; bj�1; aj;BÞpcodeðB; a1; b1;y; aj�1; bj�1; a
0
j;BÞ ¼ codeðB; a1; b1;y; aj�1;

bj�1; a0j; b0jÞ (by Proposition 18). &
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Let map be a mapping from VALID to N� such that
mapða1; b1;y; an; bnÞ ¼ ðcodeðB; a1; b1Þ; gðb1Þ;

codeðB; a1; b1; a2; b2Þ; gðb2Þ;y; codeðB; a1; b1;y; an; bnÞ; gðbnÞÞ:
Now we suggest the reader to recall the properties of the orderingoQ: For example, note that if

Q ¼ ðINIT ;COINITÞ then ði; jÞoQði0; j0Þ would mean that ioi0 or ði ¼ i0 and j4j0Þ:

Claim 2. Suppose ða1; b1;y; an; bnÞ and ða0
1; b01;y; a0n; b

0
nÞ are S-valid.

(A) If mapða01; b0
1;y; a0

n; b0nÞoQ mapða1; b1;y; an; bnÞ; then, for the least j such that

ðaj; bjÞaða0j; b0jÞ; INTERða1; b1;y; aj; bjÞD/ SEMI HULL
j
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
:

(B) If mapða0
1; b01;y; a0n; b

0
nÞoQ mapða1; b1;y; an; bnÞ; Then, INTERða1; b1;y; aj;

bj;y; an; bnÞD/ SEMI HULLn
a0
1
;b0

1
;y;a0n;b

0
n
:

(C) If SEMI HULLn
a1;b1;y;an;bn

CSEMI HULLn
a0
1
;b0

1
;y;a0n;b

0
n
; then mapða1; b1;y; an; bnÞo

Q mapða01; b0
1;y; a0

n; b
0
nÞ:

Proof. (A) Let j be least number such that ðaj; bjÞaða0
j; b

0
jÞ: Note that, for ioj; we must have

codeðB; a1; b1;y; ai; biÞ ¼ codeðB; a01; b
0
1;y; a0

i; b
0
iÞ; and gðbiÞ ¼ gðb0

iÞ: If INTERða1; b1;y;

aj; bjÞDSEMI HULL
j
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
; then, by Claim 1 we would have codeðB; a1;

b1;y; aj; bjÞocodeðB; a0
1; b01;y; a0j; b0jÞ or codeðB; a1; b1;y; aj; bjÞ ¼ codeðB; a0

1; b01;y; a0
j; b

0
jÞ and

gðbjÞ4gðb0jÞ: Thus, mapða1; b1;y; an; bnÞoQ mapða0
1; b01;y; a0n; b

0
nÞ; a contradiction to the

hypothesis.
(B) Let j be the least number such that ðaj; bjÞaða0

j; b
0
jÞ: Now (B) follows using part

(A) and the fact that INTERða1; b1;y; aj; bjÞDINTERða1; b1;y; aj; bj;y; an; bnÞ and

SEMI HULLn
a0
1
;b0

1
;y;a0

j
;b0

j
;y;a0n;b

0
n
DSEMI HULL

j
a0
1
;b0

1
;y;a0

j
;b0

j
:

(C) Follows from part (B) and INTERða1; b1;y; aj; bj;y; an; bnÞD
SEMI HULLn

a1;b1;y;an;bn
: &

We now continue with the proof of the theorem. The aim is to construct Y which maps

SEMI HULLn
a1;b1;y;an;bn

to L
Q

mapða1;b1;y;an;bnÞ:

Note that definition of C mapping grammar sequence converging to a grammar for

L
Q
mapða1;b1;y;an;bnÞ to a grammar sequence converging to a grammar for SEMI HULLn

a1;b1;y;an;bn

would be trivial. We thus just define Y:
Without loss of generality, we will be giving Y as mapping sets to sets.

For any finite XDN2; let PropðX ; a1; b1;y; an; bnÞ be true iff following two properties are
satisfied.
(A) ða1; b1;y; an; bnÞAVALIDS:
(B) For all ða0

1; b01;y; a0n; b0nÞAVALIDS such that mapða0
1; b

0
1;y; a0

n; b0nÞoQ mapða1; b1;y;
an; bnÞ; XD/ SEMI HULLn

a0
1
;b0

1
;y;a0n;b

0
n
:

ARTICLE IN PRESS

S. Jain, E. Kinber / Journal of Computer and System Sciences 67 (2003) 546–607 571



Note that condition (B) above is equivalent to

ðB0Þ For all j; 1pjpn; ðB0:1Þ and ðB0:2Þ are satisfied.

ðB0:1Þ For all a0jAN; b0
jAS; b0jpB;

if codeðB; a1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞocodeðB; a1; b1;y; aj�1; bj�1; aj; bjÞÞ; then

½XD/ SEMI HULL
j
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
:

ðB0:2Þ If Bpbj; then for all b0jAS such that bjob0
j; XD/ SEMI HULL

j
a1;b1;y;aj�1;bj�1;aj ;b

0
j
:

Note that B0:2 above is equivalent to

ðB00:2Þ If Bpbj; then for least b0
jAS such that bjob0j; XD/ SEMI HULL

j
a1;b1;y;aj�1;bj�1;aj ;b

0
j
:

Note that whether X ; a1; b1;y; an; bn; satisfy (A) and ðB0:1Þ and ðB00:2Þ for all j; 1pjpn; is
effectively testable.

Thus, for any finite set XDN2; let

YðXÞ ¼
[

fL
Q
mapða1;b1;y;an;bnÞ j PropðX ; a1; b1;y; an; bnÞg:

For infinite X 0; YðX 0Þ ¼
S

XDX 0; cardðX ÞoN
YðXÞ:

It is easy to verify that
(1) for any XDSEMI HULLn

a1;b1;y;an;bn
;

YðXÞDL
Q
mapða1;b1;y;an;bnÞ

(due to clause (B) in definition of Prop above, and the fact that for any valid I and I 0;

mapðIÞoQ mapðI 0Þ; implies L
Q

mapðIÞDL
Q

mapðI 0Þ), and

(2) for any finite set XDN2 such that fðx; yÞAN2 j xpmaxinterða1; b1;y; an; bnÞ and y ¼
minðfy0jðx; y0ÞAINTERða1; b1;y; an; bnÞgÞgDXDSEMI HULLn

a1;b1;y;an;bn
;

YðXÞ+L
Q
mapða1;b1;y;an;bnÞ:

(By Claim 2(B), and definition of Prop and Y).

Thus, we have that YðSEMI HULLn
a1;b1;y;an;bn

Þ ¼ L
Q

mapða1;b1;y;an;bnÞ: &

Now we will show that the above theorem is in some sense optimal. That is, for Q ¼
ðq1; q2;y; q2n�1; q2nÞ; where q2iþ1 ¼ INIT ; and q2iþ2 ¼ COINIT ; for ion; and any Q0ABASIC�;

if LQ4/ TxtExLQ0
; then SEMI HULLn;S4/ TxtExLQ0

: Thus, Q in the above theorem cannot be
improved if we use components only from BASIC (whether we can improve it by using some
other basic components is open).

Theorem 4. Suppose nANþ; 1pjpn: Suppose S is any ratþ-covering set.
(1) Suppose ða1; b1;y; aj�1; bj�1Þ is S-valid.

Let Q ¼ ðq1; q2;y; q2ðn�jþ1ÞÞ; where q2iþ1 ¼ INIT and q2iþ2 ¼ COINIT ( for ipn � j). Suppose

Q0ABASIC� is such that LQ4/LQ0
:

Then

fSEMI HULLn
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
y;a0n;b

0
n
jða1; b1;y; aj�1; bj�1; a

0
j; b

0
jy; a0

n; b0nÞ is S-validg4/ TxtExLQ0
:
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(2) Suppose ða1; b1;y; aj�1; bj�1; ajÞ is such that there exists a bj; such that

ða1; b1;y; aj�1; bj�1; aj; bjÞ is S-valid.

Let Q ¼ ðq1;y; q2ðn�jÞþ1Þ; where q2iþ1 ¼ COINIT ; for ipn � j; and q2iþ2 ¼ INIT ; for ion � j:

Suppose Q0ABASIC� is such that LQ4/LQ0
:

Then fSEMI HULLn
a1;b1;y;aj�1;bj�1;aj ;b

0
j
y;a0n;b

0
n
jða1; b1;y; aj�1; bj�1; aj; b

0
jy; a0

n; b0nÞ is S-validg
4/ TxtExLQ0

:

Proof. The intuitive idea of the proof is to use a’s to diagonalize against sequences of COINIT
and b’s to diagonalize against sequences of INIT :

For a fixed n; we prove the above theorem by reverse induction on j (from j ¼ n to j ¼ 1). For
each such j; we first show (2) and then (1).

Base Case: j ¼ n; for (2):

In this case Q ¼ ðCOINITÞ:
Now COINITpTxtExfSEMI HULLn

a1;b1;y;an�1;bn�1;an;b0n
jða1; b1;y; an�1; bn�1; an; b0nÞ is S-validg

as witnessed by Y and C defined as follows.

Let h be an isomorphism from Z to S such that hðiÞohði þ 1Þ:
For any set YDN; let YðYÞ ¼

S
iAY SEMI HULLn

a1;b1;y;an�1;bn�1;an;hðiÞ:

It is easy to verify that YðLQ
i Þ ¼ SEMI HULLn

a1;b1;y;an�1;bn�1;an;hðiÞ: Let C be defined as follows.

If a sequence a of grammars converges to a grammar for SEMI HULLn
a1;b1;y;an�1;bn�1;an;hðiÞ; then

CðaÞ converges to a grammar for L
Q
i :

It is easy to verify that Y and C witness that

COINITpTxtExfSEMI HULLn
a1;b1;y;an�1;bn�1;an;b0n

jða1; b1;y; an�1; bn�1; an; b
0
nÞ is S-validg:

Thus, since COINIT4/ TxtExLQ0
; (2) is proven for j ¼ n:

Induction Case ( for (1)):

Suppose for j4j0; we have shown both (1) and (2), and for j ¼ j0; we have shown (2). Then we
show (1) for j ¼ j0:

Note that Q ¼ ðq1; q2;y; q2ðn�jþ1ÞÞ; where q2iþ1 is INIT and q2iþ2 is COINIT ; for ipn � j:

Without loss of generality assume that Q0 contains at least one INIT or HALF (otherwise just add
INIT at the end of Q0). Suppose Q0 ¼ ðq01;y; q0k�1; q0k; q

0
kþ1;y; q0lÞ; where q01;y; q0k�1 are

COINIT ; q0
k may be either INIT or HALF ; and for k þ 1pipl; q0iAfINIT ;COINIT ;HALFg:

Without loss of generality assume that q0k is INIT (since otherwise we could just

replace q0k ¼ HALF with ðCOINIT ; INITÞ and consider Q0 ¼ ðq01;y; q0k�1;COINIT ;
INIT ; q0kþ1;y; q0

lÞ).
Now, by hypothesis we know that LQ4/ TxtExLQ0

: Thus, by Corollary 1, Q is not a pseudo-
subsequence of Q0: Now consider Q00 obtained from Q by dropping q1 ¼ INIT ; Q000 obtained from
Q0 by dropping q01; q

0
2;y; q0

k�1: Now, Q is not a pseudo-subsequence of Q000 by repeated use of

Proposition 9(b), and thus Q00 is not a pseudo-subsequence of Q000 by Proposition 10(a). Thus, by

Corollary 1, LQ00
4/ TxtExLQ000

:
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Now, suppose by way of contradiction that Y along with C witnesses the reduction

fSEMI HULLn
a1;b1;y;aj�1;bj�1;a0j ;b

0
j
y;a0n;b

0
n
jða1; b1;y; aj�1; bj�1; a0j; b0jy; a0

n; b
0
nÞ is S-valid g

pTxtExLQ0
:

Recall that SEMI HULL0 is N2: Let

v1 ¼ minðfu1jð(u2;y; ulÞ½/u1; u2;y; ulSAYðSEMI HULL
j�1
a1;b1;y;aj�1;bj�1

ÞgÞ:
For 1oiok; let

vi ¼ minðfuijð(uiþ1;y; ulÞ½/v1;y; vi�1; ui;y; ulSAYðSEMI HULL
j�1
a1;b1;y;aj�1;bj�1

ÞgÞ:
Let s be such that contentðsÞDSEMI HULL

j�1
a1;b1;y;aj�1;bj�1

; and there exist uk;y; ul; such that

/v1; v2;y; vk�1; uk;y; ulSAYðsÞ:
Let aj4maxðfxANjð(yANÞ½/x; ySAcontentðsÞgÞ be such that, for some bj; ða1;

b1;y; aj�1; bj�1; aj; bjÞ is S-valid. Note that, for all b00
j ; a

00
jþ1; b00jþ1;y; a00

n; b
00
n; such

that ða1; b1;y; aj�1; bj�1; aj; b
00
j ; a

00
jþ1; b00jþ1;y; a00

n; b
00
nÞ is S-valid, contentðsÞD

SEMI HULLn
a1;b1;y;aj�1;bj�1;aj ;b

00
j
;a00

jþ1
;b00

jþ1
;y;a00n ;b

00
n
: Thus, Y (along with C) essentially witnesses that

fSEMI HULLn
a1;b1;y;aj�1;bj�1;aj ;b

0
j
y;a0n;b

0
n
jða1; b1;y; aj�1; bj�1; aj; b0jy; a0

n; b
0
nÞ is S-valid g

pTxtExLQ000

(since parameters for the first k � 1 COINITs in Q0 are fixed to be v1;y; vk�1). This is not

possible by induction hypothesis (since LQ00
4/ TxtExLQ000

).
Induction Case ( for (2)): Suppose for j4j0; we have shown both (1) and (2). Then we show (2)

for j ¼ j0:
In this case, Q ¼ ðq1; q2;y; q2ðn�jÞþ1Þ; where q2iþ1 is COINIT ; for ipn � j; and q2iþ2 is INIT ;

for ion � j: Without loss of generality assume that Q0 contains at least one COINIT or HALF

(otherwise just add COINIT to the end of Q0). Suppose Q0 is of form ðq0
1;y; q0

k�1; q
0
k;y; q0

lÞ;
where q01;y; q0k�1 are INIT ; q0k may be either COINIT or HALF ; and for k þ 1pipl;
q0iAfINIT ;COINIT ;HALFg: Without loss of generality assume that q0k is COINIT (since

otherwise we could just replace q0
k ¼ HALF with ðINIT ;COINITÞ and consider

Q0 ¼ ðq01;y; q0k�1; INIT ;COINIT ; q0kþ1;y; q0lÞ).
Now, by hypothesis we know that LQ4/ TxtExLQ0

: Thus, by Corollary 1, Q is not a pseudo-
subsequence of Q0: Thus, for Q00 obtained from Q by dropping q1 ¼ COINIT ; Q000 obtained from
Q0 by dropping q0

1; q02;y; q0
k�1 (note that q0

k is COINIT ; while the first q in Q00 is INIT), Q00 is not a
pseudo-subsequence of Q000 (this case is similar to the one in Induction Case for (1) with INITs and

COINITs reversed). Thus, by Corollary 1, LQ00
4/ TxtExLQ000

:
Suppose by way of contradiction that Y along with C witnesses the reduction

fSEMI HULLn
a1;b1;y;aj�1;bj�1;aj ;b

0
j
y;a0n;b

0
n
jða1; b1;y; aj�1; bj�1; aj; b0jy; a0

n; b
0
nÞ is S-valid g

pTxtExLQ0
:

Let X ¼ f/u1; u2;y; ulSjða1; b1;y; aj�1; bj�1; aj; b0jy; a0n; b
0
nÞ is S-valid, and

YðSEMI HULLn
a1;b1;y;aj�1;bj�1;aj ;b

0
j
y;a0n;b

0
n
Þ ¼ LQ0

u1;u2;y;ul
g:
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Let v1 ¼ minðfu1jð(u2;y; ulÞ/u1; u2;y; ulSAXgÞ:
For 1oiok; let vi ¼ minðfui j ð(uiþ1;y; ulÞ/v1;y; vi�1; ui;y; ulSAXgÞ:
Let b0

j;y; a0n; b
0
n be such that YðSEMI HULLn

a1;b1;y;aj�1;bj�1;aj ;b
0
j
y;a0n;b

0
n
Þ ¼ LQ0

v1;y;vk�1;uk;y;ul
for

some uk;y; ul:

Let us fix a bj4
Pk¼n

k¼j b0
k; bjAS: Then, for any a00

w; b
00
w; jowpn; such that

ða1; b1;y; aj; bj; a00jþ1; b
00
jþ1;y; a00n; b00nÞ is S-valid, we have that

YðSEMI HULLn
a1;b1;y;aj�1;bj�1;aj ;bj ;a

00
jþ1

;b00
jþ1

;y;a00n ;b
00
n
Þ ¼ LQ0

v1;y;vk�1;uk;y;ul
;

for some values of uk;y; ul (due to monotonicity of Y; note that

SEMI HULL
j
a1;b1;y;aj�1;bj�1;aj ;bj

DSEMI HULLn
a1;b1;y;aj�1;bj�1;aj ;b

0
j
y;a0n;b

0
n

by Proposition 15, and,

therefore, SEMI HULLn
a1;b1;y;aj�1;bj�1;aj ;bj ;a

00
jþ1

;b00
jþ1

;y;a00n ;b
00
n
DSEMI HULLn

a1;b1;y;aj�1;bj�1;aj ;b
0
j
y;a0n;b

0
n
; but

v1;y; vk�1 are chosen to be the minimum possible values, thus only uk;y; ul can vary for
a00jþ1; b00jþ1;y; a00n; b00n).

