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Abstract

Intrinsic complexity is used to measure the complexity of learning areas limited by broken-straight lines
(called open semi-hulls) and intersections of such areas. Any strategy learning such geometrical concepts can
be viewed as a sequence of primitive basic strategies. Thus, the length of such a sequence together with the
complexities of the primitive strategies used can be regarded as the complexity of learning the concepts in
question. We obtained the best possible lower and upper bounds on learning open semi-hulls, as well as
matching upper and lower bounds on the complexity of learning intersections of such areas. Surprisingly,
upper bounds in both cases turn out to be much lower than those provided by natural learning strategies.
Another surprising result is that learning intersections of open semi-hulls turns out to be easier than
learning open semi-hulls themselves.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Learning geometrical concepts from examples is a popular topic in Computational
Learning Theory (see for example, [BEHW89,BGGM98,BGM98,CA99,CM94,DGI5,Fis95,
GG94,GGDM9%4,GGS96,GKS01,GS99,Heg94]). The above-listed papers mostly dealt with finite
geometric concepts. The goal of this paper is to quantify the complexity of algorithmic learning of
infinite geometrical concepts from growing finite segments. For this purpose, we will be using the
learning in the limit model.
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Consider, for example, an open semi-hull representing the space consisting of all points (x,y)
with integer components X,y in the first quadrant of the plane bounded by the y-axis and the
broken line passing through some points (ag, o), (a1,¢1), .., (@y, ), @i, ;€N a;<aiyy, 0<i<n.
The line is straight between any points (a;, ¢;), (a;41,¢i+1) and begins at (ag, ¢o) = (0,0); further
we assume that the slope of the broken line is monotonically non-decreasing—that is
(ciy1 — ¢i)/(aiv1 — @;) is non-decreasing in i (we need this for learnability of the semi-hull). For
technical ease we further assume that the first line segment (0,0), (a1, ¢;) is adjacent to the x-axis,
that is, ¢; = 0. (See example semi-hull figure in Fig. 1.) Note that each break point in the
boundary of the semi-hull defines an angle in the semi-hull. Any such open semi-hull can be easily
learned in the limit by the following strategy: given growing finite sets of points in the open semi-
hull (potentially getting all points), learn the first break point (a;,c;). Here, under our
assumption, ¢; must be 0, therefore, we change our mind every time when we get in the input a
new point (a, 0) with the value @ greater than all values b in the points (b, 0) seen so far. Now, once
the first break point has been learned, we can try to learn the first slope (¢2 — ¢1)/(a2 — ai). The
more points we get in the input, the more our hypothetical border line may bend towards the x-
axis. Since it can never cross the x-axis and since the points in the concept to be learned have
integer components, we will eventually learn the slope. Now, moving along the border line as
more points on it become available from the input, we can learn the second break point (az, ¢2).
Then we can learn the second slope (¢3 — ¢2)/(a3 — az), etc. Is this strategy the best possible? Do
there exist easier strategies of learning such geometrical concepts? How do we measure the

e

Fig. 1. Open semi-hull.
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complexity of learning such concepts? As we are interested in learning infinite objects from
infinitely growing finite segments, we use inductive inference as our learning paradigm. This
paradigm suggests several ways to quantify the complexity of learning. Among them are:

(a) counting the number of mind changes [BF72,CS83,LZ93] the learner makes before arriving
at the correct hypothesis;

(b) measuring the amount of so-called long-term memory the learner uses [KS95];

(c) reductions between different learning problems (classes of languages) and respective degrees
of the so-called intrinsic complexity [FKS95,J596,JS97].

There have been other notions of the complexity of learning in the limit considered in literature
(for example see [DS86,Gol67,Wie86]).

The first two approaches, however, cannot capture the complexity of learning open semi-hulls
with different numbers of angles: the number of mind changes cannot be bounded by any
reasonable function (even for learning the very first break point), and the long-term memory is
maximum (linear) even for one angle. Thus, we have chosen reductions as the way to measure the
(relative) complexity of geometrical concepts like open semi-hulls. An important issue here is
which classes of languages can be used as a scale for quantifying the complexity of open semi-
hulls. One such scale, that turned out to be appropriate for our goal, had been suggested in
[JKW99,JKWO00]. This scale is a hierarchy of degrees of intrinsic complexity composed of simple
natural ground degrees. Every such natural ground degree represents a natural type of learning
strategy. For example, the degree INIT represents a strategy that tries to use a sequence of
hypotheses equivalent to a sequence of monotonically growing finite sets. Another such strategy,
COINIT, tries to use a sequence of hypotheses equivalent to a sequence of monotonically growing
sets N, = {x|xe N,x>a}. Intuitively, capabilities of INIT- and COINIT-strategies must be
different (this has been formally established in [JS96]). For example, when a COINIT-strategy
learns the language {5,6,7, ...}, it actually tries to find the minimum number in this set (5 in our
case). When the first number, say, 17 appears in the input, the strategy can immediately use it as
the upper bound on its conjectures: no number greater than 17 can possibly be the desired
minimum. Note also that the strategy is aware of the absolute lower bound 0 for all its
conjectures. On the other hand, an INIT-strategy learning, say, the set {0,1,2,3,4,5,6,7} tries to
find the maximum number 7. While, every next inputted number may increase the lower bound on
its final conjecture, the strategy never is aware of any upper bound on it.

It has been demonstrated in [JS96] that many important simple learning problems (in
particular, pattern languages) can be handled by strategies of these basic types. Now, the
corresponding degrees of complexity INIT and COINIT can be used to form a complex hierarchy
of degrees as follows. Imagine a three-dimensional language L. Suppose an INIT-type strategy M,
can be used to learn its first dimension, L. Once this dimension has been learned, a strategy of a
different (or even same) type, say, COINIT can pick the grammar learned by M| and use this
information to learn the second dimension L,. Consequently, the grammar learned by the
COINIT-strategy M, can be used to learn the third dimension L; by a strategy M3 of type, say,
INIT. Thus, we get a strategy of the type (INIT, COINIT,INIT), where information learned by
the learner M; is relayed to the learner M; | making it possible to learn the next dimension. This
idea can be naturally extended to any (finite) number of dimensions and to any sequences Q =
(1,491, ---,qk) of strategies ¢;e {INIT, COINIT}. It has been shown in [JKWO00] that the degrees
of complexity (classes of languages) corresponding to such Q-strategies form a rich hierarchy. For
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example, some classes learnable by (INIT, COINIT, INIT)-type strategies cannot be learned by
any (INIT, COINIT)-strategy. In other words, such a class can be learned by a strategy that first
works as an INIT-strategy, then it changes to a COINIT-strategy to learn another aspect of the
concept, and then it changes to a INIT-strategy to learn the last component of the concept. On the
other hand, changing strategies only one time (from INIT to COINIT) is not enough.

How can one apply the above hierarchy to quantify the complexity of learning semi-hulls? Let
us take a closer look at the strategy learning semi-hulls (described in the beginning of the paper).
The reader may have noticed that the strategy learning the first break point (as well as any other
break point) is an INIT-type strategy: it tries to find the maximum number in a growing finite set.
Now, once a break point has been found, what strategy can learn the slope? Let us assume that the
slopes come from the set Nu{l/n|neN} (actually, sets of possible slopes in our model will be
equivalent to this set). Suppose the actual slope to be learned is % Suppose also that, based on
some initial portion of the input, we conjectured the slope 5. That tells us that the actual slope
cannot be greater than 5. Therefore, every following conjecture will be a number between 5 and %,
getting closer and closer to %, but never being aware of any lower bound on its final guess % This
strategy seems to be similar to a COINIT-strategy discussed above. However, unlike a COINIT-
strategy, it is never aware of any lower bound on possible conjectures. One can easily see that a
very similar (equivalent) strategy can learn sets {... —k,—(k—1),...0,1,2,3, ... }. Based on this
observation, we call such strategies HALF-strategies (learning ‘‘halfs” of the set of integers). We
also show that these strategies, while being still quite primitive, are more powerful than COINIT-
strategies (moreover, in certain sense, they can be regarded as Cartesian products of INIT- and
COINIT-strategies).