Thus, Y (along with C) essentially witnesses that

fSEMI HULLn
a1;b1;y;aj�1;bj�1;aj ;bj ;a

00
jþ1

;b00
jþ1

;y;a00n ;b
00
n
jða1; b1;y; aj�1; bj�1; aj; bj; a

00
jþ1; b00jþ1;y; a00

n; b
00
nÞ

is S-valid g pTxtExLQ000

(since parameters for the first k � 1 INITs are fixed in Q0 to be v1;y; vk�1). This is not possible by

induction hypothesis (since LQ00
4/ TxtExLQ000

). &

Corollary 6. Suppose S is ratþ-covering. Let Q ¼ ðq1;y; q2nÞ; where q2iþ1 ¼ INIT and

q2iþ2 ¼ COINIT ; for ion: Suppose Q0ABASIC� is such that LQ4/ LQ0
: Then,

SEMI HULLn;S4/ TxtExLQ0
:

8. Q-classes which are reducible to SEMI HULLn;S

In this section, we establish the best possible lower bound on the complexity of SEMI HULLn;S

in terms of the Q-classes. One can ask the question: using a learner powerful enough to learn

SEMI HULLn;S; can a learner learn languages from the hierarchy based on BASIC? The next

result shows that, using a learner able to learn SEMI HULLn;S; one can learn all languages in
ðHALF ; INIT ;y; INITÞ; where INIT is taken n � 1 times.
We begin with two useful technical propositions.

Proposition 19. Suppose S is ratþ-covering. Then there exists an S0DS; such that S0 is

ratþ-covering, and for all b; b0AS0; if bob0 then 2bob0:

Proof. Suppose h is an isomorphism from Z to S such that hðiÞohði þ 1Þ: Define h0 as follows:
h0ð0Þ ¼ hð0Þ: Suppose we have defined h0ðiÞ and h0ð�iÞ: Then define h0ði þ 1Þ and h0ð�i � 1Þ as
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follows. h0ði þ 1Þ ¼ hðjÞ; such that hðjÞ42h0ðiÞ; and h0ð�i � 1Þ ¼ hðj0Þ such that hðj0Þoh0ð�iÞ=2:
Note that such j and j0 exist since S is ratþ-covering. It immediately follows that S0 ¼ rangeðh0Þ
satisfies the requirements of the proposition. &

Proposition 20. Suppose S0DS: Then SEMI HULLn;S0pTxtExSEMI HULLn;S:

Proof. Follows trivially, since SEMI HULLn;S0
DSEMI HULLn;S: &

Theorem 5. Suppose S is ratþ-covering. Let nANþ; and Q ¼ ðq1; q2;y; qnÞ; where q1 ¼ HALF ;
and for 2pipn; qi ¼ INIT :

Then, LQpTxtExSEMI HULLn;S:

Proof. The intuitive idea of the reduction is as follows. Fix the first break point to be a1 ¼ 1: The
first HALF -component can be reduced to the first slope b1: Then the ð j � 1Þth INIT-component ij
is reduced to aj: Then bj is fixed based on aj in such a way that ijoi0j would imply ajoa0

j and

bj4b0
j þ

P
joipn b0

i; for any potential values of b0
i; i4j: This ensures the desired monotonicity in

the definition of the reducing operator Y:
Now we proceed with the formal proof.
Without loss of generality (using Propositions 19 and 20) we can assume that
ðPropertyHÞ for each b; b0AS; if bob0; then 2bob0:
Let h be an isomorphism from Z to S such that hðiÞohði þ 1Þ:
For i1AZ; and i2;y; inAN; let mapði1; i2;y; inÞ ¼ ða1; b1;y; an; bnÞ; where aj; bj; 1pjpn are

defined as follows: a1 ¼ 1; b1 ¼ hði1 � a1Þ: Suppose we have defined a1; b1;y; ak; bk: Then let
Akþ1 ¼ fxANjx4ak; ½

P
1pipk bi � ðx ’�aiÞANg; and then let akþ1 to be the ðikþ1 þ 1Þth least

element in Akþ1: Let bkþ1 ¼ hði1 � akþ1Þ:

Claim 3. ði1; i2;y; inÞoQði01; i02;y; i0nÞ implies SEMI HULL
n;S
mapði1;y;inÞCSEMI HULL

n;S
mapði0

1
;y;i0nÞ

:

Proof. Suppose ði1; i2;y; inÞoQði01; i02;y; i0nÞ: Suppose mapði1;y; inÞ ¼ ða1; b1;y; an; bnÞ and

mapði01;y; i0nÞ ¼ ða0
1; b01;y; a0n; b

0
nÞ:

We consider the following cases.
Case 1: i14i01:
In this case,

(1) b14b01; and
(2) a1 ¼ a01 ¼ 1:

From (1) and ðPropertyHÞ it follows that
(3) b142 � b0

1:
Now, for 1pion; since a0ioa0

iþ1; and b0
i ¼ hði01 � a0

iÞ; we have b0
i4b0iþ1: Thus, b0

i42 � b0iþ1; for

1pion by hypothesis about elements of S:
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Thus,
P

1pipn b0
ip2b0

1: Along with (3), we have that b14
P

1pipn b0
i: This along

with (2), Propositions 11 and 15 gives SEMI HULL
n;S
a1;b1;y;an;bn

DSEMI HULL
1;S
a1;b1

C

SEMI HULL
n;S
a0
1
;b0

1
;y;a0n;b

0
n
:

Case 2: For some j; 1ojpn; for 1pkoj; ik ¼ i0k; but ijoi0j:

In this case,
(4) ai ¼ a0

i and bi ¼ b0i; for 1pioj:
(5) bj4b0

j; and

(6) ajoa0
j:

From (5) and ðPropertyHÞ it follows that
(7) bj42 � b0

j:

Now, for 1pion; since a0ioa0
iþ1; and b0

i ¼ hði01 � a0
iÞ; we have b0

i4b0iþ1: Thus, b0
i42 � b0iþ1; for

1pion by hypothesis about elements of S:
Thus,

P
jpipn b0

ip2b0
j: This, along with (7) gives us that bj4

P
jpipn b0i: Thus using (6),

Propositions 11 and 15 we have SEMI HULL
n;S
a1;b1;y;an;bn

DSEMI HULL
j;S
a1;b1;y;aj ;bj

C

SEMI HULL
n;S
a0
1
;b0

1
;y;a0n;b

0
n
:

Claim follows from above cases. &

For any XDN; let YðXÞ ¼
S

/i1;y;inSAX SEMI HULLn
mapði1;y;inÞ:

Thus, it follows that YðLQ
i1;i2;y;in

Þ ¼ SEMI HULL
n;S
mapði1;y;inÞ:

Define C as follows. If a sequence a of grammar converges to a grammar for

SEMI HULL
n;S
mapði1;y;inÞ; then CðaÞ converges to a grammar for L

Q
i1;i2;y;in

:

It is now easy to verify that Y and C witness that LQpTxtExSEMI HULLn;S: &

We now show that the above result is in some sense the best possible with respect to the Q-
classes considered in this paper. For example, as Corollaries 9 and 10 show, being able to learn the

classes SEMI HULLn;S cannot help to learn languages even in the classes ðCOINIT ;COINITÞ
and ðINIT ;COINITÞ:
The following technical result will be used to show that the Q-classes with n þ 1 INITs in Q

cannot be reduced to SEMI HULLn;S:

Theorem 6. Let nANþ: Suppose 0pjpn: Q ¼ ðq1; q2;y; qnþ1�jÞ; where qi ¼ INIT ; for 1pip
n � j þ 1: Let R ¼ R1 � R2 �?� Rnþ1�j; where R1 is of cardinality at least 2 and, for

2pipn þ 1� j; Ri is an infinite subset of N. Suppose S is ratþ-covering, and ða1; b1;y; aj; bjÞ is

S-valid.
Then

LQ;R4/ TxtExfSEMI HULLn
a1;b1;y;aj ;bj ;a

0
jþ1

;b0
jþ1

;y;a0n;b
0
n
j ða1; b1;y; aj; bj; a

0
jþ1; b0jþ1;y; a0

n; b
0
nÞ

is S-validg:
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Proof. We prove the theorem by reverse induction on j (from n to 0). For j ¼ n;

the theorem clearly holds (since LQ;R contains at least two languages, whereas
fSEMI HULLn

a1;b1;y;aj ;bj ;a
0
jþ1

;b0
jþ1

;y;a0n;b
0
n
j ða1; b1;y; aj; bj; a0jþ1; b0jþ1;y; a0n; b

0
nÞ is S-validg contains

only one language).
So suppose the theorem holds for j0ojpn: Then, we show that the theorem holds for j ¼ j0:
Suppose by way of contradiction that Y (along with some C) witnesses that

LQ;RpTxtExfSEMI HULLn
a1;b1;y;aj ;bj ;a

0
jþ1

;b0
jþ1

;y;a0n;b
0
n
j ða1; b1;y; aj; bj; a0jþ1; b0jþ1;y; a0n; b

0
nÞ

is S-validg; for some S-valid ða1; b1;y; aj; bjÞ:
Let w be the minimal element in R1: For iAR2; suppose YðLQ

w;i;minðR3Þ;minðR4Þ;yÞ ¼
SEMI HULL

n;b
a1;b1;y;aj ;bj ;ajþ1ðiÞ;bjþ1ðiÞ;y;anðiÞ;bnðiÞ: If, as i varies, ajþ1ðiÞ takes arbitrarily large

value then, for w04w; w0AR1; YðLQ
w0;minðR2Þ;minðR3Þ;yÞ ¼ SEMI HULL

j
a1;b1;y;aj ;bj

and is

thus not a member of fSEMI HULLn
a1;b1;y;aj ;bj ;a

0
jþ1

;b0
jþ1

;y;a0n;b
0
n
jða1; b1;y; aj; bj; a

0
jþ1; b0jþ1;y;

a0n; b
0
nÞ is S-validg:

So suppose i1AR2 maximizes ajþ1ði1Þ: Now for i4i1; if bjþ1ðiÞ takes arbitrarily small value,

then for w04w; YðLQ
w0;minðR2Þ;minðR3Þ;yÞ+

S
b0

jþ1
AS SEMI HULL

j
a1;b1;y;aj ;bj ;ajþ1ði1Þ;b0jþ1

: However,

any member of fSEMI HULLn
a1;b1;y;aj ;bj ;a

0
jþ1

;b0
jþ1

;y;a0n;b
0
n
jða1; b1;y; aj; bj; a

0
jþ1; b

0
jþ1;y; a0

n; b0nÞ is

S-validg; misses out infinitely many elements in
S

b0
jþ1

AS SEMI HULL
j

a1;b1;y;aj ;bj ;ajþ1ði1Þ;b0jþ1
: Thus,

YðLQ

w0;minðR2Þ;minðR3Þ;yÞe
fSEMI HULLn

a1;b1;y;aj ;bj ;a
0
jþ1

;b0
jþ1

;y;a0n;b
0
n
jða1; b1;y; aj; bj; a

0
jþ1; b

0
jþ1;y; a0n; b0nÞ is S-validg:

So, suppose i24i1; i2AR2; minimizes b1ði2Þ:
Thus, Y (along with C) essentially witnesses that

LQ0;R0
pTxtExfSEMI HULLn

a1;b1;y;aj ;bj ;ajþ1ði2Þ;bjþ1ði2Þ;a0jþ2
;b0

jþ2
;y;a0n;b

0
n
j ða1; b1;y; aj; bj; ajþ1ði2Þ; bjþ1ði2Þ;

a0jþ2; b0jþ2;y; a0n; b
0
nÞ is S-validg; where Q0 is obtained by dropping q1 from Q: R0 is obtained from R

by dropping R1 and changing R2 to R2 � fxjxpi2g:
This is a contradiction to induction hypothesis. &

Corollary 7. Suppose Q ¼ ðq1; q2;y; qnþ1Þ; where qi ¼ INIT ; for 1pipn þ 1: Suppose S is

ratþ-covering.

Then, LQ4/ TxtExSEMI HULLn;S:

Proof similar to the one used in proving Theorem 6 above can be used to show the following
theorem (we just need to interchange the role of w and w0 in the proof, for j ¼ 0 case).

Theorem 7. Let nANþ; and Q ¼ ðq1; q2;y; qnþ1Þ; where q1 ¼ COINIT ; and qi ¼ INIT ; for
2pipn þ 1: Let R ¼ R1 � R2 �?� Rnþ1; where R1 is of cardinality at least 2 and, for 2pip
n þ 1; Ri is an infinite subset of N. Suppose S is any ratþ-covering set.
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Then, LQ;R4/ TxtExSEMI HULLn;S:

Corollary 8. Suppose Q ¼ ðq1; q2;y; qnþ1Þ; where q1 ¼ COINIT ; and qi ¼ INIT ; for 2pipn þ 1:
Suppose S is ratþ-covering.

Then, LQ4/ TxtExSEMI HULLn;S:

Do there exist Q-classes reducible to SEMI HULLn;S with COINIT on the second or greater
positions in Q? Our next results show that even ðCOINIT ;COINITÞ and ðINIT ;COINITÞ are not
reducible to SEMI HULLn;S:
Based on Corollary 3, let us define ovalid as follows.

Definition 19. Suppose ða1; b1;y; an; bnÞ and ða01; b0
1;y; a0

n; b
0
nÞ are valid. Then, ða1; b1;y; an; bnÞ

ovalidða01; b0
1;y; a0

n; b0nÞ iff there exists an i; 1pipn such that, for 1pjoi; aj ¼ a0
j; bj ¼ b0j

and aioa0i or ai ¼ a0
i and bi4b0

i:

Note that ovalid imposes a total order among valid sequences of form ða1; b1;y; an; bnÞ:
Moreover, SEMI HULLn

a1;b1;y;an;bn
CSEMI HULLn

a0
1
;b0

1
;y;a0n;b

0
n
; implies ða1; b1;y; an; bnÞovalid

ða0
1; b01;y; a0n; b0nÞ:
Similarly define ða1; b1;y; an; bnÞpvalidða0

1; b01;y; a0n; b
0
nÞ iff ða1; b1;y; an; bnÞovalid

ða0
1; b01;y; a0n; b0nÞ or ða1; b1;y; an; bnÞ ¼ ða0

1; b
0
1;y; a0

n; b0nÞ:
Xvalid and 4valid can be similarly defined.
For any fixed nAN; XDfða1; b1;y; an; bnÞjða1; b1;y; an; bnÞAVALIDSg; let maxvalidðXÞ ¼

ða1; b1;y; an; bnÞAX ; if any, such that ð8ða01; b01;y; a0n; b
0
nÞAXÞ½ða0

1; b01;y; a0n; b
0
nÞpvalid

ða1; b1;y; an; bnÞ:
Similarly, let minvalidðXÞ ¼ ða1; b1;y; an; bnÞAX ; if any, such that ð8ða0

1; b
0
1;y; a0

n; b0nÞAXÞ
½ða1; b1;y; an; bnÞpvalidða01; b0

1;y; a0n; b
0
nÞ:

Proposition 21. Suppose nAN; S is ratþ-covering, and XDfða1; b1;y; an; bnÞ j ða1; b1;y; an; bnÞA
VALIDSg: Then, if minvalidðXÞ does not exist, then no subset of ð

T
IAX SEMI HULLn

I Þ belongs to

SEMI HULLn;S:

Proof. Suppose S;X is given as above, and minvalidðXÞ does not exist. Then, there exists a j; such
that for some a1; b1;y; aj�1; bj�1; aj; there exist arbitrarily large bj such that

ða1; b1;y; aj�1; bj�1; aj; bj;yÞAX ; for some ajþ1; bjþ1;y; an; bn; (which may depend on bj). Thus,T
IAX SEMI HULLn

IDfðx; yÞ j xpajg: But no subset of fðx; yÞAN2jxpajg belongs to

SEMI HULLn;S (any language L in SEMI HULLn;S satisfies: for all x; there exists a y such
that ðx; yÞAL). &

Theorem 8. Suppose S is ratþ-covering and nAN: Let Q ¼ ðCOINIT ;COINITÞ; R ¼ R1 � R2;

where R2 is infinite, and R1 contains at least two elements. Then LQ;R4/ TxtExSEMI HULLn;S:
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Proof. Suppose by way of contradiction that LQ;RpTxtExSEMI HULLn;S as witnessed by Y
(along with C).