Thus, to learn the first break point we use an INIT-strategy, then we use a HALF-strategy to
learn the first slope, then we change back to an INIT-strategy to learn the second break point,
then to a HALF-strategy to learn the second slope, etc. If, for example, a semi-hull has two angles
(the border line has two break points), then we use the sequence of strategies INIT, HALF, INIT,
HALF. In other words, the corresponding learning problem belongs to the level
(INIT,HALF,INIT,HALF) of the above-mentioned hierarchy. Obviously, learning the semi-
hulls with two angles by an (INIT, HALF,INIT)-strategy (if possible) can be viewed as more
efficient. We will show, however, that such a strategy is not possible. Another question is if semi-
hulls with two angles are learnable by an (INIT, COINIT,INIT, COINIT)-strategy. One must
again agree that this strategy can be considered as a more efficient than our
(INIT,HALF,INIT,HALF)-strategy, since, as we mentioned above, COINIT-strategies
generally are more primitive (less capable) than HALF-strategies. We will show that such a
strategy does exist for semi-hulls with two angles (Theorem 3; it is somewhat less intuitive than
our original (INIT,HALF,INIT, HALF)-strategy). We will also show that for example, neither
(COINIT,INIT, COINIT, INIT)-strategy nor any strategy with a number of components (from
INIT, COINIT, HALF) smaller than 4 can learn the given class, as it easily follows from
Corollary 6. In general, for every class of semi-hulls with fixed numbers of angles (two, or three, or
four, etc.) we establish upper and lower bounds of this type.

We submit that this approach to measuring the complexity of learning is very reasonable for
geometrical concepts of this and similar types. As we already mentioned, some more traditional
measures of complexity (like the number of mind changes) are not applicable, since these
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measures cannot make distinction between learning one-angle semi-hulls and, say, three-angle
ones.

We use also a similar approach to examine the power of learning semi-hulls (and other figures)
from a slightly different perspective. Namely, suppose we are given some strategy to learn two-
angle semi-hulls. How can knowledge of such a strategy help us to learn problems like
(INIT,COINIT, INIT) (viewed this time as families of languages rather than strategies)? We can
show that, being armed with such a strategy, one can learn, for example, the class of languages
(HALF,INIT) (Theorem 5). On the other hand, being able to learn two-angle semi-hulls does not
help to learn the class (INIT,INIT,INIT) (Corollary 7) or (COINIT,INIT,INIT) (Corollary 8).
It also does not help to learn any similar class with COINIT as the second component (Corollaries
9 and 10). In this respect, (HALF,INIT) can be regarded as a lower bound on the power of
learning two-angle semi-hulls.

The paper has the following structure. Section 2 introduces notations and preliminaries. In
Section 3, we define the reductions and the degrees of complexity. In Section 4, we give formal
definition of the Q-classes and degrees. This definition extends the definition of the Q-classes in
[JKWO00]: in addition to the classes INIT and COINIT, we use in vectors Q a new class of
strategies/languages, HALF, that turns out to be different from INIT and COINIT and is useful
for classifying geometrical concepts. In Section 5, we show that the Q-hierarchy can be
appropriately extended to the class of learning strategies/languages involving HALF. In Section 6,
we define the classes of the type SEMI_HULL that formalize intuitive geometrical concepts
described above. In this section, we also prove some useful technical propositions. In Sections 7
and 8 we establish upper and lower bounds for the SEMI HULL degrees in terms of the
QO-hierarchy. In particular, we establish that semi-hulls with » angles can be learned by a
(INIT, COINIT, ...,INIT, COINIT)-strategy with 2n components (Theorem 3). On the other
hand, no strategy, with alternating INITs and COINITs and a smaller number of components,
can learn such concepts (Corollary 6). We also examine how learning semi-hulls can help to learn
the Q-classes (Theorem 5). Corollaries 7-10 give examples of the Q-classes that cannot be learned
by strategies armed with a strategy capable of learning semi-hulls. These examples show that the
QO-classes found in Theorem 5 are the most complex Q-classes that can be learned using a strategy
for learning semi-hulls. Therefore, they can be regarded as the best possible lower bounds (based
on the Q-classes considered here) on the power of learning semi-hulls.

In Section 9, we introduce the classes coSEMI_HULL that consist of complements of languages
in SEMI_HULL. Sections 10 and 11 establish lower and upper bounds for coSEMI_HULLs in
terms of the Q-hierarchy. In particular, we show that the most efficient strategy for learning
complements of semi-hulls with n angles is (INIT, COINIT, ..., COINIT) with n occurrences of
COINIT (Theorem 10). We also give examples of the Q-classes that can and cannot be learned by
strategies having access to strategies learning coSEMI_HULLSs, providing the best possible lower
bounds for the learnability power of complements of semi-hulls.

Upper and lower bounds for SEMI_HULLs and coSEMI_HULLs come close, but do not
match (though, upper bounds are much lower than the ones suggested by intuitive strategies
learning the classes in question). In Section 12, we define the classes of open hulls formed by
intersections of languages in SEMI_HULLs adjacent to x- and y-axis; Fig. 2 shows an example of
open hull. For the complexity of learning these classes, we have established matching upper and
lower bounds in terms of the Q-hierarchy. Namely, we show that the most efficient strategy for
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Fig. 2. Open hull.

learning open hulls with at most n angles on each side is (INIT,INIT,...,INIT) with n
components INIT (Theorem 14). It turns out also (Theorem 13) that a strategy armed with a
strategy for learning open hulls can learn the class (INIT,INIT, ...INIT) with n components. (It
seems a bit counterintuitive that open hulls can be learned by strategies simpler than semi-hulls.
We will give some intuition behind the corresponding strategy in Theorem 14).

In Section 13, we define the classes of languages formed by complements of open hulls and
establish matching upper and lower bounds for the corresponding degrees of intrinsic complexity.
All the above-mentioned upper bounds are much lower than the ones suggested by intuitive
learning strategies.

2. Notation and preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. The symbol N denotes the set of
natural numbers, {0,1,2,3,...}. Z denotes the set of integers. Z~ denotes the set of negative
integers. i - j is defined as follows:

i~j=
/ 0, otherwise.

Symbols ), =, =, =, and D denote empty set, subset, proper subset, superset, and proper
superset, respectively. Dy, Dy, ..., denotes a canonical recursive indexing of all the finite sets
[Rog67]. We assume that if D;= D; then i< (the canonical indexing defined in [Rog67] satisfies
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this property). Cardinality of a set S is denoted by card(S). The maximum and minimum of a set
are denoted by max(-), min(-), respectively, where max (@) = 0 and min()) = oo.

We let <-,-> stand for an arbitrary, computable, bijective mapping from N x N onto N
[Rog67]. We assume without loss of generality that <-,-> is monotonically increasing in both its
arguments. We define 7;({x,y)) = x and m({x,y)») = y. {+,-> can be extended to n-tuples in a
natural way (including » = 1, where {x) may be taken to be x). Projection functions =, ..., 7w,
corresponding to n-tuples can be defined similarly (where the tuple size would be clear from
context). Due to above isomorphism between N” and N, we often identify (xi,...,x,) with
{X1,...,xny. Thus we can say L; x L, = {<{x,y) |xeLi,yeL,}.

By ¢ we denote a fixed acceptable programming system for the partial computable functions:
N — N [Rog67,MY78]. By ¢; we denote the partial computable function computed by the
program with number i in the ¢@-system. Symbol # denotes the set of all total computable
functions. By @ we denote an arbitrary fixed Blum complexity measure [Blu67,HU79] for the ¢-
system. By W; we denote domain(¢,). W; is, then, the r.e. set/language (= N) accepted (or
equivalently, generated) by the ¢-program i. We also say that i is a grammar for W;. Symbol &
will denote the set of all r.e. languages. Symbol L, with or without decorations, ranges over &. By
L, we denote the complement of L, that is N — L. Symbol %, with or without decorations, ranges
over subsets of &. We denote by W, the set {x<s| ®;(x)<s}.

| denotes defined or converges. T denotes undefined or diverges.

A partial function F from N to N is said to be partial limit recursive, iff there exists a recursive
function f from N x N to N such that for all x, F(x) = lim,_, , f(x, ). Here if F(x) is not defined
then lim,_, o, f(x, ), must also be undefined. A partial limit recursive function F is called (total)
limit recursive function, if F is total.

We now present concepts from language learning theory. The next definition introduces the
notion of a sequence of data.

Definition 1. (a) A finite sequence o is a mapping from an initial segment of N into (N u{#?}). The
empty sequence is denoted by A.

(b) The content of a finite sequence o, denoted content(c), is the set of natural numbers in the
range of o.

(c) The length of o, denoted by |a|, is the number of elements in ¢. So, |4]| = 0.

(d) For n<|o|, the initial sequence of ¢ of length n is denoted by a[n]. So, a[0] is 4.

Intuitively, #’s represent pauses in the presentation of data. We let o, 7, and y, with or without
decorations, range over finite sequences. We denote the sequence formed by the concatenation of
7 at the end of ¢ by ¢<¥71. Sometimes we abuse the notation and use ¢<¥Ox to denote the
concatenation of sequence ¢ and the sequence of length 1 which contains the element x. SEQ
denotes the set of all finite sequences.

Definition 2 (Gold [Gol67]). (a) A text T for a language L is a mapping from N into (N U {#})
such that L is the set of natural numbers in the range of 7.
(b) The content of a text T, denoted content(T), is the set of natural numbers in the range of 7.
(c) T[n] denotes the finite initial sequence of 7" with length n.
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We let T, with or without decorations, range over texts. We let J range over sets of texts.

Definition 3 (Gold [Gol67]). A language learning machine is an algorithmic device which
computes a mapping from SEQ into N.

We let M, with or without decorations, range over learning machines. M(7'[n]) is interpreted as
the grammar (index for an accepting program) conjectured by the learning machine M on the

-
initial sequence 7'[n]. We say that M converges on 7T to i (written M(7") | = i) iff (V n)[M(T[n])
=1il.

There are several criteria for a learning machine to be successful on a language. Below we define
identification in the limit introduced by Gold [Gol67].

Definition 4 (Gold [Gol67], Case and Smith [CS83]). Suppose ae N {x}.
(a) M TxtEx-identifies a text 7 if and only if (3i| W; = content(T))(@ n)[M(T'n]) = 1.

(b) M TxtEx-identifies an r.e. language L (written: LeTxtEx(M)) if and only if M TxtEx-
identifies each text for L.

(c) M TxtEx-identifies a class % of r.e. languages (written: ¥ = TxtEx(M)) iff M TxtEx-
identifies each Le .%.

(d) TxtEx = {Z <=6 | (IM) [ L = TxtEx(M)]}.

Other criteria of success are finite identification [Gol67], behaviorally correct identification
[CL82,Fel72,0W82], and vacillatory identification [Cas99,0W82]. In the present paper, we only
discuss results about TxtEx-identification.

3. Reductions

We first present some technical machinery.

We write o<t if ¢ is an initial segment of 7, and o<t if ¢ is a proper initial segment of .
Likewise, we write ¢ = T if ¢ is an initial finite sequence of text 7. Let finite sequences ¢°, ¢!, 67, ...
be given such that 6’ =o' =6’ < --- and lim;_, ., |0/| = 0. Then there is a unique text 7 such that
for all ne N, ¢" = T]|¢"|]. This text is denoted by | J, ¢”. Let T denote the set of all texts, that is,
the set of all infinite sequences over N u {#}.

We define an enumeration operator (or just operator), @, to be an algorithmic mapping from
SEQ into SEQ such that for all 0,7€ SEQ, if 0 =7, then @(¢) = O(t). We further assume that for
all texts 7', lim,_, 5, |©@(T[n])| = co. By extension, we think of @ as also defining a mapping from
T into T such that O(T) = |J, O(T'[n]).

A final notation about the operator @: If for a language L, there exists an L’ such that for each
text T for L, ©@(T) is a text for L', then we write ©(L) = L', else we say that @ (L) is undefined.
The reader should note the overloading of this notation because the type of the argument
to ® could be a sequence, a text, or a language; it will be clear from the context which usage is
intended.
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Welet ©(7)={O(T)|TeT },and O(¥)={O(L)|Le ¥}.

We also need the notion of an infinite sequence of grammars. We let «, with or without
decorations, range over infinite sequences of grammars. From the discussion in the previous
section, it is clear that infinite sequences of grammars are essentially infinite sequences over N.
Hence, we adopt the machinery defined for sequences and texts over to finite sequences of
grammars and infinite sequences of grammars. So, if o = iy, i, i, i3, ..., then «[3] denotes the
sequence i, i1, i, and «(3) is i3. Furthermore, we say that o« converges to 7 if there exists an n such
that, for all W' =n, i, = i.

Let I be any criterion for language identification from texts, for example I = TxtEx. We say
that an infinite sequence o of grammars is I-admissible for text T just in case o witnesses I-
identification of text 7. So, if o =1iy,i, 5k, ... is a TxtEx-admissible sequence for 7', then «
converges to some 7 such that W; = content(T); that is, the limit 7 of the sequence « is a grammar
for the language content(T).

Intuitively, a learning problem % is reducible to a learning problem .%; if, using a strategy
learning #; one can learn .%.

We now formally introduce our reductions. Although in this paper we will only be concerned
with TxtEx-identification, we present the general case of the definition.

Definition 5 (Jain and Sharma [JS96]). Let ¥, =& and ¥>,<=¢& be given. Let identification
criterion I be given. Let 7| ={T|T is a text for Le ¥;}. Let 9, ={T|T is a text for
Le %,}. We say that #;<'%, if and only if there exist operators @ and ¥ such that, for
all T,T' €7, and for all infinite sequences o of grammars, the following hold:

(a) ©(T)e T, and
(b) if o is an I-admissible sequence for ©(T), then ¥(x) is an I-admissible sequence for 7.
(c) if content(T) = content(T") then content(O(T)) = content(O(T")).

We say that %, =! %, iff 1<%, and £, < %.

The reduction defined above was called strong-reduction in [JS96]. The above reduction
without clause (c) was called weak reduction. Since in this paper we will be only concerned with
strong reductions, we just refer to them as reductions. (Weak reductions are not sharp enough to
provide real distinction between most of the classes considered in this paper).

Intuitively, % <'.%, just in case there exists an operator @ that transforms texts for languages
in % into texts for languages in ., and there exists another operator ¥ that behaves as follows:
if @ transforms text 7T (for a language in %) to text 7" (for a language in %;), then ¥ transforms
I-admissible sequences for 7" into I-admissible sequences for 7. Thus, informally, the operator ¥
has to work only on I-admissible sequences for such texts 7”. In other words, if « is a sequence of
grammars which is not I-admissible for any text 7" in {O(T) | content(T)e ¥, }, then ¥(a) can be
defined arbitrarily. This property will be used implicitly at all places below where we have to define
operators ¥ witnessing (together with operators @) some reducibility. Note that this approach
both simplifies the corresponding definitions and preserves the computability of the so-defined
operators.
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Additionally different texts for some language Le %, are transformed into (possibly different)
texts for same language L' € %>.

Now, a degree of learnability under our reduction is, naturally, a set of families . reducible to
each other (i.e. the equivalence class under the reduction considered).

Intuitively, for many identification criteria I such as TxtEx, if ¥ <!.%, then the problem of
identifying .5 in the sense of I is at least as hard as the problem of identifying .#; in the sense of
I, since the solvability of the former problem implies the solvability of the latter one. That is given
any machine M, which I-identifies .#», one can construct a machine M; which I-identifies ;. To
see this, for I = TxtEX, suppose @ and ¥ witness .Z; <'.,. M, (T), for a text T is defined as
follows. Let p, = My(O(T)[n]), and o = py, p1, ... . Letoa’ = ¥Y(a) = pj,pl, ... . Thenlet M(T') =
lim,, ., p;,. Consequently, #» may be considered as a hardest problem for I-identification if for all
classes %1 el, & <'.%, holds. If %, itself belongs to I, then %, is said to be complete. We now
formally define these notions of hardness and completeness for the above reduction.

Definition 6 (Jain and Sharma [JS96]). Let I be an identification criterion. Let ¥ <& be given.

(@) If for all £’ el, ¥'<'&, then & is <'-hard.
(b) If & is <'-hard and Ze€l, then & is <'-complete.

Proposition 1 (Jain and Sharma [JS96]). <™¥X s reflexive and transitive.
The above proposition holds for most natural learning criteria.

Proposition 2 (Based on [JS97]). Suppose ¥ <'¥', via @ and . Then, for all L,L'e ¥, L<L' =
O(L)=O(L).

We will be using Proposition 2 implicitly when we are dealing with reductions. Since, for
7<'9 via @ and VP, for all Le#, O(L) is defined (= some L'e.#’), when considering
reductions, we often consider @ as mapping finite sets to (possibly infinite) sets instead of
mapping sequences to sequences.' This is clearly without loss of generality, as one can easily
convert such @ to @ as in Definition 5 of reduction.

4. (Q-classes

In this section, we introduce the classes of languages and corresponding degrees of intrinsic
complexity that form the scale being used for estimating the complexity of learning open semi-
hulls and open hulls. First, we define ground natural classes that are being used as bricks to build
our hierarchy of degrees.

"For infinite X, by definition, @(X) would be Uxrex - cara(xry< 0 @(X)-
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Definition 7. INIT = {L<N | (JieN)[L = {xeN | x<i}]}.
COINIT ={L<N |(JieN)[L ={xeN|x=i}]}.
HALF = {L=Z | (3ieZ)[L = {xeZ|x>i}]}.

Note that officially our definition for languages and r.c. sets as in Section 2, only allows subsets
of N. Since, one can easily code Z onto NN, by slight abuse of convention, we can consider subsets
of Z also as languages. We thus assume an implicit coding of Z onto N whenever we deal with
languages and language classes involving HALF, without explicitly stating so.

In the sequel, we will use the above notation in two different contexts. Namely, we will use INIT
to denote the class of languages as defined above, and to denote the degree of all classes of
languages equivalent to the class INIT under our reductions. Similarly, we will use in two different
contexts COINIT, HALF and all their combinations defined below in this section. In every use of
this notation, the reader will be able to easily determine an appropriate context.