Let w ¼ minðR1Þ: Suppose YðLQ
w;xÞ ¼ SEMI HULLn

a1ðxÞ;b1ðxÞ;yanðxÞ;bnðxÞ; for xAR2:

Note that, for xox0; x;x0AR2; YðLQ
w;xÞ*YðLQ

w;x0 Þ: Thus, for xox0; x; x0AR2;

ða1ðxÞ;y; bnðxÞÞ4validða1ðx0Þ;y; bnðx0ÞÞ; by Corollary 3.
Let X ¼ fða1ðxÞ; b1ðxÞ;y; anðxÞ; bnðxÞÞjxAR2g:
If minvalidðXÞ does not exist, then for any w14w; w1AR1 and w2AR2;

YðLQ
w1;w2

ÞD
T

xAR2
SEMI HULLn

a1ðxÞ;b1ðxÞ;y; does not belong to SEMI HULLn;S by

Proposition 21.
So suppose x1AR2 is such that minvalidðXÞ ¼ ða1ðx1Þ; b1ðx1Þ;y; anðx1Þ; bnðx1ÞÞ: But then, for all

xXx1; ða1ðxÞ;y; bnðxÞÞpvalidða1ðx1Þ;y; bnðx1ÞÞ (due to monotonicity of Y). Thus, for all xXx1;
xAR2; ða1ðxÞ;y; bnðxÞÞ ¼ ða1ðx1Þ;y; bnðx1ÞÞ: A contradiction to Y (along with C) witnessing

that LQ;RpTxtExSEMI HULLn;S: &

Corollary 9. Suppose S is ratþ-covering, and nAN: Let Q ¼ ðCOINIT ;COINITÞ: Then

LQ4/ TxtExSEMI HULLn;S:

Similar to Theorem 8 we also have the following theorem (for proving it, we just need to

interchange the roles of LQ
w;x and LQ

w1;x
in the proof of Theorem 8).

Theorem 9. Suppose nAN and S is ratþ-covering. Let Q ¼ ðINIT ;COINITÞ; R ¼ R1 � R2; where

R2 is infinite, and R1 contains at least two elements. Then LQ;R4/ TxtExSEMI HULLn;S:

Corollary 10. Suppose S is ratþ-covering. Let Q ¼ ðINIT ;COINITÞ: Then

LQ4/ TxtExSEMI HULLn;S:

9. Definitions for complements of open semi-hull

In this section, we define the classes of complements of SEMI HULLs and establish some
useful propositions following from appropriate definitions.

Definition 20. Suppose a1;y; anAN and b1;y; bnAratþ; where 0oa1oa2o?oan:

coSEMI HULLn
a1;b1;a2;b2;y;an;bn

¼ ðx; yÞAN2jyo
X

1pipn

bi � ðx ’�aiÞ
( )

¼N2 � SEMI HULLn
a1;b1;a2;b2;y;an;bn

:

Definition 21. Suppose SDratþ is ratþ-covering.

coSEMI HULLn;S ¼ fcoSEMI HULLn
a1;b1;y;an;bn

jða1; b1;y; an; bnÞAVALIDSg:
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Proposition 22. Suppose ða1; b1;y; an; bnÞ and ða0
1; b01;y; a0m; b0mÞ are valid.

Then, SEMI HULLn
a1;b1;y;an;bn

DSEMI HULLm
a0
1
;b0

1
;y;a0m;b

0
m

iff coSEMI HULLn
a1;b1;y;an;bn

+

coSEMI HULLm
a0
1
;b0

1
;y;a0m;b

0
m
:

Proof. Follows from the definitions. &

Definition 22. Suppose a1; b1;y; ; aj; bj are given such that ða1; b1;y; aj; bjÞAVALID: Then, let
coINTERða1; b1;y; aj; bjÞ ¼S
fcoSEMI HULLn

a1;b1;y;aj ;bj ;y;an;bn
j nXj4ða1; b1;y; aj; bj;y; an; bnÞAVALIDg ¼

N2 � INTERða1; b1;y; aj; bjÞ:

Proposition 23. Suppose 1pjpn; and ða1; b1;y;y; an; bnÞ and ða01; b0
1;y; a0

m; b
0
mÞ are valid.

Then coINTERða01; b0
1;y; a0

m; b0mÞ+coSEMI HULLn
a1;b1;y;an;bn

iff INTERða01; b0
1;y; a0

m; b
0
mÞD

SEMI HULLn
a1;b1;y;an;bn

:

Proof. Follows from the definitions. &

Proposition 24. Suppose ða1; b1;y; aj�1; bj�1Þ is valid. Let ðx; yÞAN2 be such that

y4
P

1pioj biðx ’�aiÞ: Then, there exists a B0Aratþ obtainable effectively from a1; b1;y; aj�1;

bj�1; x and y such that for any ða0j; b0jÞ; if ða1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞ; is valid and

ðx; yÞAcoINTER
j
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
; then a0jox and b0

jXB0:

Proof. Follows from Proposition 16. &

10. Classes to which coSEMI HULLn;S is reducible

In this section, we obtain nearly the best possible upper bound on the complexity of

coSEMI HULLs in terms of Q-degrees. Intuitive upper bound LQ for Q ¼ ðq1; q2;y; q2n�1; q2nÞ
with q2iþ1 ¼ COINIT and q2iþ2 ¼ HALF can be easily established using the following learning

strategy for coSEMI HULLn;S: apply a COINIT-type strategy to learn the first break point a1;
then apply a HALF -type strategy to learn the first slope b1; etc. However, the upper bound
established below contains only n þ 1 components!

Theorem 10. Suppose nAN and S is ratþ-covering. Suppose Q ¼ ðq1; q2;y; qnþ1Þ; where q1 ¼
INIT and qi ¼ COINIT ; for 2pipn þ 1: Then coSEMI HULLn;SpTxtExLQ:

Proof. The intuitive strategy for learning coSEMI HULLn;S providing the desired upper bound
operates as follows: first, it applies an INIT-type strategy to learn a bound on the maximum
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slope:
P

i bi; then, using this bound, it applies COINIT-type strategies to learn every pair of

parameters ai; bi: This COINIT-type strategy is in some sense mirror image of the INIT-type
strategy used in the proof of Theorem 3. The technical details though become somewhat more
complicated.
Now we proceed with the formal proof.
Fix S which is ratþ-covering. Let h be a recursive bijection from Z to S such that hðiÞohði þ 1Þ:

Fix code as in Proposition 18.

Claim 4. Suppose BAS: Suppose ða1; b1;y; aj�1; bj�1; aj; bjÞ; ða1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞAVALIDS;

where bi; b0ipB; and ðaj; bjÞaða0
j; b

0
jÞ: Suppose coINTERða1; b1;y; aj�1; bj�1; a

0
j; b

0
jÞ+

coSEMI HULL
j
a1;b1;y;aj�1;bj�1;aj ;bj

:

Then, codeðB; a1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞocodeðB; a1; b1;y; aj�1; bj�1; aj; bjÞ:

Proof. By Proposition 14 and definitions of SEMI HULL; coSEMI HULL; INTER; coINTER;
we have that a0

jpaj:

Now, since, coINTERða1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞ+coSEMI HULL

j
a1;b1;y;aj�1;bj�1;aj ;bj

; we

have INTERða1; b1;y; aj�1; bj�1; a0j; b0jÞDSEMI HULL
j
a1;b1;y;aj�1;bj�1;aj ;bj

: Thus, we have

codeðB; a1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞocodeðB; a1; b1;y; aj�1; bj�1; aj; bjÞ (by Proposition 18; for

getting o instead of p use the fact that ðaj; bjÞaða0j; b0
jÞ). &

Let map be a mapping from VALID to N� such that

mapða1; b1;y; an; bnÞ ¼ ðh�1ðBÞ; codeðB; a1; b1Þ; codeðB; a1; b1; a2; b2Þ;y; codeðB; a1; b1;y; an; bnÞÞ;

where B is the least element of S such that maxðhð0Þ;
P

1pipn biÞpB:

Claim 5. Suppose ða1; b1;y; an; bnÞ is S-valid. Let B ¼ minðfbAS j bXmaxðhð0Þ;
P

1pipn biÞgÞ:
(A) Suppose 1pjpn: Suppose BXb0j; and ða1; b1;y; aj�1; bj�1; a0j; b0jÞ is S-valid. If

codeðB; a1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞ4codeðB; a1; b1;y; aj�1; bj�1; aj; bjÞ: Then

coINTERða1; b1;y; a0j; b0jÞKcoSEMI HULL
j
a1;b1;y;aj�1;bj�1;aj ;bj

:

(B) Suppose ða0
1; b01;y; a0n; b

0
nÞ is S-valid, and mapða01; b0

1;y; a0
n; b0nÞoQ mapða1; b1;y; an; bnÞ:

Then either B4minðfbAS j bXmaxðhð0Þ;
P

1pipn b0
iÞgÞ or for the least j, 1pjpn; such that

ðaj; bjÞaða0j; b0jÞ; coINTERða01; b0
1;y; a0

j; b
0
jÞKcoSEMI HULL

j
a1;b1;y;aj�1;bj�1;aj ;bj

:

(C) Suppose ða0
1; b01;y; a0n; b0nÞ is S-valid, and mapða01; b0

1;y; a0
n; b0nÞoQ mapða1; b1;y; an; bnÞ:

Then either B4minðfbAS j bXmaxðhð0Þ;
P

1pipn b0
iÞgÞ or coINTERða0

1; b01;y; a0j; b0j;y;

a0n; b
0
nÞKcoSEMI HULLn

a1;b1;y;an;bn
:

(D) If coSEMI HULLn
a1;b1;y;an;bn

CcoSEMI HULLn
a0
1
;b0

1
;y;a0n;b

0
n
; then mapða1; b1;y; an; bnÞo

Q mapða01; b0
1;y; a0

n; b
0
nÞ:

(E) Suppose 1pjpn: There exists a finite XjDcoSEMI HULLn
a1;b1;y;aj ;bj

such that, for all

S-valid ða1; b1;y; aj�1; bj�1; a
00
j ; b

00
j Þ; if BXb00j and codeðB; a1; b1;y; aj�1; bj�1; a

00
j ; b

00
j Þ4

codeðB; a1; b1;y; aj�1; bj�1; aj; bjÞ; then coINTERða1; b1;y; a00
j ; b

00
j ÞKXj:
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(F) There exists a finite XDcoSEMI HULLn
a1;b1;y;an;bn

such that, for all S-valid

ða0
1; b01;y; a0n; b0nÞ; if B ¼ minðfbAS j bXmaxðhð0Þ;

P
1pipn b0iÞgÞ; and mapða0

1; b
0
1;y; a0

n; b0nÞ
oQ mapða1; b1;y; an; bnÞ; then coINTERða0

1; b01;y; a0n; b
0
nÞKX :

Proof. (A) Follows from Claim 4.
(B) Let B0 ¼ minðfbAS j bXmaxðhð0Þ;

P
1pipn b0iÞgÞ: Since mapða0

1; b
0
1;y; a0

n; b0nÞ
oQ mapða1; b1;y; an; bnÞ; h�1ðB0Þph�1ðBÞ: Therefore, B0pB; and we must have

minðfbAS j bXmaxðhð0Þ;
P

1pipn b0
iÞgÞpminðfbAS j bXmaxðhð0Þ;

P
1pipn biÞgÞ ¼ B: If

minðfbAS j bXmaxðhð0Þ;
P

1pipn b0
iÞgÞ ¼ B; then let j be the least value such that 1pjpn; and

ða0
j; b

0
jÞaðaj; bjÞ: Thus, codeðB; a1; b1;y; aj�1; bj�1; a

0
j; b

0
jÞ4codeðB; a1; b1;y; aj�1; bj�1; aj; bjÞ:Now

part (B) follows from part (A).
(C) Since coINTERða0

1; b01;y; a0j; b0jÞ+coINTERða0
1; b01;y; a0j; b0j;y; a0

n; b0nÞ (by Proposition 12

and definitions of INTER and coINTER), and coSEMI HULL
j
a1;b1;y;aj�1;bj�1;aj ;bj

D

coSEMI HULLn
a1;b1;y;an;bn

(Proposition 11 and definitions of SEMI HULL; coSEMI HULL),

part (C) follows from part (B).
(D) Suppose coSEMI HULLn

a1;b1;y;an;bn
CcoSEMI HULLn

a0
1
;b0

1
;y;a0n;b

0
n
: Thus, we must have

minðfbAS j bXmaxðhð0Þ;
P

1pipn b0
iÞgÞXminðfbAS j bXðhð0Þ;

P
1pipn biÞgÞ (since otherwise,

for all but finitely many x;
P

1pipn biðx ’�aiÞ41þ
P

1pipn b0
iðx ’�a0iÞ; which would contradict

coSEMI HULLn
a1;b1;y;an;bn

DcoSEMI HULLn
a0
1
;b0

1
;y;a0n;b

0
n
).

If minðfbAS j bXmaxðhð0Þ;
P

1pipn b0iÞgÞ4minðfbAS j bXmaxðhð0Þ;
P

1pipn biÞgÞ; then

clearly, mapða1; b1;y; an; bnÞoQmapða01; b0
1;y; a0

n; b0nÞ: If minðfbAS j bXmaxðhð0Þ;
P

1pipn b0
iÞgÞ

¼ minðfbAS j bXmaxðhð0Þ;
P

1pipn biÞgÞ; then (D) follows from part (C), and the fact that

coSEMI HULLn
a0
1
;b0

1
;y;a0n;b

0
n
DcoINTERða0

1; b
0
1;y; a0

n; b0nÞ:
(E) Let ðx; yÞAN2 be such that ðx; yÞAcoSEMI HULLn

a1;b1;y;aj ;bj
DcoSEMI HULLn

a1;b1;y;an;bn
;

but y4
P

1pioj biðx ’�aiÞ: Note that there exists such ðx; yÞ:
By Proposition 24, there exists a B0Aratþ such that, if ðx; yÞAcoINTER

j
a1;b1;y;aj�1;bj�1;a

00
j
;b00

j
; then

a00j ox and b0jXB0: Thus, it follows that for any ða00j ; b00j Þ; if a00
j Xx; or b00j oB0;

ðx; yÞecoINTERða1; b1;y; aj�1; bj�1; a00j ; b00j Þ: Now, for each a00
j ox; and b00j AS such that

B0pb00j pB; if coSEMI HULL
j
a1;b1;y;aj ;bj

D/ coINTERða1; b1;y; aj�1; bj�1; a
00
j ; b

00
j Þ; then pick

xa00
j
;b00

j
; ya00

j
;b00

j
such that ðxa00

j
;b00

j
; ya00

j
;b00

j
ÞAcoSEMI HULL

j
a1;b1;y;aj ;bj

� coINTERða1; b1;y; aj�1;

bj�1; a00j ; b00j Þ; if coSEMI HULL
j
a1;b1;y;aj ;bj

DcoINTERða1; b1;y; aj�1; bj�1; a00j ; b00j Þ; then let

ðxa00
j
;b00

j
; ya00

j
;b00

j
Þ ¼ ðx; yÞ:

Now let Xj ¼ fðx; yÞg,fðxa00
j
;b00

j
; ya00

j
;b00

j
Þ j a00

j ox;B0pb00j pB; b00j ASg: Using part (A), it is easy to

verify that Xj witnesses the claim of part (E).

(F) Let X ¼
S

1pjpn Xj where Xj is as in part (E). Now, if

mapða0
1; b

0
1;y; a0

n; b0nÞoQmapða1; b1;y; an; bnÞ; and B ¼ minðfbAS j bXmaxðhð0Þ;
P

1pipn b0iÞgÞ;
then there exists a j; 1pjpn such for 1pioj; ai ¼ a0i and bi ¼ b0

i and
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codeðB; a1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞ4codeðB; a1; b1;y; aj�1; bj�1; aj; bjÞ: Part (F) now follows from

part (E) and definition of X : &

We now continue with the proof of the theorem. The aim is to construct Y which maps

coSEMI HULLn
a1;b1;y;an;bn

to L
Q
mapða1;b1;y;an;bnÞ:

Note that definition of C mapping grammar sequence converging to a grammar for

L
Q

mapða1;b1;y;an;bnÞ to a grammar sequence converging to a grammar for coSEMI HULLn
a1;b1;y;an;bn

would be trivial. We thus just define Y:
Without loss of generality, we will be giving Y as mapping sets to sets.

For any finite XDN2; let PropðX ; a1; b1;y; an; bnÞ be true iff following three properties are
satisfied. Let B ¼ minðfbAS j bXhð0Þ4ð8ðx; yÞAXÞ½bXy

x
gÞ:

(A) ða1; b1;y; an; bnÞAVALIDS;
(B) BXminðfbAS j bZmaxðhð0Þ;

P
1pipn biÞgÞ; and

(C) If B ¼ minðfbAS j bXmaxðhð0Þ;
P

1pipn biÞgÞ; then for all j; 1pjpn; for all a0
jAN; b0

jAS

such that ða1; b1;y; aj�1; bj�1; a0j; b0jÞ is S-valid, BXb0j and codeðB; a1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞ

4codeðB; a1; b1;y; aj�1; bj�1; aj; bjÞÞ; ½XD/ coINTERa1;b1;y;aj�1;bj�1;a
0
j
;b0

j
:

Note that whether X ; a1; b1;y; an; bn; satisfy (A) and (B) and (C) is effectively
testable.
Moreover, (C) along with definition of B above implies that
(D) For all ða01; b0

1;y; a0
n; b

0
nÞAVALID such that b0iAS and mapða01; b0

1;y; a0
n; b0nÞo

Qmapða1; b1;y; an; bnÞ; XD/ coSEMI HULLða01; b01;y; a0n; b
0
nÞ:

Thus, for finite XDN2; let

YðXÞ ¼
[

fL
Q
mapða1;b1;y;an;bnÞ j PropðX ; a1; b1;y; an; bnÞg:

For infinite X 0; YðX 0Þ ¼
S

XDX 0; cardðX ÞoN
YðXÞ:

It is easy to verify that
(1) for any XDcoSEMI HULLn

a1;b1;y;an;bn
;

YðXÞDL
Q

mapða1;b1;y;an;bnÞ

(by (D) and the fact that for any valid I and I 0; mapðIÞoQmapðI 0Þ; implies L
Q
mapðIÞDL

Q
mapðI 0Þ), and

(2) for all S-valid ða1; b1;y; an; bnÞ; by Claim 5(F), there exists a finite

XDcoSEMI HULLn
a1;b1;y;an;bn

; such that YðXÞ+L
Q

mapða1;b1;y;an;bnÞ:

Thus, we have that YðcoSEMI HULLn
a1;b1;y;an;bn

Þ ¼ L
Q
mapða1;b1;y;an;bnÞ: &

The construction in the proof of above theorem can be slightly changed along the following
lines: instead of learning first the bound on the maximum slope, one can first apply a COINIT-
type strategy trying to learn the parameters a1; b1 under assumption that b1 is smaller than some
fixed bound BAratþ; and then apply an INIT-type strategy to learn both the bound on the
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maximum slope and b1 if the latter becomes greater than the bound B: Thus, we obtain the
following theorem.

Theorem 11. Suppose nAN and S is ratþ-covering. Suppose Q ¼ ðq1; q2;y; qnþ1Þ; where q2 ¼
INIT and qi ¼ COINIT ; for 1pipn þ 1; ia2: Then coSEMI HULLn;SpTxtExLQ:

11. Classes which are reducible to coSEMI HULLn;S

In this section, we will get a lower bound for coSEMI HULLn;S having n components, and thus
being very close to the upper bounds obtained in the previous section.
The proof of the following theorem is similar to the proof of the lower bound for

SEMI HULLs, with COINITs replacing INITs.

Theorem 12. Suppose S is ratþ-covering. Let nANþ; and Q ¼ ðq1; q2;y; qnÞ; where q1 ¼ HALF ;
and for 2pipn; qi ¼ COINIT :

Then, LQpTxtExcoSEMI HULLn;S:

The proof of the above theorem is given in Appendix A.

Note that upper and lower bounds for coSEMI HULLn;S given by Theorems 10–12 do not
match. The lower bound in Theorem 12 above is the best possible (for Q-classes involving
components from BASIC). However, it is open whether the upper bound can be improved for
general n: For n ¼ 1; we do know that the upper bound can be improved to show that

coSEMI HULL1;SpTxtExHALF (which is optimal by Theorem 12).

12. Open hulls—intersections of semi-hulls

Now consider the class of language-figures that are intersections of SEMI HULLs adjacent to
the x-axis (that is with the first break point ða1; 0Þ) and reverse SEMI HULLs adjacent to the
y-axis (with the first break point ð0; a01Þ). These figures are the open hulls.

We give the formal definition below (preceded by the formal definition of the reverse
SEMI HULLs adjacent to the y-axis).

Definition 23. REV SEMI HULLn
a1;b1;y;an;bn

¼ fðx; yÞ j ðy; xÞASEMI HULLn
a1;b1;y;an;bn

g:
REV SEMI HULLn;S ¼

fREV SEMI HULLn
a1;b1;y;an;bn

j SEMI HULLn
a1;b1;y;an;bn

ASEMI HULLn;Sg:

Definition 24.

OP HULL
n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

¼ SEMI HULLn
a1;b1;y;an;bn

-REV SEMI HULLm
c1;d1;y;cm;dm

:
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OP HULLn;m;S ¼ fOP HULL
n;m;S
a1;b1;y;an;bn;c1;d1;y;cm;dm

j SEMI HULLn
a1;b1;y;an;

bnASEMI HULLn;S;

REV SEMI HULLn
c1;d1;y;cm;dm

AREV SEMI HULLm;S; and
P

1pipn bio 1P
1pipm

di
g:

The latter condition,
P

1pipn bio 1P
1pipm

di
; ensures that the languages in OP HULLs are

infinite, and thus the corresponding geometrical figures are open hulls.2

Surprisingly, unlike SEMI HULLs and coSEMI HULL; upper and lower bounds for
OP HULLs match. The following theorem establishes the lower bound for the OP HULLs.
Somewhat surprising is also the fact that the learnability degree of open hulls is below the
learnability degree of semi-hulls. However, the reader must note that while slopes of segments of
the border line for semi-hulls are bounded only by both axes, the slopes of the segments of border
lines in a open hull bound each other (the reader should note that, as we only consider (reversed)
semi-hulls with at least one angle in the theorems below, the (reversed) semi-hull cannot contain
the entire domain). Consequently, while learning the angles along both border lines in a open hull,
the learning algorithm becomes aware of these bounds and, as it turns out, can use a shorter
sequence of the primitive strategies to learn the concept in question.

Theorem 13. Suppose S is ratþ-covering. Suppose nX1; mX1: Let Q ¼ ðq1;y; qnÞ; where each

qi ¼ INIT : Then, (a) LQpTxtExOP HULLn;m;S; and (b) LQpTxtExOP HULLm;n;S:

The proof of the above theorem is given in Appendix A. We next show the upper bound for
OP HULLs.

Theorem 14. Suppose S is ratþ-covering. Suppose nXmX1: Let Q ¼ ðq1;y; qnÞ; where each qi ¼
INIT : Then, (a) OP HULLn;m;SpTxtExLQ; and (b) OP HULLm;n;SpTxtExLQ:

The proof of the above theorem is given in Appendix A.

13. Complements of open hulls

In this section, we define and explore the classes of complements of OP HULLs.

Definition 25. REV coSEMI HULLn
a1;b1;y;an;bn

¼ fðx; yÞ j ðy; xÞAcoSEMI HULLn
a1;b1;y;an;bn

g:
REV coSEMI HULLn;S

¼ fREV coSEMI HULLn
a1;b1;y;an;bn

j coSEMI HULLn
a1;b1;y;an;bn

A coSEMI HULLn;Sg:
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1pipn bio 1P
1pipm

di
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Definition 26. coOP HULL
n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

¼ coSEMI HULLn
a1;b1;y;an;bn

,
REV coSEMI HULLm

c1;d1;y;cm;dm
¼ N2 � OP HULL

n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

:

coOP HULLn;m;S ¼ fcoOP HULL
n;m;S
a1;b1;y;an;bn;c1;d1;y;cm;dm

j coSEMI HULLn
a1;b1;y;an;bn

A

coSEMI HULLn;S; REV coSEMI HULLm
c1;d1;y;cm;dm

AREV coSEMI HULLm;S; andP
1pipn bio 1P

1pipm
di
g:

The following theorem gives the lower bound for coOP HULLs.

Theorem 15. Suppose S is ratþ-covering. Suppose nX1; mX1: Let Q ¼ ðq1;y; qnÞ; where each

qi ¼ COINIT : Then (a) LQpTxtExcoOP HULLn;m;S and (b) LQpTxtExcoOP HULLm;n;S:

Proof of the above theorem is given in Appendix A. The following theorem gives the upper
bound for coOP HULLs.

Theorem 16. Suppose nXmX1: Let Q ¼ ðq1;y; qnÞ; where each qi ¼ COINIT : Then (a)

coOP HULLn;m;SpTxtExLQ and (b) coOP HULLm;n;SpTxtExLQ:

Proof of the above theorem is given in Appendix A.

14. Conclusions

A new complexity scale has been successfully applied for evaluating the complexity of
learning various geometrical figures from texts. Many upper bounds obtained by us are
surprisingly lower than the ones suggested by intuitive learning strategies. Another surpris-
ing result is that upper and lower bounds match for OP HULL and their complements,
while there is a gap between upper and lower bounds for SEMI HULLs that cannot be narrowed.
One more interesting aspect of this picture is that upper bounds for OP HULLs, the inter-
section of SEMI HULLs, are much lower than that for SEMI HULLs themselves! In general,
the picture of upper and lower bounds for OP HULLs and their complements is much more
uniform than for SEMI HULLs and their complements: bounds for coOP HULLs can be
obtained from the bounds for OP HULLs by just replacing INITs by COINITs, while bounds
for SEMI HULLs and coSEMI HULLs differ even in the number of components in
Q-vectors.
There are many other interesting types of geometrical concepts whose complexity can be

explored in terms of the Q-classes. For example, one can evaluate the complexity of
learning SEMI HULLs and all other figures observed in our paper dropping requirement of
the first angle being adjacent to x- or y-axis. Even more promising seems to be the class
of finite unions of OP HULLs (though proofs may become technically messy). In general,
we are convinced that the Q-classes (possibly using some other basic classes/strategies)
are very promising tools for exploring the complexity of learning hard languages from
texts.
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Appendix A

A.1. Proof of Theorem 1

Theorem 1. HALF �TxtEx INIT � COINIT :

Proof. For aAZ; let La ¼ fxAZ j xXag: For i; jAN; let Xi;j ¼ fxAN j xpig � fx j xXjg:
We now define Y and C witnessing that HALFpTxtExINIT � COINIT :
For any finite subset Y of Z; let YðYÞ ¼

S
aX0;aAY X0;a,

S
ao0;aAY X�a;0:

It can be easily verified that YðLaÞ ¼ X0;a (if aX0), and YðLaÞ ¼ X�a;0 (if ao0).

C is defined as follows. Suppose a sequence a of grammars converges to grammar p: Suppose
i ¼ maxðfxAN j ð(yANÞ½/x; ySAWpgÞ; and j ¼ minðfyAN j ð(xANÞ½/x; ySAWpgÞ: Then, if

i ¼ 0; thenCðaÞ converges to a program for Lj: If i40; thenCðaÞ converges to a program for L�i:

It is easy to verify that Y and C witness that HALFpTxtExINIT � COINIT :

Now, we show that INIT � COINITpTxtExHALF :
Define h as follows:
for i; jAN;

hði; jÞ ¼ �½ði þ 1Þði þ 2Þ=2 þ 1þ j; if iXj;

hði; jÞ ¼ ½jðj þ 1Þ=2 � i; if ioj:

Intuitively, picture hði; jÞ as follows:

? hð2; 0Þ hð2; 1Þ hð2; 2Þ hð1; 0Þ hð1; 1Þ hð0; 0Þ
? �5 �4 �3 �2 �1 0

hð0; 1Þ hð1; 2Þ hð0; 2Þ hð2; 3Þ hð1; 3Þ hð0; 3Þ ?

1 2 3 4 5 6 ?

Note that for all i; j; k; lAN; if iXk and jpl; then hði; jÞphðk; lÞ: Now, for any set YDN2; let
YðYÞ ¼

S
/i;jSAY Lhði;jÞ: It is easy to verify that YðXi;jÞ ¼ Lhði;jÞ:

CðaÞ is defined as follows. If a sequence a of grammars converges to a grammar p for Lhði;jÞ;

thenCðaÞ converges to a grammar for Xi;j: (Note that, if p; is a grammar for some Lhði;jÞ; then such
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i; j can be determined in the limit from p:) It is easy to verify that Y and C witness that

INIT � COINITpTxtExHALF : &

A.2. Proof of Theorem 2

Theorem 2. Suppose Q ¼ ðq1;y; qkÞABASICk and Q0 ¼ ðq0
1;y; q0

lÞABASICl: Let R ¼ R1 �
R2 �?� Rk; R0 ¼ R0

1 � R0
2 �?� R0

l; where each Ri ðR0
iÞ is an infinite subset of N; if

qiAfINIT ;COINITg (q0
iAfINIT ;COINITg), and Ri ðR0

iÞ is a subset of Z; with infinite intersection

with both N and Z�; if qi ¼ HALF ðq0i ¼ HALFÞ:
If Q is not a pseudo-subsequence of Q0 then LQ;R4/ TxtExLQ0;R0

:

Proof. We prove the theorem by double induction (first on k and then on l). For k ¼ 0 or l ¼ 0
theorem clearly holds. Suppose by induction that the theorem holds for kpm; lAN; and for
k ¼ m þ 1; lpr: We then show that the theorem holds for k ¼ m þ 1 and l ¼ r þ 1: Suppose by

way of contradiction that Y (along with C) witnesses that LQ;RpTxtExLQ0;R0
:

We consider the following cases:
Case 1: q1 ¼ INIT :
Case 1.1: q0

1 ¼ COINIT :
Consider s; which minimizes iAN such that /i;ySAcontentðYðsÞÞ: Let jAN be the maximum

number such that /j;ySAcontentðsÞ: It follows that, for any j04j; j0AR1; YðLQ
j0;yÞ; for any

values of other parameters, is of the form L
Q0

i;y; for some values of the other parameters. Thus, Y

(along with C) essentially witnesses that LQ;RRpTxtExLQQ0;RR0
; where RR is obtained from R by

replacing R1 by R1 � fx j xpjg; and QQ0 is obtained from Q0 by dropping q01 and RR0 is obtained
from R0 by dropping R0

1: Now we are done by induction hypothesis.