While both the classes INIT and COINIT are monotonically learnable, the types of conjectures
being used to learn INIT and, respectively, COINIT are obviously different. For INIT the
maximum element in the input gives a code for the language, whereas in COINIT the minimum
element gives the code. Note that the maximum element used in INIT strategy is unbounded,
whereas the minimum element for COINIT is bounded by 0. So, not surprisingly, the degrees of
INIT and COINIT were proven in [JS96] to be different.

Classes HALF and COINIT are learnable by similar strategies, however, the minimum element
in HALF is unbounded. We will formally prove below that degree of HALF is different from
degrees of both INIT and COINIT. Furthermore, we will show that the degree of HALF can be
viewed as a cross product of the degrees of INIT and COINIT.

There are several other natural classes considered in the literature such as FINITE (degree of
which is equivalent to INIT), SINGLE, COSINGLE, etc. but we will not be concerned with them
here since they will not be relevant to our results.

Now we define the cross product of arbitrary classes .¥; and .%5.

Definition 8. Let ¥, ¥, be two classes of languages. Then ¥ x ¥, ={L; X L, | L, e ¥},
Lzefz}.

This definition can be naturally extended to any finite number of dimensions. For example, one
can naturally define ¥ x ¥, x %3, etc.

Theorem 1. HALF =™¥x INIT x COINIT.

Proof of the above theorem is given in Appendix A.
Now, following [JKWO00], we are going to combine the classes INIT, COINIT, and HALF to
form classes of multidimensional languages, where, to learn the dimension L of a language L,

the learner must first learn the parameters #, ..., iy of the dimensions L, ..., Ly; then ;. is the
projection {xxi1| i1, ---, iky Xkt1, Xkt2, ---, Xn » € L} with a simple sublanguage whose description
is specified yet by iy, ..., ;. Once it has been determined which projection must be learned, the

learner can use a predefined INIT-, COINIT-, or HALF-type strategy to learn the projection in
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question. For example, one can consider a class of two-dimensional languages (INIT, COINIT),
where the first dimension L; = {x|{x,y ) € L} of any language L belongs to INIT, and if i is the
parameter describing L; (that can be learned by an INIT-type strategy) then the projection
{y|<i,y> €L} is in COINIT.

Below for any tuples X and Y, let X - Y denote the concatenation of X and Y. That is
if X=d{x,x,...,x,> and Y =<y, ¥2,...,;ymy then X -Y =<x1,....;%5, V1, ...Vmy. Let
BASIC = {INIT,COINIT,HALF}.

In part (c) of the following definition and in later situations in languages involving HALF we
sometimes abuse notation slightly and allow elements of Z as components of the pairing function
{--->. This is for ease of notation, and one could easily replace these by using some coding of Z
onto N.

Definition 9 (Jain et al. [JKW00]). Suppose k>1. Let Qe BASIC*. Let Ie N*. Then inductively

on k, we define the languages L,Q and T(L,Q) and P(L,Q) as follows.
If Kk =1, then
(a) if Q= (INIT) and I = (i), ie N, then

T(L?) = {{(x) |xeN,x<i}, P(L?) ={i>} and LZ=T(L?)uP(LY).
(b) if Q = (COINIT) and I = (i), ie N, then

T(LY) = {{(x) |xeN,x>i}, P(L?) ={<i>} and LZ=T(LO)uP(LY).
(c)if Q= (HALF) and I = (i), i€ Z, then

T(LY) = {{x) |xeZ,x>i}, P(LY) ={i>} and LY =T(L2UPLY).

Now suppose we have already defined LIQ for k<n. We then define LIQ for k = n+ 1 as follows.
Suppose Q = (q17 --'>qn+1) and [ = (ilv --'>in+l)' Let Ql = (ql) and QZ = (q27 '-->qn+1)' Let
Il = (il) and 12 = (iz, ...,in+1). Then,
T(LY)={X-Y|XeT(LY), or [XeP(L{") and YeT(LP)]},
P(LY)={X-Y|XeP(Ly) and YeP(L{)},

and
L2 = T(LYuP(LY).

Intuitively, in the above definition T(L,Q) denotes the terminating part of the language that is

specified yet by iy, ..., 7, {11, and P(L[Q) denotes the propagating part of the language L[Q that
could be used for adding a language in dimension n + 2. (See [JKWO00] for more details and
motivation on the terminology of terminating and propagating.)

For ease of notation we often write L% . .. as L2, ..
(i1, i) i1502, -k

Definition 10. Let k>1. Let Q = (g1, .y qx)EBASICY and R = Ry x Ry x --- x Ry, where for
1<i<k, RN if q;e{INIT,COINIT}, and R;=Z, if q; = HALF. Then the class #9® is
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defined as
POR — (L2 |IeR}.

For technical convenience, for Q = (), I = (), R = {I}, we also define T(L¥) = 0, P(LIQ) =
{< >} and L? = T(L?) U P(LY), and £OF = {L7}.
Note that we have used a slightly different notation for defining the classes #%® (for example

instead of INIT, we now use ZMT)N)y This is for clarity of notation.

Also, our main interest is for R;’s being N or Z (based on whether ¢;e {INIT, COINIT} or
q;i = HALF), though (as the following proposition shows) it does not matter as long as R; is (or
contains) an infinite recursive subset of N, if ¢;e {INIT, COINIT}, and R; is (or contains) an
infinite recursive subset of Z with infinite intersection with both N and Z7, if ¢; = HALF. The
usage of general R is more for ease of proving some of our theorems.

Proposition 3. Suppose k>1. Let Qe BASIC*. Let R = R, x Ry x --- x Ry, where each R; is an
infinite recursive subset of N, if q;e {INIT, COINIT} and R; is a recursive subset of Z, with infinite
intersection with both N and Z~, if ¢ = HALF. Let R' = R| x R, X --- X R}, where R} is N, if

q:€{INIT, COINIT} and R, is Z, if ¢; = HALF. Then, %R =TxtFx @OR

For ease of notation, if Q= (q1,¢2,...,4,) and R=R; X Ry X --- x R,, where R, =N if
g;€ {INIT, COINIT} and R; = Z if ¢ = HALF, then we drop R from #9® using just #2.
The immediate question is which classes Q represent different degrees.

Pl‘OpOSitiOll 4. Suppose Q = (CIla e Qke—1,9k, Gie+1, '--aql) and Ql = (q17 ---,Qk—l,q,anH, ---741)7
where qx € {INIT, COINIT} and ¢ = HALF, and other q;e BASIC.

Then, ¥2 <TxEx Q'

Proof. The above can be easily shown using INIT <™*HALF and COINIT <™®HALF. 0O

Since INIT x COINIT<™®x %9 for Q= (INIT,COINIT), or Q= (COINIT,INIT)
[JKWO00], we have the following proposition.

Proposition 5. Suppose Q= (q1,...,qx—1, HALF ,qi41, ..., q,) and Q' = (qi, ..., qx—1,INIT,
COINIT , qy+1, ..., qn) or Q' = (q1, ..., qx—1, COINIT, INIT , gy 1, ..., qy). Then L2 <T™Ex g0

Proof. The above can be easily shown using HALF<™EX(INIT,COINIT) and
HALF <™EX(COINIT,INIT). O

Proposition 6 (Based on [JS96]). Suppose Q = (INIT), R = R, Q' = (COINIT), and R = R},
where Ry and R are infinite subsets of N. Then #OR¢™EX p@ K gpg @R ¢ TXEX pOR
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The following technical definition introduces an ordering on all k-tuples of parameters 7y, ..., i

of languages in an arbitrary class €. This ordering will be helpful for the result in the next
section.

Definition 11. Suppose Q = (qi, ..., qx), where each q;e {HALF,INIT, COINIT}, for 1<i<k.
Let Q' = (g2, ..., qk). We say that iy, ..., ik > <o<{Jji, ..., Ji » iff

(a) if g1 = INIT, then [i; <ji] or [iy =ji and iy, ..., 0k ) <o {Jo, -1 Jk 2
(b) ifql = COINIT or q1 :HALF, then [il >j1} or [il :jl and <i2, ...,ik><Q/<j2, 7]k>]

Here, for Q = (), we assume that { ) <o{).

5. Q-hierarchy involving HALF

In this section, we establish a hierarchy among the Q-classes that will serve as a scale for the
complexity of our geometrical concepts.

Definition 12. Q is said to be a pseudo-subsequence of @', iff there exists a subsequence Q" of O,
such that Q" is obtainable from Q by

(i) replacing some INIT with HALF,

(ii) replacing some COINIT with HALF,
(ii1) replacing some HALF with (COINIT,INIT), or
(iv) replacing some HALF with (INIT, COINIT).