Case 1.2: q0
1 ¼ INIT :

In this case, kX2:
Case 1.2.1: q2 ¼ INIT :

Fix i1AR1; and consider the set
S

i2AR2;y
YðLQ

i1;i2;y
Þ: Suppose this set contains /i01;yS; for

arbitrarily large i01: Then for any ii14i1 (since L
Q
ii1;y

+L
Q
i1;y

for all possible values of other

parameters) we have thatYðLQ

ii1;minðR2Þ;minðR3Þ;yÞ contains elements of form /i01;yS for arbitrarily

large i01: Thus, YðLQ

ii1;minðR2Þ;minðR3Þ;yÞeLQ0
:

So let i01 be maximum value such that some element of form /i01;yS is in
S

i2AR2;y
YðLQ

i1;i2;y
Þ:

Let s be such that contentðsÞDL
Q
i1;i2;y

; and YðsÞ contains an element of form /i01;yS: Let i2

be maximum value such that some element of form /i1; i2;yS is in contentðsÞ: It follows that, for
all ii24i2; ii2AR2; YðLQ

i1;ii2;y
Þ; for any value of other parameters, is of form L

Q0

i0
1
;y; for some value

of other parameters. Thus, Y (along with C) essentially witnesses that LQQ;RRpTxtExLQQ0;RR0
;

where QQ is obtained from Q by dropping q1; QQ0 is obtained from Q0 by dropping q0
1; RR0 is
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obtained from R0 by dropping R0
1 and RR is obtained from R by dropping R1 plus changing R2 to

R2 � fx j xpi2g: Now we are done by induction hypothesis.
Case 1.2.2: q2 ¼ COINIT :
In this case, by Proposition 10(a) QQ obtained from Q by dropping q1 is not a pseudo-

subsequence of Q0: Thus, we are done by induction hypothesis.
Case 1.2.3: q2 ¼ HALF :
If l ¼ 1; then we are done. So assume lX2:
Case 1.2.3.1: q0

2 ¼ INIT or HALF :
Then, by replacing q2 by COINIT ; using Proposition 10(d) we still have that Q is not a pseudo-

subsequence of Q0: Thus, we can use Case 1.2.2.
Case 1.2.3.2: q0

2 ¼ COINIT :
Then, by replacing q2 by INIT ; using Proposition 10(e) we still have that Q is not a pseudo-

subsequence of Q0: Thus, we can use Case 1.2.1.
Case 1.3: q0

1 ¼ HALF :

In this case, let iAR1: Suppose YðLQ
i;yÞ ¼ L

Q0

j;y; for some values of other parameters. But

then for all i04i; YðLQ
i0;yÞ; for any value of other parameters, must be of form L

Q0

j0;y; for

some value of other parameters, where j0pj: Thus, one could essentially consider Y (along

with C) as a reduction from LQ;RR to LQQ0;RR0
; where RR is obtained from R by replac-

ing R1 by R1 � fx j xpig; QQ0 is obtained from Q0 by replacing q0
1 with INIT ; and RR0 is

obtained from R0 by replacing R0
1 by fxAN j � x þ jAR0

1 � fy j yXjgg: Thus, we can use

Case 1.2.
Case 2: q1 ¼ COINIT : This case is very similar to Case 1. We give the analysis for completeness

sake.
Case 2.1: q0

1 ¼ INIT :

Let iAN be minimum value such that YðLQ
y
Þ ¼ L

Q0

i;y; for some values of the other parameters.

Let jAR1 be such that YðLQ
j;yÞ ¼ L

Q0

i;y; for some values of the parameters. It follows that for all

j04j; j0AR1; YðLQ
j0;yÞ; for any value of other parameters, is of form L

Q0

i;y; for some value of other

parameters.

Thus, Y (along with C) essentially witnesses that LQ;RRpTxtExLQQ0;RR0
; where RR

is obtained from R by replacing R1 by R1 � fx j xpjg; and QQ0 is obtained from Q0 by
dropping q0

1 and RR0 is obtained from R0 by dropping R0
1: Now we are done by induction

hypothesis.
Case 2.2: q0

1 ¼ COINIT :
In this case kX2:
Case 2.2.1: q2 ¼ INIT :
In this case, by Proposition 10(a) QQ obtained from Q by dropping q1 is not a pseudo-

subsequence of Q0: Thus, we are done by induction hypothesis.

Case 2.2.2: q2 ¼ COINIT : Fix i1AR1; and consider YðLQ
i1;y

Þ ¼ L
Q0

i0
1
;y: If i01 achieves arbitrary

high value (for some values of other parameters) then, for ii14i1; since L
Q
ii1;0;0;y

DL
Q
i1;y

; andT
i0
1
AR0

1
L

Q0

i0
1
;y ¼ |; YðLii1;0;0;yÞ ¼ |eLQ0;R0

:
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So let i01 be maximum value such that for some value of other parameters,YðLQ;R
i1;y

Þ ¼ L
Q0;R0

i0
1
;y : Let

i2 be such that, for some value of other parameters, YðLQ;R
i1;i2;y

Þ ¼ L
Q0;R0

i0
1
;y : It follows that, for all

ii24i2; YðLQ;R
i1;ii2;y

Þ is of form L
Q0;R0

i0
1
;y : Thus, Y (along with C) essentially witnesses that

LQQ;RRpTxtExLQQ0;RR0
; where QQ is obtained from Q by dropping q1; QQ0 is obtained

from Q0 by dropping q01; RR0 is obtained from R0 by dropping R0
1 and RR is obtained

from R by dropping R1 plus changing R2 to R2 � fx j xpi2g: Now we are done by induction
hypothesis.

Case 2.2.3: q2 ¼ HALF :
If l ¼ 1; then we are done. So assume lX2:
Case 2.2.3.1: q0

2 ¼ INIT or HALF :
Then, by replacing q2 by COINIT ; using Proposition 10(d), we still have that Q is not a pseudo-

subsequence of Q0: Thus, we can use Case 2.2.2.
Case 2.2.3.2: q0

2 ¼ COINIT :
Then, by replacing q2 by INIT ; using Proposition 10(e), we still have that Q is not a pseudo-

subsequence of Q0: Thus, we can use Case 2.2.1.
Case 3: q1 ¼ HALF :
Case 3.1: q0

1 ¼ INIT :
Then by Proposition 10(b) replacing q1 by COINIT ; still gives us that Q is not a pseudo-

subsequence of Q0: Thus, we can use Case 2.
Case 3.2: q0

1 ¼ COINIT :
Then by Proposition 10(c) replacing q1 by INIT ; still gives us that Q is not a pseudo-

subsequence of Q0: Thus, we can use Case 1.
Case 3.3: q0

1 ¼ HALF :

In this case, let iAR1 and consider YðLQ
i;yÞ; for some value of other parameters. Suppose it is

L
Q0

j;y; for some value of other parameters. Then for all i0oi; i0AR1;YðLQ
i0;yÞmust be of form L

Q0

j0;y;

where j0pj: Thus, one could essentially consider this as a reduction from LQQ;RR to LQQ0;RR0
;

where QQ is obtained from Q by replacing q1 by INIT ; RR is obtained from R by replacing R1 by
fxAN j � x þ iAR1 � fy j yXigg; QQ0 is obtained from Q0 by replacing q01 with INIT ; and RR0 is
obtained from R0 by replacing R0

1 by fxAN j � x þ jAR0
1 � fy j yXjgg: Now we can use Case 1.

It follows from above cases that LQ;R4/ TxtExLQ0;R0
: &

A.3. Proof of Theorem 12

Proposition A.1. Suppose S0DS: Then coSEMI HULLn;S0pTxtExcoSEMI HULLn;S:

Theorem 12. Suppose S is ratþ-covering. Let nANþ; and Q ¼ ðq1; q2;y; qnÞ; where q1 ¼ HALF ;
and for 2pipn; qi ¼ COINIT :

Then, LQpTxtExcoSEMI HULLn;S:
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Proof. Without loss of generality (using Propositions 19 and A.1) we can assume that, for each
b; b0AS; if bob0; then 2bob0: Let h be an isomorphism from Z to S such that hðiÞohði þ 1Þ:
Let mapði1; i2;y; inÞ ¼ ða1; b1;y; an; bnÞ; where aj; bj; 1pjpn are defined as follows.

a1 ¼ 1; b1 ¼ hð�i1 � a1Þ: Suppose we have defined a1; b1;y; ak; bk: Then let Akþ1 ¼
fxAN j x4ak; ½

P
1pipk bi � ðx ’�aiÞANg; and then let akþ1 to be the ðikþ1 þ 1Þth least element

in Akþ1: Let bkþ1 ¼ hð�i1 � akþ1Þ:

Claim A.1. ði1; i2;y; inÞoQði01; i02;y; i0nÞ implies coSEMI HULL
n;S
mapði1;y;inÞCcoSEMI HULL

n;S
mapði0

1
;y;i0nÞ

:

Proof. Suppose ði1; i2;y; inÞoQði01; i02;y; i0nÞ: Suppose mapði1;y; inÞ ¼ ða1; b1;y; an; bnÞ and

mapði01;y; i0nÞ ¼ ða0
1; b01;y; a0n; b

0
nÞ:

We consider the following cases.
Case 1: i14i01:
In this case,
(1) b1ob0

1; and
(2) a1 ¼ a01:
From (1) it follows that
(3) 2b1ob01:
Now, for 1pion; since aioaiþ1; and bi ¼ hð�i1 � aiÞ; we have bi4biþ1: Thus, bi42 � biþ1;

for 1pion by hypothesis about elements of S: Thus,
P

1pipn bip2b1: Along with (3),

we have that b01X
P

1pipn bi: This along with (2), Propositions 11, 15 and 22 gives

coSEMI HULL
n;S
a1;b1;y;an;bn

DcoSEMI HULL
1;S
a0
1
;b0

1
DcoSEMI HULL

n;S
a0
1
;b0

1
;y;a0n;b

0
n
:

Case 2: For some j; 1ojpn; ik ¼ i0k; for 1pkoj; but ij4i0j:

In this case
(4) ai ¼ a0

i and bi ¼ b0i; for 1pioj:
(5) bjob0

j; and

(6) aj4a0
j:

From (5) it follows that
(7) 2 � bjob0

j:

Now, for 1pion; since aioaiþ1; bi ¼ hð�i1 � aiÞ; we have bi4biþ1: Thus, bi42 � biþ1; for
1pion; by hypothesis about elements of S:
Thus,

P
jpipn bip2bj: This, along with (7) gives us that b0j4

P
jpipn bi: Thus using (6), Pro-

positions 11, 15, and 22 we have coSEMI HULL
n;S
a1;b1;y;an;bn

DcoSEMI HULL
j;S
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j

DcoSEMI HULL
n;S
a0
1
;b0

1
;y;a0n;b

0
n
:

The claim follows from the above cases. &

We let YðXÞ ¼
S

/i1;y;inSAX coSEMI HULLn
mapði1;y;inÞ:

Thus, it follows that YðLQ
i1;i2;y;in

Þ ¼ coSEMI HULL
n;S
mapði1;y;inÞ:
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Define C as follows. If a sequence a of grammars converges to a grammar for

coSEMI HULL
n;S
mapði1;y;inÞ; then CðaÞ converges to a grammar for L

Q
i1;i2;y;in

:

It is now easy to verify that Y and C witness that LQpTxtExcoSEMI HULLn;S: &

A.4. Proofs of Theorems 13 and 14

The following proposition is an obvious corollary of the definition of OP HULLs.

Proposition A.2. Suppose SDS0: Then OP HULLn;m;SpTxtExOP HULLn;m;S0
:

Theorem 13. Suppose S is ratþ-covering. Suppose nX1; mX1: Let Q ¼ ðq1;y; qnÞ; where each

qi ¼ INIT : Then, (a) LQpTxtExOP HULLn;m;S; and (b) LQpTxtExOP HULLm;n;S:

Proof. We only show part (a). Part (b) can be proved similarly.
The desired reduction works very similarly to the analogous reduction in Theorem 5: we just fix

a REV SEMI HULL and try to reduce a language in LQ to the SEMI HULL part of the
OP HULL; the slope of the REV SEMI HULL provides a starting point for learning the first
slope b1; thus HALF being replaced with INIT in the first component of Q:
Now we proceed with the formal proof.
Without loss of generality (using Propositions 19 and A.2) we can assume that, for each

b; b0AS; if bob0; then 2bob0: Let h be an isomorphism from Z to S such that hðiÞohði þ 1Þ:
Let ðc1; d1;y; cm; dmÞ be S-valid such that

P
1pipm dio1=hð1Þ (note that there clearly exist

such c1; d1;y; cm; dm).
Let mapði1; i2;y; inÞ ¼ ða1; b1;y; an; bn; c1; d1;y; cm; dmÞ; where aj; bj; 1pjpn are defined as

follows. a1 ¼ i1 þ 1; b1 ¼ hð�a1Þ: Suppose we have defined a1; b1;y; ak; bk: Then let Akþ1 ¼
fxAN j x4ak; ½

P
1pipk bi � ðx ’�aiÞANg; and then let akþ1 to be the ðikþ1 þ 1Þth least element in

Akþ1: Let bkþ1 ¼ hð�akþ1Þ:
Note that, for all ði1; i2;y; inÞANn; if mapði1; i2;y; inÞ ¼ ða1; b1;y; an; bn; c1; d1;y; cm; dmÞ;

then since aioaiþ1; by definition of bi; we have bi ¼ hð�aiÞ4hð�aiþ1Þ ¼ biþ1: This along with
requirement on S gives bi42biþ1: Thus,

P
1pipn bip2b1p2hð�a1Þp2hð0Þohð1Þ: Since,P

1pipm dio1=hð1Þ; we immediately have that
P

1pipn bio 1P
1pipm

di
; for all ði1; i2;y; inÞ:

Claim A.2. ði1; i2;y; inÞoQði01; i02;y; i0nÞ implies OP HULL
n;m;S
mapði1;y;inÞCOP HULL

n;m;S
mapði0

1
;y;i0nÞ

:

Proof. Suppose ði1; i2;y; inÞoQði01; i02;y; i0nÞ: Suppose mapði1;y; inÞ ¼ ða1; b1;y; an; bn;
c1; d1;y; cm; dmÞ and mapði01;y; i0nÞ ¼ ða0

1; b
0
1;y; a0

n; b0n; c1; d1;y; cm; dmÞ:
Let j be the least number such that ik ¼ i0k; for 1pkoj; and ijai0j:

Thus,
(1) ai ¼ a0

i and bi ¼ b0i; for 1pioj:
(2) bj4b0

j; and

(3) ajoa0
j:
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From (2) it follows that
(4) bj42 � b0

j:

Now, for 1pion; since a0
ioa0iþ1; we have b0i ¼ hð�a0

iÞ4hð�a0
iþ1Þ ¼ b0

iþ1: Thus, b0
i42 � b0

iþ1; for

1pion by hypothesis about elements of S:
Thus,

P
jpipn b0ip2b0

j: This, along with (4) gives us that bj4
P

jpipn b0
i: Thus using

(3), Propositions 11 and 15 we have SEMI HULL
n;S
a1;b1;y;an;bn

CSEMI HULL
j;S
a1;b1;y;aj ;bj

D

SEMI HULL
n;S
a0
1
;b0

1
;y;a0n;b

0
n
:

The claim follows. &
We now define YðXÞ for any finite set X as follows.

We let YðXÞ ¼
S

/i1;y;inSAX OP HULL
n;m
mapði1;y;inÞ:

Thus, it follows that YðLQ
i1;i2;y;in

Þ ¼ OP HULL
n;m;S
mapði1;y;inÞ:

Define C as follows. If a sequence a of grammars converges to a grammar for

OP HULL
n;m;S
mapði1;y;inÞ; then CðaÞ converges to a grammar for L

Q
i1;i2;y;in

:

It is now easy to verify that Y and C witness that LQpTxtExOP HULLn;m;S: &

Before proving Theorem 14 we need some propositions.