For example, Q= (INIT,HALF,COINIT) is a pseudo-subsequence of Q' =
(COINIT,HALF,COINIT,INIT,INIT, COINIT): dropping the first COINIT and the second
INIT from @', we get the subsequence Q" = (HALF, COINIT,INIT,COINIT); now Q can be
promoted to Q" by replacing INIT with a more powerful HALF and replacing HALF (in its
middle) with a more powerful combination COINIT, INIT.

In other words, a pseudo-subsequence of a vector Q is a subsequence where some HALF's are
replaced with more primitive INITs or COINITs and some combinations INIT, COINIT or
COINIT,INIT are replaced with more primitive HALF's.

Proposition 7. Suppose Q, Q', Q" e BASIC*. Then if Q is a pseudo-subsequence of Q' and Q' is a
pseudo-subsequence of Q", then Q is a pseudo-subsequence of Q".

Proof. Follows from definition of pseudo-subsequence. [J

Proposition 8. Suppose Q, Q' € BASIC* and Q is a pseudo-subsequence of Q. Then ¥ <™Ex Q'
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Proof. Follows from definition of pseudo-subsequence, Propositions 4 and 5. [J

Proposition 9. Suppose O = (q1,q2, ..., qx) and Q' = (¢}, ¢>, ..., q,), where each q;,q;€ BASIC.
1042 i i
a) If q1 =¢,, then (qa2,...,qx) is a pseudo-subsequence of (¢, ...,q)), i is a pseudo-
1 2 1
subsequence of Q.
b) Suppose q1,q, € {INIT, COINIT}, but q\ #¢’,. Then, Q is a pseudo-subsequence of Q' i is
1 1
a pseudo-subsequence of Q" = (¢, 4%, ..., q)).
¢) Suppose qy = HALF. Then, Q is a pseudo-subsequence of Q' implies (INIT,q>, ...,qx) is a
pp q p q p q q
pseudo-subsequence of Q'.
d) Suppose q = HALF . Then, Q is a pseudo-subsequence of Q' implies (COINIT , q, ..., qx) is a
ippose q
pseudo-subsequence of Q'.
e) Suppose ¢, = HALF. Then, Q is a pseudo-subsequence of Q' iff (q2, 43, ..., qx) is a pseudo-
1

subsequence of (¢4, 4%, ..., q))-
Proof. Follows from the definition of pseudo-subsequence. [

Proposition 10. Suppose Q = (q1,q2, ..., qi) and Q' = (¢\,¢>, ...,q,), where each q;,q.€ BASIC.
1492 ! i

Suppose Q is not a pseudo-subsequence of Q.

(a) If 1 = ¢ €{INIT, COINIT}, g, {INIT, COINIT}, and q> # q\, then Q" = (q2,q3, ..., qx) is
not a pseudo-subsequence of Q'.

b) If qy = HALF, and ¢, = INIT, then Q" = (COINIT , q>, ..., qx) is not a pseudo-subsequence

q q q q P q

of 0.

(c) If ¢t = HALF, and ¢, = COINIT, then Q" = (INIT, q>, ..., qx) is not a pseudo-subsequence
of Q.

(d) If qi = q,e{INIT,COINIT}, q» = HALF, 1>2, and ¢,e{INIT,HALF}, then Q" =
(q1, COINIT, q3,4a4, ..., qx) is not a pseudo-subsequence of Q'.

e) If q1 = ¢, €{INIT,COINIT}, q = HALF, [>2, and ¢5€{COINIT,HALF}, then Q" =

1 2

(q1,INIT, q3,44, ..., qx) is not a pseudo-subsequence of Q'.

Proof. We show parts (a), (b) and (d). Proof of part (c) is similar to part (b) and proof of part (e)
is similar to part (d).

(a) Let Q" = (¢4, ¢4, .., ¢;). Now by Proposition 9(a), Q is a pseudo-subsequence of Q' iff Q" is
pseudo-subsequence of Q”. By Proposition 9(b), Q" is pseudo-subsequence of Q" iff Q"
is pseudo-subsequence of Q'. Thus, since Q is not a pseudo-subsequence of Q' it follows that
Q" is not a pseudo-subsequence of Q'.

(b) Suppose by way of contradiction that (COINIT ,qx, ..., q;) is a pseudo-subsequence of Q'.
Then by applying Proposition 9(b), we have that (COINIT, g, ..., qx) is a pseudo-subsequence of
(¢5, 45, ---.q)). Thus, by Proposition 9(a) we have (INIT,COINIT,q>, ...,qi) is a pseudo-
subsequence of (q},45,...,q;). But since (HALF,q,...,qr) is a pseudo-subsequence of
(INIT,COINIT ,q,, ...,qx) we have, Q = (HALF,q, ...,qx) is a pseudo-subsequence of Q' =
(91,9, 95,494, ----q))- A contradiction to the hypothesis. Part (b) follows.

(d) Let Q" = (¢4, 45, ..., q;). We consider two cases.
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Case 1: ¢, = HALF.

By Proposition 9(a), Q is a pseudo-subsequence of Q' iff (¢a, ..., qx) is a pseudo-subsequence of
Q". By Proposition 9(e), (¢2, ¢3, -..,qx) 1s a pseudo-subsequence of Q" iff (COINIT , g, ..., qx) is
a pseudo-subsequence of Q. Thus, since Q is not a pseudo-subsequence of Q' it follows that
(COINIT ,qs, ..., qx) is not a pseudo-subsequence of Q. Thus, by Proposition 9(a), it follows that
(q1, COINIT ,qs, ..., qx) is not a pseudo-subsequence of Q'.

Case 2: ¢, = INIT.

( ,By/hypotlll)esis and Proposition 9(a) v(ve have that (¢», q3,)...., gr) is not a pseudo-subsequence of

4>, 45, ---,q;)- Thus, by part (b) (COINIT,qs,...,qr) is not a pseudo-subsequence of
(g5, 45, ---»q)). Thus, by Proposition 9(a) (¢, COINIT g3, ..., qx) is not a pseudo-subsequence
of 0. O

The following theorem shows that reducing any Q’-vector to its proper pseudo-subsequence Q
results in the degree of learnability that is properly below the degree defined by the
Q'-class.

Theorem 2. Suppose Q= (qi, ...,qx)€ BASIC* and Q' = (q},...,q))€BASIC'. Let R= R, x
Ry x -+ xRi, R=R]xXRyx - xR, where each R; (R]) is an infinite subset of N, if
qi€{INIT, COINIT} (q.€{INIT,COINIT}), and R; (R)) is a subset of Z, with infinite
intersection with both N and Z~, if q; = HALF (q; = HALF).

If O is not a pseudo-subsequence of Q' then LR ¢ ™EX pO.K

Proof of the above Theorem is given in Appendix A.

Corollary 1. Suppose Qe BASIC* and () € BASIC'. Then, ¥2<™Ex 2 iff O is a pseudo-
subsequence of Q.

6. Definitions for open semi-hull and some propositions

Let rat denote the set of non-negative rationals. rat™ = rat — {0}, denotes the set of positive
rationals.

Any language SEMI_HULL" defined below is a geometrical figure semi-hull, collection of
points in the first quadrant of the plane bounded by the y-axis and a broken line that consists
of a straight fragment /, of the x-axis (starting from origin) followed by a straight fragment
[; that makes an angle d; <90° with the x-axis, followed by a fragment /, that makes an angle
0, >01 with the x-axis, etc. (In the above, the angle is being measured anti-clockwise from the
positive x-axis).

Definition 13. Suppose ay, ...,a,eN and by, ..., b,erat’, where 0<a;<ay<...<a,.
SEMI_HULLZ],[?],(42,[72,...,(4,17[7” = {(x’ y)eN2 ’y> Zl<1<n bl * (x_al)}
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Note that SEMI_HULL" = N?. Also, note that though SEMI_HULL" above are subsets of N2,
one can easily consider them as languages =N, by using pairing function. We assume such
implicit coding whenever we are dealing with sets <= N?.

Parameters «¢; in the above definition specify x-coordinates of break points of the border line,
while the b; specify the slopes that are being added to the slope of the border line after every break
point.

To make our classes of languages learnable, we have to impose certain restrictions on the
parameters a;, b;. First, we want both coordinates @ and ¢ of break points (a,c¢) to be integers.
Secondly, for all languages in our classes, we fix a subset S from which slopes b; may come from.
(In the following definition, S may be an arbitrary subset of rat™; however, later we will impose
additional restrictions on S). The definition of valid sequences of parameters a;, b; accomplishes
this goal.

Definition 14. Suppose ay, ...,a,e N and by, ...,b,erat", where 0<a;<ar<---<a,. Suppose
Scratt.

We say that (a1, by, ..., a,, by) is valid iff for 1<j<n, [}, ;<, bi * (aj~a;)|e N. Additionally, if
each b;e S, then we say that (a;,by, ...,a,,by,) is S-valid.