Definition A.1. Suppose ða1; b1;y; aj; bjÞ is valid. REV INTERða1; b1;y; aj; bjÞ ¼
fðx; yÞ j ðy; xÞAINTERða1; b1;y; aj; bjÞg:

Definition A.2. Suppose ða1; b1;y; aj; bjÞ and ðc1; d1;y; ck; dkÞ are valid. Then,

INT OP HULLða1; b1;y; aj; bj; c1; d1;y; ck; dkÞ ¼
-fOP HULL

n;m
a1;b1;y;aj ;bj ;y;an;bn;c1;d1;y;ck ;dk;y;cm;dm

j nXj and mXk and ða1; b1;y; an; bnÞ and

ðc1; d1;y; cm; dmÞ are valid and
P

1pipn bio 1P
1pipm

di
g:

Proposition A.3. Suppose ða1; b1;y; aj; bjÞ and ðc1; d1;y; ck; dkÞ are valid, andP
1pipj bjo 1P

1pipk
di
: Then,

(a) fðx; yÞ j xpmaxinterða1; b1;y; aj; bjÞ; y ¼ minðfy0 j ðx; y0ÞAINTERða1; b1;y; aj; bjÞgÞgD
INT OP HULLða1; b1;y; aj; bj; c1; d1;y; ck; dkÞ:
(b) fðx; yÞ j ypmaxinterðc1; d1;y; ck; dkÞ; x ¼ minðfx0 j ðx0; yÞAREV INTERðc1; d1;y; cj; djÞgÞg

DINT OP HULLða1; b1;y; aj; bj; c1; d1;y; ck; dkÞ:

Proof. We show only part (a). Part (b) can be proved similarly. Suppose
ðx0; y0ÞAfðx; yÞ j xpmaxinterða1; b1;y; aj; bjÞ; y ¼ minðfy0 j ðx; y0ÞAINTERða1; b1;y; aj; bjÞgÞg:
Then, 1þ

P
1pipj biðx0 ’�aiÞ4y0X

P
1pipj biðx0 ’�aiÞ: Thus, 1þ

P
1pipj bi � x0Xy0: Hence,

(1)
P

1pipj biXðy0 � 1Þ=x0:

Clearly, ðx0; y0ÞAINTERða1; b1;y; aj; bjÞ: Thus, ðx0; y0ÞASEMI HULLn
a1;b1;y;aj ;bj ;y;an;bn

; for all

valid ða1; b1;y; aj; bj;y; an; bnÞ (by definition of INTER).
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Thus, if ðx0; y0ÞeINT OP HULLða1; b1;y; aj; bj; c1; d1;y; ck; dkÞ; there must exist a

valid ðc1; d1;y; ck; dk;y; cm; dmÞ; and
P

1pipj bio 1P
1pipm

di
; such that ðx0; y0Þe

REV SEMI HULLm
c1;d1;y;ck;dk;y;cm;dm

: But this would mean, x0o
P

1pipm diðy0 ’�ciÞpP
1pipm diðy0 ’�1Þ: Thus,
(2)

P
1pipm di4x0=ðy0 � 1Þ:

From (1) and (2) we haveP
1pipn bi4 1P

1pipm
di
: A contradiction to the hypothesis. &

Proposition A.4. Suppose ða1; b1;y; aj; bjÞ; ða0
1; b

0
1;y; a0

j; b
0
jÞ; ðc1; d1;y; ck; dkÞ; ðc01; d 0

1;y; c0k; d 0
kÞ

are valid. Suppose further that
P

1pipj bio 1P
1pipk

di
; and

P
1pipj b0io

1P
1pipk

d 0
i

:

If INT OP HULLða01; b0
1;y; a0j; b0

j; c01; d
0
1;y; c0k; d 0

kÞDOP HULL
j;k

a1;b1;y;aj ;bj ;c1;d1;y;ck;dk
; then,

INTERða01; b01;y; a0j; b0jÞDSEMI HULL
j

a1;b1;y;aj ;bj
and

REV INTERðc01; d 0
1;y; c0k; d 0

kÞDREV SEMI HULLk
c1;d1;y;ck;dk

:

Proof. Suppose INT OP HULLða0
1; b01;y; a0j; b0j; c01; d 0

1;y; c0k; d
0
kÞDOP HULL

j;k
a1;b1;y;aj ;bj ;c1;d1;y;ck;dk

:

Thus (using Proposition A.3) fðx; yÞ j xpmaxinterða0
1; b01;y; a0j; b0jÞ;

y ¼ minðfy0 j ðx; y0ÞAINTERða01; b0
1;y; a0

j; b
0
jÞgÞgDINT OP HULLða0

1; b01;y; a0j; b0j; c01; d 0
1;y; c0k; d 0

kÞ
DOP HULLa1;b1;y;aj ;bj ;c1;d1;y;ck;dk

DSEMI HULL
j

a1;b1;y;aj ;bj
: It follows that INTERða01; b0

1;y;

a0j; b0jÞDSEMI HULL
j

a1;b1;y;aj ;bj
:

Similarly, it can be shown that

REV INTERðc01; d 0
1;y; c0k; d 0

kÞDREV SEMI HULLk
c1;d1;y;ck;dk

: &

Corollary A.1. Suppose 1pjpn; 1pkpn: Let S be any ratþ-covering set:
Suppose ða1; b1;y; aj�1; bj�1; aj; bjÞ; ðc1; d1;y; ck�1; dk�1; ck; dkÞ are S-valid, andP
1pipj bio 1P

1pipk
di
:

Then, there exist only finitely many ða0j; b0j; c0k; d
0
kÞ such that

(i) b0
j þ

P
1pioj bio 1

d 0
k
þ
P

1piok
dk

; and

(ii) ða1; b1;y; aj�1; bj�1; a0j; b0jÞ; ðc1; d1;y; ck�1; dk�1; c
0
k; d 0

kÞ are S-valid, and

(iii) INTERða1; b1;y; aj�1; bj�1; a0j; b0jÞDSEMI HULL
j

a1;b1;y;aj ;bj
; and REV INTERðc1; d1;y;

ck�1; dk�1; c0k; d
0
kÞDREV SEMI HULLk

c1;d1;y;ck;dk
:

Moreover, canonical index for the finite set of ða0j; b0j; c0k; d
0
kÞ satisfying above three conditions can

be obtained effectively from a1; b1;y; aj; bj; c1; d1;y; ck; dk:
Furthermore, for any ða0

j; b
0
j; c

0
j; d 0

j Þ satisfying the above three conditions, a0
jpaj; c0kpck; and if

a0j ¼ aj then b0jXbj; and if c0k ¼ ck; then d 0
kXdk:
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Proof. Suppose INTERða1; b1;y; aj�1; bj�1; a0j; b0jÞDSEMI HULL
j

a1;b1;y;aj ;bj
; and REV INTERðc1;

d1;y; ck�1; dk�1; c0k; d
0
kÞDREV SEMI HULLk

c1;d1;y;ck;dk
: By Corollary 5 and Proposition

14 it follows that a0jpaj; c0kpck; and there exists only finitely many ða0
j; b

0
jÞ

such that b0jpbj and INTERða1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞDSEMI HULL

j
a1;b1;y;aj ;bj

; and only

finitely many ðc0k; d 0
kÞ such that d 0

kpdk and REV INTERðc1; d1;y; ck�1; dk�1; c
0
k; d 0

kÞD
REV SEMI HULLk

c1;d1;y;ck;dk
; and these ða0j; b0jÞ; ðc0k; d 0

kÞ can be obtained effectively from

ða1; b1;y; aj; bj; c1; d1;y; ck; dkÞ: Let B0
j ¼ minðfbjg,fb0j j b0

jpbj4INTERða1; b1;y; aj�1; bj�1; a
0
j;

b0jÞDSEMI HULL
j

a1;b1;y;aj ;bj
gÞ: Let D0

k ¼ minðfdkg,fd 0
k j d 0

kpdk4REV INTERðc1; d1;y; ck�1;

dk�1; c0k; d
0
kÞDREV SEMI HULLk

c1;d1;y;ck;dk
gÞ:

Note that clause (i) in the corollary implies that b0jo
1
d 0

k

and d 0
ko

1
b0

j
:

It follows that, for any ða0j; b0j; c0k; d
0
kÞ to satisfy the hypothesis of the corollary we must have

0pa0
jpaj; 0pc0kpck; B0

jpb0
jp1=D0

k; and D0
kpd 0

kp1=B0
j: Thus, there exist only finitely many

ða0
j; b

0
j; c

0
k; d 0

kÞ which can satisfy clauses (i)–(iii) of the corollary. Moreover, since for any

ða0
j; b

0
j; c

0
k; d 0

kÞ it is effectively testable whether clauses (i)–(iii) of the corollary are satisfiable, we can
find the canonical index for the set of ða0

j; b
0
j; c

0
k; d 0

kÞ satisfying the clauses (i)–(iii) of the corollary

effectively from a1; b1;y; aj; bj; c1; d1;y; ck; dk:
Furthermore clause of the corollary follows using Corollary 5. &

Proposition A.5. Let S be any ratþ-covering set. Then, there exists a recursive function Icode with

domain VALIDS � VALIDS; and range DN such that following is satisfied.
Suppose ða1; b1;y; aj�1; bj�1; aj; bjÞ; ða1; b1;y; aj�1; bj�1; a

0
j; b

0
jÞ; ðc1; d1;y; ck�1; dk�1; ck; dkÞ;

ðc1; d1;y; ck�1; dk�1; c0k; d 0
kÞ are S-valid, and

P
1pipj bio 1P

1pipk
di

and b0j þ
P

1pioj bio
1

d 0
k
þ
P

1piok
di
: Then

(A) If INTERða1; b1;y; aj�1; bj�1; a0j; b0jÞDSEMI HULL
j

a1;b1;y;aj ;bj
; and REV INTERðc1; d1;y;

ck�1; dk�1; c0k; d
0
kÞDREV SEMI HULLk

c1;d1;y;ck;dk
then Icodeða1; b1;y; aj�1; bj�1; a0

j; b0
j; c1; d1;y;

ck�1; dk�1; c0k; d
0
kÞpIcodeða1; b1;y; aj�1; bj�1; aj; bj; c1; d1;y; ck�1; dk�1; ck; dkÞ:

(B) If ðaj; bj; ck; dkÞaða0
j; b

0
j; c

0
k; d 0

kÞ; then Icodeða1; b1;y; aj�1; bj�1; a0j; b0j; c1; d1;y; ck�1; dk�1; c0k;

d 0
kÞaIcodeða1; b1;y; aj�1; bj�1; aj; bj; c1; d1;y; ck�1; dk�1; ck; dkÞ:
(C) fIcodeða1; b1;y; aj�1; bj�1; a00j ; b00j ; c1; d1;y; ck�1; dk�1; c

00
k; d 00

k Þ j ða1; b1;y; aj�1; bj�1; a
00
j ; b

00
j ÞA

VALIDS; ðc1; d1;y; ck�1; dk�1; c
00
j ; d

00
j ÞAVALIDS; and b00j þ

P
1pioj bjo 1

d 00
k
þ
P

1piok
dk

g ¼ N:

Proof can be done along similar lines as of Proposition 18.
Now we show the upper bound for OP HULLs.

Theorem 14. Suppose S is ratþ-covering. Suppose nXmX1: Let Q ¼ ðq1;y; qnÞ; where each qi ¼
INIT : Then, (a) OP HULLn;m;SpTxtExLQ; and (b) OP HULLm;n;SpTxtExLQ:
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Proof. We show only part (a). Part (b) can be done similarly.
Intuitively, we use INIT-type strategy to learn every set of parameters ðai; bi; ci; diÞ: This is

possible based on Proposition A.5 above.
Now we proceed with the formal proof.
Let h be a recursive bijection from Z to S such that hðiÞohði þ 1Þ; for iAZ: Let Icode be as in

Proposition A.5. For ða1; b1;y; an; bnÞ and ðc1; d1;y; cm; dmÞ in VALIDS; such thatP
1pipn bio 1P

1pipm
di
; we let mapða1; b1;y; an; bn; c1; d1;y; cm; dmÞ ¼ ðIcodeða1; b1; c1; d1Þ;

Icodeða1; b1; a2; b2; c1; d1; c2; d2Þ;y; Icodeða1; b1;y; am; bm; c1; d1;y; cm; dmÞ; Icodeða1; b1;y;
amþ1; bmþ1; c1; d1;y; cm; dmÞ;y; Icodeða1; b1;y; an; bn; c1; d1;y; cm; dmÞÞ:

Claim A.3. Suppose ða1; b1;y; an; bnÞ and ða01; b0
1;y; a0

n; b
0
nÞ; ðc1; d1;y; cm; dmÞ and

ðc01; d 0
1;y; c0m; d

0
mÞ; are S-valid, and

P
1pipn bio 1P

1pipm
di
; and

P
1pipn b0io

1P
1pipm

d 0
i

:

(A) Suppose mapða0
1; b01;y; a0n; b0n; c

0
1; d 0

1;y; c0m; d
0
mÞoQmapða1; b1;y; an; bn; c1; d1;y; cm; dmÞ:

Then, for the least j such that ðaj; bj; cminð j;mÞ; dminð j;mÞÞaða0j; b0j; c0minð j;mÞ; d 0
minð j;mÞÞ;

INTERða1; b1;y; aj; bjÞD/ SEMI HULL
j

a1;b1;y;aj�1;bj�1;a0j ;b
0
j
; or

REV INTERðc1; d1;y; cminð j;mÞ; dminð j;mÞÞD/ REV SEMI HULL
j

c1;d1;y;cminð j;mÞ�1;dminð j;mÞ�1;c
0
minð j;mÞ;d

0
minð j;mÞ

:

(B) Suppose mapða0
1; b01;y; a0n; b0n; c

0
1; d 0

1;y; c0m; d
0
mÞoQmapða1; b1;y; an; bn; c1; d1;y; cm; dmÞ:

Then, INTERða1; b1;y; aj; bj;y; an; bnÞD/ SEMI HULLn
a0
1
;b0

1
;y;a0n;b

0
n

or REV INTERðc1; d1;y;

cm; dmÞD/ REV SEMI HULLm
c0
1
;d 0

1
;y;c0m;d

0
m
:

(C) Suppose OP HULL
n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

COP HULL
n;m
a0
1
;b0

1
;y;a0n;b

0
n;c

0
1
;d 0

1
;y;c0m;d

0
m
: Then

mapða1; b1;y; an; bn; c1; d1;y; cm; dmÞoQmapða0
1; b01;y; a0n; b

0
n; c01; d 0

1;y; c0m; d 0
mÞ:

(D) Suppose mapða0
1; b01;y; a0n; b0n; c

0
1; d 0

1;y; c0m; d 0
mÞoQmapða1; b1;y; an; bn; c1; d1;y; cm; dmÞ:

Then, fðx; yÞAN2 j xpmaxinterða1; b1;y; an; bnÞ and y ¼ minðfy0 j ðx; y0ÞAINTERða1; b1;y;
an; bnÞgÞ or ypmaxinterðc1; d1;y; cm; dmÞ and x ¼ minðfx0 j ðx0; yÞAREV INTERðc1; d1;y;
cm; dmÞgÞgD/ OP HULL

n;m
a0
1
;b0

1
;y;a0n;b

0
n;c

0
1
;d 0

1
;y;c0m;d

0
m
:

Proof. (A) Let j be least number such that ðaj; bj; cminð j;mÞ; dminð j;mÞÞaða0
j; b

0
j; c

0
minð j;mÞ;

d 0
minð j;mÞÞ: Note that, for ioj; we must have Icodeða1; b1;y; ai; bi; c1; d1;y;

cminði;mÞ; dminði;mÞÞ ¼ Icodeða01; b0
1;y; a0

i; b
0
i; c

0
1; d 0

1;y; c0minði;mÞ; d
0
minði;mÞÞ: If INTERða1; b1;y;

aj; bjÞDSEMI HULL
j

a1;b1;y;aj�1;bj�1;a0j ;b
0
j

and REV INTERðc1; d1;y; cminð j;mÞ; dminð j;mÞÞD

REV SEMI HULL
j

c1;d1;y;cminð j;mÞ�1;dminð j;mÞ�1;c
0
minð j;mÞ;d

0
minð j;mÞ

; then, by Proposition A.5 we would

have Icodeða1; b1;y; aj; bj; c1; d1;y; cminð j;mÞ; dminð j;mÞÞoIcodeða01; b0
1;y; a0

j; b
0
j; c

0
1; d

0
1;y; c0minð j;mÞ;

d 0
minð j;mÞÞ: Thus, mapða1; b1;y; an; bn; c1; d1;y; cminð j;mÞ; dminð j;mÞÞoQmapða01; b0

1;y; a0
n; b0n; c01;

d 0
1;y; c0minð j;mÞ; d 0

minð j;mÞÞ; a contradiction to the hypothesis.

(B) Follows from the fact that INTERða1; b1;y; aj; bjÞDINTERða1; b1;y; aj; bj;y; an; bnÞ;
REV INTERðc1; d1;y; cminð j;mÞ; dminð j;mÞÞDREV INTERðc1; d1;y; cminð j;mÞ; dminð j;mÞ;y; cm; dmÞ;
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SEMI HULLn
a0
1
;b0

1
;y;a0n;b

0
n
DSEMI HULL

j
a0
1
;b0

1
;y;a0

j
;b0

j
and REV SEMI HULLm

c0
1
;d 0

1
;y;c0m;d

0
m
D

REV SEMI HULLm
c0
1
;d 0

1
;y;c0

minð j;mÞ;d
0
minð j;mÞ

and part (A).

(C) If OP HULL
n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

COP HULL
n;m
a0
1
;b0

1
;y;a0n;b

0
n;c

0
1
;d 0

1
;y;c0m;d

0
m
; then by Proposition

A.4, INTERða1; b1;y; an; bnÞDSEMI HULLn
a0
1
;b0

1
;y;a0n;b

0
n

and REV INTERðc1; d1;y; cm; dmÞ
DREV SEMI HULLm

c0
1
;d 0

1
;y;c0m;d

0
m
: Now part (C) follows from part (B).

(D) Follows from (B) and definition of OP HULLn;m: &

We now continue with the proof of the theorem. The aim is to construct Y which maps

OP HULLn;m;S
a1;b1;y;an;bn;c1;d1;y;cm;dm

to L
Q
mapða1;b1;y;an;bn;c1;d1;y;cm;dmÞ:

Note that definition of C mapping grammar sequence converging to a grammar for

L
Q

mapða1;b1;y;an;bn;c1;d1;y;cm;dmÞ to a grammar sequence converging to a grammar for

OP HULL
n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

would be trivial. We thus just define Y:

Without loss of generality, we will be giving Y as mapping sets to sets.

For any finite XDN2; let PropðX ; a1; b1;y; an; bn; c1; d1;y; cm; dmÞ be true iff following two
properties are satisfied.

(A) ða1; b1;y; an; bnÞAVALIDS; ðc1; d1;y; cm; dmÞAVALIDS; and
P

1pipn bio 1P
1pipm

di
:

(B) For all ða0
1; b01;y; a0n; b0

nÞ; ðc01; d 0
1;y; c0m; d

0
mÞAVALIDS;

P
1pipn b0io

1P
1pipm

d 0
i

; such that

mapða0
1; b

0
1;y; a0

n; b0n; c
0
1; d

0
1;y; c0m; d

0
mÞoQmapða1; b1;y; an; bn; c1; d1;y; cm; dmÞ;

XD/ OP HULL
n;m
a0
1
;b0

1
;y;a0n;b

0
n;c

0
1
;d 0

1
;y;c0m;d

0
m
:

Note that condition (B) above is equivalent to

ðB0Þ For all j; 1pjpn; for all a0j; c0minð j;mÞAN; b0j; d 0
minð j;mÞAS; such that b0j þP

1pioj bio 1

d 0
minð j;mÞþ

P
1piominð j;mÞ d 0

i

;

if Icodeða1; b1;y; aj�1; bj�1; a
0
j; b

0
j; c1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; c

0
minð j;mÞ; d

0
minð j;mÞÞo

Icodeða1; b1;y; aj�1; bj�1; aj; bj; c1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; cminð j;mÞ; dminð j;mÞÞ; then

½XD/ OP HULL
j;minð j;mÞ

a1;b1;y;aj�1;bj�1;a0j ;b
0
j
;c1;d1;y;cminð j;mÞ�1;dminð j;mÞ�1;c

0
minð j;mÞ;d

0
minð j;mÞ

:

Note that whether X ; a1; b1;y; an; bn; c1; d1;y; cm; dm; satisfy (A) and ðB0Þ; for all j; 1pjpn; is
effectively testable.

Thus, for finite XDN2; let

YðXÞ ¼
[

fL
Q
mapða1;b1;y;an;bnÞ j PropðX ; a1; b1;y; an; bnÞg:

For infinite X 0; YðX 0Þ ¼
S

XDX 0;cardðX ÞoN
YðXÞ:

It is easy to verify that

(1) for any XDOP HULL
n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

;

YðXÞDL
Q

mapða1;b1;y;an;bn;c1;d1;y;cm;dmÞ
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(due to clause (B) in definition of Prop above, and the fact that for any valid I and I 0;

mapðIÞoQmapðI 0Þ; implies L
Q

mapðIÞDL
Q

mapðI 0Þ), and

(2) for any finite set X such that fðx; yÞAN2 j xpmaxinterða1; b1;y; an; bnÞ and y ¼
minðfy0 j ðx; y0ÞAINTERða1; b1;y; an; bnÞgÞ or ypmaxinterðc1; d1;y; cm; dmÞ and x ¼
minðfx0 j ðx0; yÞAREV INTERðc1; d1;y; cm; dmÞgÞgDXDOP HULL

n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

;

YðXÞ+L
Q
mapða1;b1;y;an;bn;c1;d1;y;cm;dmÞ:

(By Claim A.3(D), and definition of Prop and Y).

Thus, we have that YðOP HULL
n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

Þ ¼ L
Q
mapða1;b1;y;an;bn;c1;d1;y;cm;dmÞ: &

A.5. Proofs of Theorems 15 and 16

Proposition A.6. Suppose SDS0: Then coOP HULLn;m;SpTxtExcoOP HULLn;m;S0
:

The following theorem gives the lower bound for coOP HULLs.

Theorem 15. Suppose S is ratþ-covering. Suppose nX1; mX1: Let Q ¼ ðq1;y; qnÞ; where each

qi ¼ COINIT : Then (a) LQpTxtExcoOP HULLn;m;S and (b) LQpTxtExcoOP HULLm;n;S:

Proof. We only show part (a). Part (b) can be proved similarly. The proof is very similar to the
proof of lower bound for OP HULLs with INITs being replaced by COINITs. Without loss of
generality (using Propositions 19 and A.6) we can assume that, for each b; b0AS; if bob0; then
2bob0: Let h be an isomorphism from Z to S such that hðiÞohði þ 1Þ:
Let ðc1; d1;y; cm; dmÞ be S-valid such that

P
1pipm dio1=hð1Þ (note that there clearly exist

such c1; d1;y; cm; dm).
Let mapði1; i2;y; inÞ ¼ ða1; b1;y; an; bn; c1; d1;y; cm; dmÞ; where aj; bj; 1pjpn are defined as

follows. a1 ¼ i1 þ 1; b1 ¼ hð�a1Þ: Suppose we have defined a1; b1;y; ak; bk: Then let Akþ1 ¼
fxAN j x4ak; ½

P
1pipk bi � ðx ’�aiÞANg; and then let akþ1 to be the ðikþ1 þ 1Þth least element in

Akþ1: Let bkþ1 ¼ hð�akþ1Þ:
Note that, for all ði1; i2;y; inÞANn; if mapði1; i2;y; inÞ ¼ ða1; b1;y; an; bn; c1; d1;y; cm; dmÞ;

then since aioaiþ1; by definition of bi; we have bi ¼ hð�aiÞ4hð�aiþ1Þ ¼ biþ1: This along with
requirement on S gives bi42biþ1: Thus,

P
1pipn bip2b1p2hð�a1Þp2hð0Þohð1Þ: Since,P

1pipm dio1=hð1Þ; we immediately have that
P

1pipn bio 1P
1pipm

di
; for all ði1; i2;y; inÞ:

Claim A.4. ði1; i2;y; inÞoQði01; i02;y; i0nÞ implies coOP HULL
n;m;S
mapði1;y;inÞCcoOP HULL

n;m;S
mapði0

1
;y;i0nÞ

:

Proof. Suppose ði1; i2;y; inÞoQði01; i02;y; i0nÞ: Suppose mapði1;y; inÞ ¼ ða1; b1;y; an; bn;
c1; d1;y; cm; dmÞ and mapði01;y; i0nÞ ¼ ða0

1; b
0
1;y; a0

n; b0n; c1; d1;y; cm; dmÞ:
Let j be the least number such that ik ¼ i0k; for 1pkoj; and ijai0j:
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Thus,
(1) ai ¼ a0

i and bi ¼ b0i; for 1pioj:
(2) bjob0

j; and

(3) aj4a0
j:

From (2) it follows that
(4) 2bjob0j:

Now, for 1pion; since aioaiþ1; we have bi ¼ hð�aiÞ4hð�aiþ1Þ ¼ biþ1: Thus, bi42 � biþ1; for
1pion by hypothesis about elements of S:
Thus,

P
jpipn bip2bj: This, along with (4) gives us that b0j4

P
jpipn bi: Thus using (3),

Propositions 11, 15, and 22, we have coSEMI HULL
n;S
a1;b1;y;an;bn

CcoSEMI HULL
j;S

a0
1
;b0

1
;y;a0

j
;b0

j

DcoSEMI HULL
n;S
a0
1
;b0

1
;y;a0n;b

0
n
:

The claim follows. &

We now define YðXÞ for any finite set X as follows.

We let YðXÞ ¼ ,/i1;i2;y;inSAX coOP HULL
n;m
mapði1;y;inÞ:

Thus, it follows that YðLQ
i1;i2;y;in

Þ ¼ coOP HULL
n;m;S
mapði1;y;inÞ:

Define C as follows. If a sequence a of grammars converges to a grammar for

coOP HULL
n;m;S
mapði1;y;inÞ; then CðaÞ converges to a grammar for L

Q
i1;i2;y;in

:

It is now easy to verify that Y and C witness that LQpTxtExcoOP HULLn;m;S: &

Before proving Theorem 16 we need some propositions.

Definition A.3. Suppose ða1; b1;y; aj; bjÞ is valid. REV coINTERða1; b1;y; aj; bjÞ ¼
fðx; yÞ j ðy; xÞAco INTERða1; b1;y; aj; bjÞg:

Definition A.4. Suppose ða1; b1;y; aj; bjÞ and ðc1; d1;y; ck; dkÞ are valid. Then,

coINT OP HULLða1; b1;y; aj; bj; c1; d1;y; ck; dkÞ
¼

S
fcoOP HULL

n;m
a1;b1;y;aj ;bj ;y;an;bn;c1;d1;y;ck;dk;y;cm;dm

j n Xj and mXk and ða1; b1;y; an; bnÞ and

ðc1; d1;y; cm; dmÞ are valid and
P

1pipn bio 1P
1pipm

di
g ¼

N2 � INT OP HULLða1; b1;y; aj; bj; c1; d1;y; ck; dkÞ:

Proposition A.7. Suppose ða1; b1;y; aj; bjÞ and ðc1; d1;y; ck; dkÞ are valid. SupposeP
1pipj bio 1P

1pipk
di
: Let ðx; yÞAN2 be such that 1þ

P
1pioj biðx ’�aiÞXyX

P
1pioj biðx ’�aiÞ:

Then, if ðx; yÞAcoINT OP HULLða1; b1;y; aj; bj; c1; d1;y; ck; dkÞ; then ðx; yÞA
coINTERða1; b1;y; aj; bjÞ:

Proof. Suppose ðx; yÞAcoINT OP HULLða1; b1;y; aj; bj; c1; d1;y; ck; dkÞ: Then, ðx; yÞAS
fcoOP HULL

n;m
a1;b1;y;aj ;bj ;y;an;bn;c1;d1;y;ck;dk ;y;cm;dm

j nXj and mXk and ða1; b1;y; an; bnÞ and
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ðc1; d1;y; cm; dmÞ are valid and
P

1pipn bio 1P
1pipm

di
g: Thus,

ðx; yÞA
S
fcoSEMI HULLn

a1;b1;y;aj ;bj ;y;an;bn
j nXj and ða1; b1;y; an; bnÞ is validg,S

fREV coSEMI HULLm
c1;d1;y;ck;dk;y;cm;dm

j mXk and ðc1; d1;y; cm; dmÞ is valid andP
1pipm dio 1P

1pioj
bi
g: Thus,

ðx; yÞAcoINTERða1; b1;y; aj; bjÞ,
S
fREV coSEMI HULLm

c1;d1;y;ck;dk;y;cm;dm
j mXk and

ðc1; d1;y; cm; dmÞ is valid and
P

1pipm dio 1P
1pioj

bi
g:

We claim that ðx; yÞe
S
fREV coSEMI HULLm

c1;d1;y;ck;dk;y;cm;dm
j mXk and ðc1; d1;y; cm; dmÞ

is valid and
P

1pipm dio 1P
1pioj

bi
g: This would prove the proposition. Suppose by way of

contradiction that ðx; yÞAREV coSEMI HULLm
c1;d1;y;ck;dk;y;cm;dm

; where mXk; ðc1; d1;y; cm; dmÞ
is valid and

P
1pipm dio 1P

1pioj
bi
: But, then ðx; yÞAREV coSEMI HULLm

c1;
P

1pipm
di
: Thus,

xo
P

1pipm diðy ’�1Þ: If yp1; then clearly, the above cannot happen. So assume y41: Thus,

xo
P

1pipm diðy � 1Þ: Hence,

(1) x=ðy � 1Þo
P

1pipm di:

However, yp1þ
P

1pioj biðx ’�aiÞ: Thus, y � 1p
P

1pioj biðx ’�aiÞ: Thus, y � 1p
P

1pioj bix:

Thus,
(2) ðy � 1Þ=xp

P
1pioj bi:

Multiplying (1) and (2) we have 1p½
P

1pioj bi � ½
P

1pipm di: But then,P
1pipn biX

P
1pioj biX1=½

P
1pipm di: A contradiction. &

Similarly, one can show

Proposition A.8. Suppose ða1; b1;y; aj; bjÞ and ðc1; d1;y; ck; dkÞ are valid. SupposeP
1pipj bio 1P

1pipk
di
: Let ðx; yÞAN2 be such that 1þ

P
1pioj diðy ’� ciÞXxX

P
1pioj diðy ’� ciÞ:

Then, if ðx; yÞAcoINT OP HULLða1; b1;y; aj; bj; c1; d1;y; ck; dkÞ; then ðx; yÞA
REV coINTERðc1; d1;y; ck; dkÞ:

Proposition A.9. Suppose ða1; b1;y; aj; bjÞ; ða01; b0
1;y; a0

j; b
0
jÞ; ðc1; d1;y; ck; dkÞ; ðc01; d 0

1;y; c0k; d 0
kÞ;

are valid. Suppose further that
P

1pipj bio 1P
1pipk

di
; and

P
1pipj b0io

1P
1pipk

d 0
i

:

If coINT OP HULLða01; b0
1;y; a0

j; b
0
j; c

0
1; d

0
1;y; c0k; d 0

kÞ+coOP HULL
j;k
a1;b1;y;aj ;bj ;c1;d1;y;ck;dk

; then

coINTERða01; b01;y; a0j; b0jÞ+coSEMI HULL
j
a1;b1;y;aj ;bj

and REV coINTERðc01; d 0
1;y; c0k; d 0

kÞ+
REV coSEMI HULLk

c1;d1;y;ck;dk
:

Proof. Follows from Proposition A.4. &

Theorem 16. Suppose nXmX1: Let Q ¼ ðq1;y; qnÞ; where each qi ¼ COINIT : Then (a)

coOP HULLn;m;SpTxtExLQ and (b) coOP HULLm;n;SpTxtExLQ:
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Proof. We show only part (a). Part (b) can be done similarly.
Intuitively, we use COINIT-type strategy to learn every set of parameters ðai; bi; ci; diÞ: This is

possible based on Proposition A.5 above using a method similar to that used in Theorem 14,
though technical details become more complicated.
Let h be a recursive bijection from Z to S such that hðiÞohði þ 1Þ; for iAZ: Let Icode be as in

Proposition A.5. For ða1; b1;y; an; bnÞ and ðc1; d1;y; cm; dmÞ in VALIDS; such thatP
1pipn bio 1P

1pipm
di
; we let mapða1; b1;y; an; bn; c1; d1;y; cm; dmÞ ¼ ðIcodeða1; b1; c1; d1Þ;

Icodeða1; b1; a2; b2; c1; d1; c2; d2Þ;y; Icodeða1; b1;y; am; bm; c1; d1;y; cm; dmÞ;
Icodeða1; b1;y; amþ1; bmþ1; c1; d1;y; cm; dmÞ;y; Icodeða1; b1;y; an; bn; c1; d1;y; cm; dmÞÞ:

Claim A.5. Suppose ða1; b1;y; aj; bjÞ; ða1; b1;y; aj�1; bj�1; a0j; b0jÞ; ðc1; d1;y; ck; dkÞ;
ðc1; d1;y; ck�1; dk�1; c0k; d 0

kÞ; are S-valid, where
P

1pipj bjo 1P
1pipk

dk

; and b0j þ
P

1pioj bjo
1

d 0
k
þ
P

1piok
dk

: Suppose ðaj; bj; ck; dkÞaða0j; b0j; c0k; d 0
kÞ: Suppose coINTERða1; b1;y; aj�1; bj�1; a

0
j; b

0
jÞ

+coSEMI HULL
j
a1;b1;y;aj�1;bj�1;aj ;bj

and REV coINTERðc1; d1;y; ck�1; dk�1; c
0
k; d 0

kÞ+
REV coSEMI HULLk

c1;d1;y;ck�1;dk�1;ck;dk
; then

Icodeða1; b1;y; aj�1; bj�1; a
0
j; b

0
j; c1; d1;y; ck�1; dk�1; c0k; d

0
kÞ

oIcodeða1; b1;y; aj�1; bj�1; aj; bj; c1; d1;y; ck�1; dk�1; ck; dkÞ:

Proof. By hypothesis, we have INTERða1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞDSEMI HULL

j
a1;b1;y;aj�1;bj�1;aj ;bj

and REV INTERðc1; d1;y; ck�1; dk�1; c0k; d
0
kÞDREV SEMI HULLk

c1;d1;y;ck�1;dk�1;ck;dk
: Thus, we

have Icodeða1; b1;y; aj�1; bj�1; a
0
j; b

0
j; c1; d1;y; ck�1; dk�1; c0k; d

0
kÞoIcodeða1; b1;y; aj�1;

bj�1; aj; bj; c1; d1;y; ck�1; dk�1; ck; dkÞ (by Proposition A.5; for getting o; use the fact that

ðaj; bj; ck; dkÞaða0
j; b

0
j; c

0
k; d 0

kÞÞ: &

Claim A.6. Suppose ða1; b1;y; an; bnÞ; ðc1; d1;y; cm; dmÞ are S-valid, and
P

1pipn bio 1P
1pipm

di
:

(A) Suppose 1pjpn; 1pkpm: Suppose ða1; b1;y; aj�1; bj�1; a0j; b0jÞ and ðc1; d1;y; ck�1;

dk�1; c0k; d
0
kÞ are S-valid, b0

j þ
P

1pioj bio 1

d 0
k
þ
P

1piok
di
:

Suppose Icodeða1; b1;y; aj�1; bj�1; a0j; b0j; c1; d1;y; ck�1; dk�1; c
0
k; d

0
kÞ4Icodeða1; b1;y; aj�1; bj�1;

aj; bj; c1; d1;y; ck�1; dk�1; ck; dkÞ: Then

[coINTERða1; b1;y; aj�1; bj�1; a0j; b0jÞKcoSEMI HULL
j
a1;b1;y;aj�1;bj�1;aj ;bj

or REV coINTERðc1; d1;y; ck�1; dk�1; c
0
k; d 0

kÞKREV coSEMI HULLk
c1;d1;y;ck�1;dk�1;ck ;dk

]. Thus,

coINT OP HULLða1; b1;y; aj�1; bj�1; a0j; b0j; c1; d1;y;

ck�1; dk�1; c0k; d
0
kÞKcoOP HULL

j;k
a1;b1;y;aj�1;bj�1;aj ;bj ;c1;d1;y;ck�1;dk�1;ck;dk

:

(B) Suppose ða0
1; b01;y; a0n; b

0
nÞ and ðc01; d 0

1;y; c0m; d 0
mÞ are S-valid,

P
1pipn b0io

1P
1pipm

d 0
i

: Suppose

mapða0
1; b

0
1;y; a0

n; b0n; c
0
1; d

0
1;y; c0m; d

0
mÞoQ mapða1; b1;y; an; bn; c1; d1;y; cm; dmÞ: Then, for the
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least j such that ðaj; bj; cminð j;mÞ; dminð j;mÞÞaða0
j; b

0
j; c

0
minð j;mÞ; d 0

minð j;mÞÞ; coINTERða1; b1;y; a0
j; b

0
jÞ

KcoSEMI HULL
j
a1;b1;y;aj�1;bj�1;aj ;bj

; or

REV coINTERðc1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; c
0
minð j;mÞ; d 0

minð j;mÞÞ
KREV coSEMI HULL

j
c1;d1;y;cminð j;mÞ�1;dminð j;mÞ�1;cminð j;mÞ;dminð j;mÞ

:

(C) Suppose ða01; b0
1;y; a0

n; b0nÞ and ðc01; d 0
1;y; c0m; d

0
mÞ are S-valid,

P
1pipn b0io

1P
1pipm

d 0
i

: Sup-

pose mapða01; b01;y; a0n; b
0
n; c01; d 0

1;y; c0m; d 0
mÞoQ mapða1; b1;y; an; bn; c1; d1;y; cm; dmÞ: Then,

coINTERða01; b01;y; a0j; b0j;y; a0n; b0nÞKcoSEMI HULLn
a1;b1;y;an;bn

or

REV coINTERðc01; d 0
1;y; c0m; d 0

mÞKREV coSEMI HULLm
c1;d1;y;cm;dm

:

(D) Suppose ða0
1; b

0
1;y; a0

n; b0nÞ and ðc01; d 0
1;y; c0m; d 0

mÞ are S-valid,
P

1pipn b0io
1P

1pipm
d 0

i

: Suppose

coOP HULL
n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

CcoOP HULL
n;m
a0
1
;b0

1
;y;a0n;b

0
n;c

0
1
;d 0

1
;y;c0m;d

0
m
: Then

mapða1; b1;y; an; bn; c1; d1;y; cm; dmÞoQ mapða0
1; b

0
1;y; a0

n; b0n; c
0
1; d 0

1;y; c0m; d
0
mÞ:

(E) For 1pjpn; there exists a finite XjDcoOP HULL
n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

such that, for all

S-valid ða1; b1;y; aj�1; bj�1; a0j; b0jÞ; ðc1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; c
0
minð j;mÞ; d

0
minð j;mÞÞ; such that

b0j þ
P

1pioj bio 1

d 0
minð j;mÞþ

P
1piominð j;mÞ di

; if

Icodeða1; b1;y; aj�1; bj�1; a
0
j; b

0
j; c1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; c

0
minð j;mÞ; d

0
minð j;mÞÞ

4Icodeða1; b1;y; aj�1; bj�1; aj; bj; c1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; cminð j;mÞ; dminð j;mÞÞ; then,

coINT OP HULLða1; b1;y; aj�1; bj�1; a0j; b0
j; c1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; c0minð j;mÞ; d

0
minð j;mÞÞKXj:

(F) There exists a finite XDcoOP HULL
n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

such that, for all j; 1pjpn; for

S-valid ða1; b1;y; aj�1; bj�1; a0j; b0jÞ; ðc1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; c
0
minð j;mÞ; d

0
minð j;mÞÞ; such that

b0j þ
P

1pioj bio 1

d 0
minð j;mÞþ

P
1piominð j;mÞ di

; if

Icodeða1; b1;y; aj�1; bj�1; a
0
j; b

0
j; c1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; c

0
minð j;mÞ; d

0
minð j;mÞÞ

4Icodeða1; b1;y; aj�1; bj�1; aj; bj; c1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; cminð j;mÞ; dminð j;mÞÞ; then,

coINT OP HULLða1; b1;y; aj�1; bj�1; a0j; b0j; c1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; c0minð j;mÞ; d
0
minð j;mÞÞKX :

Proof. (A) Suppose the hypothesis. Then, it follows from Claim A.5 that ½coINTERða1;
b1;y; aj�1; bj�1; a

0
j; b

0
jÞKcoSEMI HULL

j
a1;b1;y;aj�1;bj�1;aj ;bj

or REV coINTERðc1; d1;y; ck�1;

dk�1; c0k; d
0
kÞKREV coSEMI HULLk

c1;d1;y;ck�1;dk�1;ck;dk
: Thus, by Proposition A.9, we have

coINT OP HULLða1; b1;y; aj�1; bj�1; a0j; b0j; c1; d1;y; ck�1; dk�1; c
0
k; d

0
kÞ

KcoOP HULL
j;k
a1;b1;y;aj�1;bj�1;aj ;bj ;c1;d1;y;ck�1;dk�1;ck;dk

:

(B) Let j be least number such that ðaj; bj; cminð j;mÞ; dminð j;mÞÞaða0j; b0j; c0minð j;mÞ; d 0
minð j;mÞÞ:

Note that, for ioj; we must have Icodeða1; b1;y; ai; bi; c1; d1;y; cminði;mÞ; dminði;mÞÞ ¼
Icodeða01; b01;y; a0i; b

0
i; c

0
1; d 0

1;y; c0minði;mÞ; d
0
minði;mÞÞ: If

coINTERða1; b1;y; aj�1; bj�1; a
0
j; b

0
jÞ+coSEMI HULL

j
a1;b1;y;aj�1;bj�1;aj ;bj

and

REV coINTERðc1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; c
0
minð j;mÞ; d 0

minð j;mÞÞ
+REV coSEMI HULL

j
c1;d1;y;cminð j;mÞ�1;dminð j;mÞ�1;cminð j;mÞ;dminð j;mÞ

; then, by part (A) we would have
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Icodeða1; b1;y; aj; bj; c1; d1;y; cminð j;mÞ; dminð j;mÞÞ4IcodeðB; a0
1; b

0
1;y; a0

j; b
0
j; c01; d

0
1;y; c0minð j;mÞ;

d 0
minð j;mÞÞ: Thus, mapða1; b1;y; an; bn; c1; d1;y; cminð j;mÞ; dminð j;mÞÞoQ mapða01; b0

1;y; a0
n; b0n; c01;

d 0
1;y; c0minð j;mÞ; d 0

minð j;mÞÞ; a contradiction to the hypothesis.

(C) Follows from the fact that, for 1pjpn; coINTERða1; b1;y; aj; bjÞ+
coINTERða1; b1;y; aj; bj;y; an; bnÞ; REV coINTERðc1; d1;y; cminð j;mÞ; dminð j;mÞÞ+
REV coINTERðc1; d1;y; cminð j;mÞ; dminð j;mÞ;y; cm; dmÞ; coSEMI HULLn

a0
1
;b0

1
;y;a0n;b

0
n
+

coSEMI HULL
j
a0
1
;b0

1
;y;a0

j
;b0

j
and REV coSEMI HULLm

c0
1
;d 0

1
;y;c0m;d

0
m
+

REV coSEMI HULL
j
c0
1
;d 0

1
;y;c0

minð j;mÞ;d
0
minð j;mÞ

and part (B).

(D) If coOP HULL
n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

CcoOP HULL
n;m
a0
1
;b0

1
;y;a0n;b

0
n;c

0
1
;d 0

1
;y;c0m;d

0
m
; then

coOP HULL
n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

CcoINT OP HULL
n;m
a0
1
;b0

1
;y;a0n;b

0
n;c

0
1
;d 0

1
;y;c0m;d

0
m
: Thus, by Proposition

A.9, coSEMI HULLða1; b1;y; an; bnÞDcoINTERn
a0
1
;b0

1
;y;a0n;b

0
n

and REV coSEMI HULLðc1;
d1;y; cm; dmÞDREV coINTERm

c0
1
;d 0

1
;y;c0m;d

0
m
: Now part (D) follows from part (C).

(E) Let ðx1; y1ÞAcoSEMI HULL
j
a1;b1;y;aj ;bj

be such that 1þ
P

1pioj biðx1 ’� aiÞXy14P
1pioj biðx1 ’� aiÞ: Note that there exists such ðx1; y1Þ: By Proposition A.7 if ðx1; y1ÞA

coINT OP HULLða1; b1;y; aj�1; bj�1; a00j ; b00j ; c1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; c
00
minð j;mÞ; d

00
minð j;mÞÞ;

then ðx1; y1ÞAcoINTERða1; b1;y; aj�1; bj�1; a00j ; b00j Þ: Thus, by Proposition 24, there exists

a B0Aratþ such that if ðx1; y1ÞAcoINT OP HULLða1; b1;y; aj�1; bj�1; a00j ; b00j ; c1; d1;y;

cminð j;mÞ�1; dminð j;mÞ�1; c
00
minð j;mÞ; d

00
minð j;mÞÞ; then a00

j ox1 and b00
j 4B0:

Similarly, let ðx2; y2ÞAREV coSEMI HULL
minð j;mÞ
c1;d1;y;cminð j;mÞ;dminð j;mÞ

be such that 1þP
1piominð j;mÞ biðy2 ’� aiÞXx24

P
1piominð j;mÞ biðy2 ’� aiÞ: Note that there exists such ðx2; y2Þ:

By Proposition A.8 if ðx2; y2ÞAcoINT OP HULLða1; b1;y; aj�1; bj�1; a00j ; b00j ; c1; d1;y;

cminð j;mÞ�1; dminð j;mÞ�1; c
00
minð j;mÞ; d

00
minð j;mÞÞ; then ðx2; y2ÞAREV coINTERðc1; d1;y; cminð j;mÞ�1;

dminð j;mÞ�1; c00minð j;mÞ; d
00
minð j;mÞÞ: Thus, by Proposition 24, there exists a B00Aratþ such that if

ðx2; y2ÞAcoINT OP HULLða1; b1;y; aj�1; bj�1; a00j ; b00j ; c1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; c
00
minð j;mÞ;

d 00
minð j;mÞÞ; then c00minð j;mÞoy2 and d 00

minð j;mÞ4B00:

Thus, for ðx1; y1Þ and ðx2; y2Þ to be in coINT OP HULLj;minð j;mÞða1; b1;y; aj�1;
bj�1; a0j; b0j; c1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; c

0
minð j;mÞ; d

0
minð j;mÞÞ; where b0j þ

P
1pioj bio

1

d 0
minð j;mÞþ

P
1piominð j;mÞ di

; we must have a0
jpx1; b0jXB0; c0minð j;mÞpy2; d 0

minð j;mÞXB00; and b0jp1=B00 and

dminð j;mÞp1=B0: Since there are only finitely many such ða0
j; b

0
j; c

0
minð j;mÞ; d

0
minð j;mÞÞ with

b0j; d 0
minð j;mÞAS; we have part (E) using part (A).

(F) Let X ¼
S

1pjpn Xj where Xj is as in part (E). Now, if mapða01; b0
1;y; a0

n; b0nÞo
Q mapða1; b1;y; an; bnÞ; there exists a j; 1pjpn such for 1pioj; ai ¼ a0

i and bi ¼ b0
i and

Icodeða1; b1;y; aj�1; bj�1; a0j; b0j; c1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; c
0
minð j;mÞ; d

0
minð j;mÞÞ4Icodeða1; b1;y;

aj�1; bj�1; aj; bj; c1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; cminð j;mÞ; dminð j;mÞÞ:
Part (F) now follows from part (E), and definition of X : &
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We now continue with the proof of the theorem. The aim is to construct Y which maps

coOP HULL
n;m;S
a1;b1;y;an;bn;c1;d1;y;cm;dm

to L
Q

mapða1;b1;y;an;bn;c1;d1;y;cm;dmÞ:

Note that definition of C mapping grammar sequence converging to a grammar for

L
Q
mapða1;b1;y;an;bn;c1;d1;y;cm;dmÞ to a grammar sequence converging to a grammar for

coOP HULL
n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

would be trivial. We thus just define Y:

Without loss of generality, we will be giving Y as mapping sets to sets.

For any finite XDN2; let PropðX ; a1; b1;y; an; bn; c1; d1;y; cm; dmÞ be true iff the following
two properties are satisfied:

(A) ða1; b1;y; an; bnÞAVALIDS; ðc1; d1;y; cn; dnÞAVALIDS; and
P

1pipn bio 1P
1pipm

di
:

(B) For all j; 1pjpn; for all a0
j; c0jAN; b0

j; d
0
minð j;mÞAS; such that b0j þ

P
1pioj bi

o 1

d 0
minð j;mÞþ

P
1piominð j;mÞ dj

:

If Icodeða1; b1;y; aj�1; bj�1; a
0
j; b

0
j; c1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; c

0
minð j;mÞ; d

0
minð j;mÞÞ4

Icodeða1; b1;y; aj�1; bj�1; aj; bj; c1; d1;y; cminð j;mÞ�1; dminð j;mÞ�1; cminð j;mÞ; dminð j;mÞÞ; then

½XD/ coINT OP HULL
j;minð j;mÞ
a1;b1;y;aj�1;bj�1;a

0
j
;b0

j
;c1;d1;y;cminð j;mÞ�1;dminð j;mÞ�1;c

0
minð j;mÞ;d

0
minð j;mÞ

:

Note that whether X ; a1; b1;y; an; bn; c1; d1;y; cm; dm; satisfy (A) and (B), for all j; 1pjpn; is
effectively testable.
Moreover, (B) above implies that

(C) for all ða01; b01;y; a0n; b
0
nÞ; ðc01; d 0

1;y; c0m; d 0
mÞAVALIDS;

P
1pipn b0

io
1

1pipm
d 0

i ; such that

mapða0
1; b

0
1;y; a0

n; b0n; c
0
1; d

0
1;y; c0m; d

0
mÞoQ mapða1; b1;y; an; bn; c1; d1;y; cm; dmÞ;

XD/ coOP HULL
n;m
a0
1
;b0

1
;y;a0n;b

0
n;c

0
1
;d 0

1
;y;c0m;d

0
m
:

Thus, for finite XDN2; let

YðXÞ ¼
[

fL
Q
mapða1;b1;y;an;bnÞ j PropðX ; a1; b1;y; an; bnÞg:

For infinite X 0; YðX 0Þ ¼
S

XDX 0; cardðX ÞoN
YðXÞ:

It is easy to verify that

(1) for any XDcoOP HULL
n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

;

YðXÞDL
Q
mapða1;b1;y;an;bn;c1;d1;y;cm;dmÞ

(by (C) and the fact that for any valid I and I 0; mapðIÞoQ mapðI 0Þ; implies L
Q

mapðIÞDL
Q

mapðI 0Þ), and

(2) for any S-valid ða1; b1;y; an; bnÞ and ðc1; d1;y; cm; dmÞ; by Claim A.6(F) there exists a finite

set XDcoOP HULL
n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

; such that YðXÞ+L
Q
mapða1;b1;y;an;bn;c1;d1;y;cm;dmÞ:

Thus, we have that

YðcoOP HULL
n;m
a1;b1;y;an;bn;c1;d1;y;cm;dm

Þ ¼ L
Q
mapða1;b1;y;an;bn;c1;d1;y;cm;dmÞ: &
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