Let VALID = {(Cl] b1, ..., ay, bn) ’ (al,bl, ey dy, bn) is Valid}.

Let VALIDg = {(611 b1, ... ay, bn) | (ay, by, ... ay,by) is S-Valid}.

Note that the empty sequence () is both valid and S-valid. Also we require a; >0. This is for
technical convenience, and crucial for some of our results.
Now we define the class of languages we are going to explore.

Definition 15. Suppose S<rat™. Then
SEMI_HULL"S = {SEMI_HULL" - anby | (a1,b1, ...,an,by) € VALIDs}.

ap,by,.

Now we formulate and prove a number of useful technical propositions (few of them
immediately follow from the relevant definitions).

Proposition 11. (a) Suppose (ai, by, ..., a;,b;,aj.1,bj11) € VALID. Then
J+1 J
SEMI_HULL, }, . b . b SSEMI_LHULL, , .
(b) Suppose (ay,by, ...,a]:,l,bj,l,aj,bj) and (al,bl',...,aj,l,bj,l,a]’.,b]’.)e VALID, and ajéa]’.,
b_,-}bj". Then, SEMI-HULLJaI,bI,...,a,,b,-ESEMI—HULL][“,bl,...,a}(,bj’.'

Proof. Follows from definitions. O

Definition 16. Suppose ai,by, ..., ,a;,b; are given such that (ai,by, ...,a;,b;) € VALID. Then, let
INTER(ay, by, ..., a;,b;) =
N{SEMI_HULL , .,

j-,~'~7an;bn

n=jna(ay, by, ...,a;,bj, ....a,,b,) € VALID}.
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Intuitively, ~ INTER(ai, by, ...,a;,b;), denotes the common portion of all
SEMI_HULL!, , ., With a;=d; and b; = b} for 1 <i<j.
BB

ANE

Proposition 12. (a) Suppose 1 <j<n, and (a\, b\, ...,a;,bj, ...,a,,b,) € VALID. Then
INTER(ay, by, ..., a5, b)) SSEMI_HULL , ),

(b)  Suppose (ai,bi,...,a;,bj,ai1,b11) is  valid ~ Then, INTER(ay, by, ... a;,b)<
INTER(ar, by, ..., aj, bj, @11, bj)-

Proof. Follows from definitions. O

Definition 17. Suppose (a1, b1, ...,a;,b;) € VALID. Then let maxinter(ay, by, ..., a;,b;) denote the
least natural number x>a; such that 3, _;; b * (x~a;)eN.

Proposition 13. Suppose ay, by, ...,,a;,b; are given such that (ay,by, ...,a;,b;)e VALID. Then,
INTER(ay, by, ..., a;,b;) = SEMI_HULL], , ., 0 {(x,y)eN?|x<maxinter(a, by, ..., a;,b)}.

Proof. Follows from definitions. O

Proposition 14. Suppose ai,by, ...,aj-1,b;1, a;,b;,a,b; are given, where (ai,by,...,a;-1,

bi_1,a;,b;), and (al,bl,...,a/,l,bj,l,a},b}) are valid If INTER(ahbl,...,aj,l,b_,-,l,aj’.,b]’.)g
SEMI_HULL! ,

-slj-1,bj-1,a5.b;

Then

(i) a;<a; and

(ii) bj’. « (maxinter(a,, by, ...,aj_l,bj_l,aj’-,b]’-);aj’-)>bj « (maxinter(a,, by, ...,aj_l,bj_l,aj’-,bj’-)éaj).
Proof. Suppose that ay,by, ...,a;_1,bj_1, a}, bj’-, a;,b; are as given in the hypothesis.

If aj<aj’-, then (aj’-,zlgiq b * (a]’-—'al-)) belongs to INTER(ay, by, ...,aj_l,bj_l,aj’-,bj’.) but does

not belong to SEMI_HULL; , ., a5 (SInCC (4,37 <;;bix* (dj=~a;)) is below the last
fragment of the border line for SEMI-HULLZI,bl,...,a,,l,b,-,l,a,-,b,)-

Thus, we must have a_} <a,.

Let  x=maxinter(a, by, ...,a1,bj—1,a,b;).  Let y =10« (x=d)+> < ;bi*(x=a)).
Now, (x,y) belongs to INTER(a;,b, ...,aj_l,bj_l,a},b;). If (x,y) Dbelongs to
SEMI_HULL{”‘,)l s by by then by definition of SEMI_HULL/, we must have y=
bix (x=aj) + > 1 ;e bi* (X=a;) 2bj * (x=a;) + 321 <;o; bi* (x=a;). Thus, bi(x+a})>b;(x+a).
The proposition follows. [

The following two corollaries have obvious geometrical interpretation.
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Corollary 2. Suppose (ai,bi, ...,a;-1,bj1,a,b}, ....a,,b,) and (a\,bi,...,ai-1,bj—1,a/,b], ...,
a,,bl) are valid.
(@) If d<d] then SEMI_HULL}, ;s iy iy @ SEMIHULLY o o
(b) If @; = a] and b;>b] then
SEMI_HULL"

n
ay,by,... 2dj-1 7bj—1 ,aj//,bj/.’, ,aj,’,bj{ g SEMI_HULLLll bi,... 2aj-1 ,bj—l ,aj’.,b},... a;b;, .

Proof. If SEMIHULL}, . ., ..y SSEMIHULLY ooy 4y then it
follows that INTER(a,, b, ...,a_,-,hb_,-,l,aj/.’,bj’.’)ESEMI_HULLZIybl”._’ajfhbji]%b}. Thus, it follows

from Proposition 14 that ¢ <da; and if aj’.’ = a;, then b >Db/. The corollary follows. [

Corollary 3. Suppose  (ai, by, ...,ay,b,) and (a},b),...,d,, b)) are valid. Suppose

T n

SEMI_HULL, , ., <SEMI HULL}, , . ,. Let i be the minimum value such that a;#d;
SOy e 56nyUn 12075+

n“n

or bi#Db. Then, a;<da, or [a; = d; and b;>b]].

Proof. Note that for the least ;j such that (a},b})#(a;,b;), we must have

777
INTERZhle_ﬂ/_‘b/_QSEMI_HULLZI_,)I_. The corollary now follows from Proposi-
tion 14. O

A N
<stj-1,bj-1,d},)

Proposition  15. Suppose  1<j<n.  Suppose (ai,bi,...,aj_1,b;_1,a;,b;,...,a,,b,) and

(a1, b1, ...,a-1,bj1,a;, b)) are valid.
(@) If di<a;and b;= 3, bi, then
SEMI—HULL{II,bl,...g,,l,b,-,l,a]/.,b; SSEMI_HULL, 0. ...apbe
(b) If a;<aj and b;> . ., bi, then

SEMILHULL, , s 4y<SEMI.-HULL,

ay,by,....a;bj,....an,by"

Proof. (a) SEMI_HULL) , oy = {(x.))eN?|y2bl(x=a)) + X<y bi* (x=a)}.

SEMI_HULL] , . ={(x,)eN?|y= 0 ic, bix (x=ai) + 32, bix (x=a;)}.
Part (a) follows since bi(x+a}) Zbi(x=a;) = D, bix (x=a;) = 3,1 bi* (x=a;).
(b) Follows from part (a) and Corollary 2. [

Now we are at the point when our results require additional constraint on the set S (of slopes).
Intuitively, the set S satisfying the constraints cover the positive rational numbers, and can be
algorithmically listed in a monotonic order on a two-sided-infinite tape. A natural example of set
S satisfying the constraint below is the set Nu{l/x|xe N}. Although our results below hold for
any fixed set S of rationals satisfying the constraint in question, we suggest the reader to keep in
mind the above set when reading the proofs.
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Definition 18. A set S<rat™ is said to be rat*-covering iff there exists a recursive bijection /" from
Z to S such that,

(i) for i,jeZ, i<jiff f(i)<f()).
(i) for every xeratt, there exist y,)’ €S such that y<x<y'.

A natural choice for a set S (which does not satisfy the above constraint) seems to be the set
rat”. However, in this case, a complete class of languages {L, = {x|xerat™, x>y} | yeratt} (see
[JKWO00]) would be trivially reducible to any class of languages-figures considered in our paper,
thus making all of them of the same complexity. The use of rat'-covering sets S gives us
opportunity to capture differences in learnability of different geometrical concepts observed in
our paper.

Our results below hold for any rat*-covering set S. However, it is open at present whether
SEMI_HULL"S =™ SpEM]_HULL™S, for arbitrary rat™-covering sets S and S'.

Note that, for any given ne N, and rat™-covering set S, there exists a limiting partial recursive
function F such that, if i is a grammar for some SEM]—HULLZ’,L;,7_..,an,b,,7 where (a1, by, ..., a,by)
being S-valid, then F (i) converges to (ay,by, ..., a,, b,). That is one can determine the parameters
limit-effectively from any grammar for SEMI_H ULLZ}?bI,... by This fact will be implicitly used in

construction of ¥ in some of our proofs.
Intuitively, the following technical proposition claims that, given a point (xo, yo) in a language

j-1
SEMI_HULL, ., s -
languages SEMI_HULL'

ap,by,....aj-1,bj-1,a;,b;, ...

one can effectively find a lower bound on the boundary slopes b; of all

which do not contain (xy, yo).

Proposition 16. Suppose (ai, by, ...,aj_1,bj_1) is valid Let (x0,¥0)eN? be such that
Vo> Z1<i<j bi(xo=a;). Then, there exists a B erat® obtainable effectively from ay, by, ...,a;_1,

bj_1, xo and yq such that for any (aj’-, b]’-), if (a1, by, ...,aj_l,bj_l,a]’., bj’-), is valid and xo<a} or bj’-<B’,

then, (xo,0) e INTER ity by b

Proof. If a}}xo, then we would have y,> Zlgkjb,-(xo;a,-) = bj’.(xoéa]’.) +Zl<i<jb,-(x0—'a,~).
Thus, (xo,0) eINTERizl,bl,.‘.,aj,l,bj,l,a;.,b;'
Now fix any a; <xo. If (a1, b1, ..., a;-1,b;-1, a}, b)) is valid, but (XOv«VO)¢INTERizl,bl,...,a,_l,b,_l,ajﬁ,bj',’
then either (a) maxinter(ay, by, ..., a;-1,bj-1, a;, b)) <xo, or (b) yo<bi(xo=a;) + >, <;-; bi(xo~ai).
Let B(a) = (yo — 21 <icjbi(x0~a;))/(xo=a;). Now for (b) to be true b; must be greater

than  B(a;). We mnow consider which //<B(q;) can satisfy (a). Let x5 =

1
maxinter(ay, by, ..., ai1,bj1,a;, b)), and yi = b}« (x1=a}) + >, ;. ; bi x (x1~a;). For b;<B(a))
to satisfy (a), (xj,y1) must lie in the intersection of the following three regions:

(A) y>2i<icj bilx=ai),
(B) x<xy, and
(C) y<B(d) * (x=a;) + 321 <;; bi(x~aj).
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Since the above intersection is finite, there are only finitely many possibilities for (xi,y1),
and thus for 0. Thus, let Bi(q;)<B(a;), be a positive rational number, such that

maxinter(ay, by, ..'.,aj,l,b,,l,a},b})<x0 implies b}>Bl (a;). Note that such a B (a;.) exists and
can be obtained effectively from ay, by, ..., aj_1,bj_1, X9, yo.

Now taking B’ = min({B1(¢}) | 4j-1 <a;<xo}), witnesses the proposition. [

Corollary 4. Suppose (a1, by, ..., a;,b;) is valid. Then, one can effectively (in a, by, ..., a;, b;) obtain
a B erat™ such that following property is satisfied.
For any (ay,bi,...,a;-1,bi_1,d, bj') which is wvalid, if INTER(a,by,...,a;_1,bj_1,d;,b;)<

Y AN
n / / /
SEMI—HULLaI,bl,...,a,,l,b,,l,aj,b,7 then ijB and a;< 4.

Proof. Pick (xo,39)€eN? such that xo>a;, and Di<icbilxo=ai) <yo< 32 <icjbilx0-ai).
Corollary, now follows from Propositions 14 and 16. [

Proposition 18 below will play an important role in some of our proofs. Imagine that, in the
process of learning, SEMI_HULL" »,» the learner has already learned the

ay,by,...,aj-1,bj_1,a;,bj,....a,
parameters ay, by, ...,a;_1,b;_1, and is now trying to learn the parameters a;, b;. Our aim is to use a
(INIT, COINIT)-type strategy to learn (a;, b;) (instead of the trivial (INIT, HALF)-type strategy
mentioned in the introduction).

Since we intend to use (INIT, COINIT)-type strategy, we need to be safe in choosing the
parameters. That is, choosing (a;, ;) must imply that any (aj/.,b]’.) smaller than (a;,b;) must be
inconsistent with the input, (smaller in the sense of some (INIT, COINIT)-type ordering of all
pairs (4}, b})).

This is achieved in two steps. First we order (a]’.' , b]’.’ ), with b]’f < B, for some fixed positive rational
number B in a INIT like fashion. Then, we order b}’>B, in a COINIT like fashion. This latter
ordering is easily achievable (as will be seen in the proof of Theorem 3 below). For the former
ordering, if bj’.,bst, then we make sure that if INTER(ay, b, ...,aj_l,bj_l,aj’-,b_;-) is a subset of
SEMI_HULLY , .\ j  a.s- then ordering places (4}, b;) below (g;, b;). Proposition 18 (which is
based on Corollary 5 and Proposition 17 below) shows that this is achievable. Note that this
ordering depends on (ai, b1, ...,aj_1,b;_1).

Corollary 5. Suppose 1 <j<n. Let S be any rat™-covering set, and Be S.

Suppose ay, by, ...,a;_1,b;_ a;,b; are given, where (ay, by, ...,a;_1,b;j_1,a;,b;) is S-valid.
Then, there exist only finitely many (a;,b}), such that

(1) (ay,by, ...,qi_l,bj_l,q;,b;) is S-valid,
(i) b;<B, and

(i) INTER(ay,by, ..., a1, by, d,, b)) S SEMI_HULL], ,

J 7

< sj-1,bj-1,a1,b;
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Moreover, canonical index for the finite set of a]’.,b]" satisfying above three conditions can be
obtained effectively from B,ay, by, ...,aj_1,bj_1,a;,b;.

Furthermore, for any b satisfying the above three conditions, a;<a;, and if a; = aj,
then b;=b;.

Proof. Furthermore clause follows from Proposition 14.

By Corollary 4, one can effectively find a B'erat™ such that any (d;, b)) satisfying (i) and (iii)
must satisfy bj’->B’ and aj’saj. Corollary now follows since there are only finitely many (aJ’.,b]’.)
such that a}<q,-, B <b}<B, and bj’. €S and for any (aj’., b;), one can effectively test whether (a}, b;)
satisfies clauses (i) to (iii) in the corollary. [l

The above corollary together with the following technical proposition will enable us to impose
a suitable ordering on (ay,by,...,a;,b;) with an upper bound B on slopes b;. Think of
(ai,bi, ...,aj—1,bj_1) as already fixed.

Proposition 17. Suppose R is a partial order over an r.e. set A, and F is a partial recursive function
with domain A such that, for any xe A,

(1) {x' | X'Rx} is finite and
(i) F(x) is the canonical index for {x'€ A | X' Rx}.

Then, effectively from a program for F, one can obtain a program for a 1-1, partial recursive
Sunction h with domain A and range =N, such that X' Rx implies h(x")<h(x). Moreover, if A is
infinite, then range of h is N.

Proof. Let f be a recursive function such that range( f) = A. Define h as follows. Let cur = 0. Go
to stage 0.

Stage s
(" In this stage we make sure that 4( f(s)), along with 4(x), for all x such that xR f(s), are defined
appropriately. *)

If 4(f(s)) has already been defined, then go to stage s+ 1.

Otherwise let X = {x|xRf(s)} (note that one can effectively obtain X from f(s) by

assumption (ii) of the hypothesis; also note that f(s) e X, since f(s)Rf (s)).

Let xo,x1, ..., X, be listing of members of X such that x;Rx; implies i<j (note that one

can easily get such an ordering since X is finite).

For j =0 to m do

If h(x;) has not been defined then
let h(x;) = cur; cur = cur + 1.

EndFor

(" Note that A(f(s)) along with A(x), for all x such that xRf (s), have been defined. *)
End Stage s
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It is easy to verify that & satisfies the properties required in the proposition. [J

Proposition 18. Let S be any rat'-covering set. Then, there exists a recursive function code with
domain rat x VALIDg, and range = N such that following is satisfied.

Suppose 1<j<n, BeS, and (a1, by, ...,a;_1,b;_1) is S-valid.

(A) Suppose (ay, by, ...,a;_1,b;_1,a;,b;) and (ay,by, ...,a;_1,bj_1,d, b)) are S-valid.

A
(A.1) Ifbj,bj’.sB and INTER(a,, b, ...,aj,l,b‘,-,l,aj’.,b]’.)gSEMI_HULL];]J,]’_.ﬂH’b‘H’al_ﬂb/_7 then
code(B,ay, by, ...,a_,-,l,bj,l,a_;.,bj’.)<code(B,a17b1, o, aj—1,bj_1,a;,bj).
(A.2) If b, b;< B and (a;, b;) # (&}, b}), then
code(B,ay, by, ...,aj,],bj,l,a]’.,b]’-)qécode(B,al,bl, i1, bi1, a5, b)),

(A.3) {code(B,al,bl,...,aj,l,bj,l,a]’-’, ]’.’)\(al,bl,...,aj,l,bj,l,a]’.', ]'-’)e VALIDs and b]’-’éB}
= N.

(B) Suppose (ay, by, ...,a;,b;) is S-valid. If b;>B, then code(B,ay,b, ...,a;_1,bj_1,a;,b;) =
code(B,ay, by, ...,a;_1,b;_1,a;, B).

Proof. Fix ay,by,...,a;_1,bj_1 and B as in the hypothesis. Let us first define a relation Rel on
N x Sn{rerat|r<B} as follows:

(d,b")Rel(a,b) iffINTER(ay, by, ...,a_,-,l,bj,l,a’,b’)ESEMI_HULLZI7,717”.7“]_71_’})/_71#’b.

Note that (by Corollary 5) for each (a,b), there are only finitely many (¢',b") such that
(d',b")Rel(a,b). Also, for each of these (d',0'), @’ <a and either ¢’ <a or b’ >=b. Furthermore,
canonical index for {(d',#") | (d',b")Rel(a,b)}, can be effectively obtained from (a,b).

Let Rel* be transitive closure of Rel. It is easy to verify that Rel* is a partial order,
where for each (a,b), there exists at most finitely many (a’,5') such that (d',b")Rel*(a,b).
Moreover, canonical index for {(a,0')|(d,b')Rel*(a,b)}, can be effectively obtained
from (a,b).

Existence of code as required now follows from Proposition 17. [

7. QO-classes to which SEMI_HULL"S is reducible

Our goal in this section is to establish an upper bound on the SEMI_HULL™S degrees in terms
of the Q-hierarchy. To find such a bound, we actually have to design a learning strategy for
languages in SEMI_HULL"™S that consists of ¢;-type strategies for some Q = (¢1,41, ..., qx), and
a grammar learned by every g¢; is used by ¢;.;. A natural strategy of this type would be the
following (g1, 42, ---, qan—1, qan)-strategy, where qa;11 = INIT and ¢»;» = HALF for i<n: learn
the first break point @ using an INIT-type strategy; once a; has been learned, learn the first slope
by at the point (a;,0) using a HALF-type strategy; then learn the second break point
(az, by % (ay — ay)) using an INIT-type strategy, etc. However, a much more efficient learning
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strategy is suggested by the following. Informally one can visualize this strategy as follows.
Assume that slope values come from the set Nu{l/n|neN}. It may happen that in the
beginning the learner receives points (x,y) indicating that the slope to be learned is greater or
equal 1. Then the learner uses an INIT-like strategy to learn a break and a COINIT-like strategy
(not a HALF-strategy as above!) to learn the slope: the slopes tend to 1 from above, and the
learner uses this assumption. If the slope gets smaller than 1, the learner then uses a combined
INIT-like strategy to learn the break point and the slope together: both of them change now in
INIT-fashion.

There is a slight problem though in the above strategy. It may be possible that slope at some
point seems less than 1, but later on when lots of new points (i,0) come from the input,
slope again seems larger than 1. To prevent this from harming the learning process, the
learner uses the combined INIT-strategy in a safe fashion: Informally, suppose one has
learned the parameters, ay,b1, ...,a;_1,b;_1, and is now trying to determine a;,b;. Now we need
to make sure that the combined /NIT-strategy does not commit to (a;, b;) being (4}, b}) before it

has been able to determine that input data cannot be from SEMI_HULLy ,, ., w0 >
R ARl R R Ry R

!l /! : : n
for any other aj, bj, ey which satisfies SEMI—HULLaI,bl,...,a,,l,b,,l.a;/.b;',... c
n / ’ .
SEMI—HULLaI,bl,...‘,aj,l,bj,l,a;,b;,a;+l,b;+]7,..v for some value of the parameters ajH,ij, LIt is

possible to achieve this by using Proposition 18.
The actual proof of the theorem technically looks somewhat different, and the above method is
a bit hidden.

Theorem 3. Suppose S is rat*-covering. Suppose Q = (q1,q2, ..., qon—-1,492m), where ¢y = INIT
and ¢i» = COINIT, for i<n. Then SEMI_HULL"S <™%¥x 0

Proof. Fix S which is rat"-covering. Let h be a recursive bijection from Z to S such that
h(i)<h(i +1). Let B = h(0).

The intuitive idea of the learning strategy is as follows. Suppose we have already learned
(ai,bi, ...,aj—1,bj—1). Then, we use INIT like strategy to learn any pair (a;,b;), if b;<B = h(0),
and use COINIT-type strategy to learn b; if b;>B. The former is done using code
as in Proposition 18. The latter can be done easily by using 4 to form a COINIT-like
strategy.

Going through the proof below (and the proofs for other upper bounds in this paper) one must
be aware of the fact that, though intuitively we do use INIT/COINIT (or whatever—in other
proofs) strategy for learning each successive parameter, in the actual proof we do it by choosing
an appropriate minimal consistent SEMI_HULL on every step and INIT/COINIT strategy is in
some sense hidden.

Now we proceed with the formal construction.

Fix code as in Proposition 18. Let g be a function from S to N such that g(b) = 0, if < B, and
g(b) = h='(b), otherwise. (Note that ¢ is monotonically non-decreasing).

The following claim utilizes the construction of Proposition 18 to show that the values
(code(B,ay, by, ...,a;,b;)) can be used as conjectures by INIT-type substrategies, and the values
g(bj) can be used as conjectures by COINIT-type substrategies.
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Claim 1. Suppose (a1,b, ...,aj-1,bj_1,a;,b;), (a1,b1, ...,a;_1,bj_1,d, b;) € VALIDg, where (a;, b;) #

707

(), }). Suppose INTER(ay, b, ...,a;-1,b;-1,a;,b)) CSEMI—HULLZhbh...,af,I71;f,|,a/’.,b_;.'

Then,

(1) code(B,ay, b, ...,aj1,bj-1,a;,b;) <code(B,ay, by, ..., a;_1,bj_1,d, b;), or

(ii) code(B, a1, by, ..., a;-1,bj-1,a;,b;) = code(B,ay, by, ...,a;-1,bj—1,a;, b)), and g(b;) > g(b;).
Proof. By Proposition 14 we have that ¢;<d;.

We now consider following cases:

Case 1: bj,bj’.éB.

Since, INTER(ay,by, ...,aj,b,-)gSEMI_HULLthhm_ajil_’bjiw;’b}, we have code(B,ay,by, ...,

aj_1,b;_1,a;,b;) <code(B,ay, by, ...,aj,l,bj,l,aj’.,bl’.) (by Proposition 18; for getting < instead of
< use the fact that (4, b) # (], b})).

Case 2: bj<B<b]’..

In this case aj<a]’- by Proposition 14.

Also, INTER(ay, by, ...,a;, b)) = SEMI_HULL = SEMI_HULL

a17b17"'7aj*]7bj*|rq;'b} - alyblw--yajfhbjfl:a;’vB.
Thus, code(B,ai, b, ...,aj—1,bj_1,a;,b;)<code(B,ay, b, ...,aj_l,bj_l,aj’-,B) = code(B,ay, by, ...,
aj_1,b;_1,d,b;) (by Proposition 18; for getting < instead of < use the fact that (aj,bj)¢(aj’.,B)).

7Y
Case 3: b}<B<bj.
In this case, INTER(ay, by, ...,a;, B) ESEMI_HULL{II‘h1 et by B S
SEMI_HULL’athWHajil7bj717a;_’b;_. Thus, code(B,ay, by, ...,a;_1,bj_1,a;,b;) = code(B,ay by, ...,a;_i,

bj-1,a;, B)<code(B,ai, by, ...,a;-1,b;-1,a;,b}) (by Proposition 18). Also g(b}) = 0<g(b).

Case 4: B<bj<b]’..

In this case g <aj’. by  Proposition 14. Thus, INTER(a, b, ...,a;,B)<
SEMI_HULL, , < SEMI_HULL Thus, code(B,a, by, ...,a;1,bj_1,

-j-1,bj-1,a;,B = ar,by,....aj-1,bj-1,d;,B’
aj, bj) = code(B,ay, by, ...,a;_1,bj_1,a;, B) <code(B, ay, b, ...,aj,l,bj,l,a;,B) = code(B,a,,by, ...,
aj-1,bj-1,a;, b)) (by Proposition 18; for getting < instead of < use the fact that (a;, B) # (a}, B)).

1 4jr )
Case 5: B<b;<b;.
If a<d, then INTER(ay, b, ...,a;, B)SSEMI_HULL], , .\ .
SEMI_HULLjahb“_.}qiilbel’a}’B. Thus,  code(B,ay, by, ...,aj_1,b;_1,a;,b;) = code(B,a,by, ...,

aj_1,b;_1,a;, B) <code(B, ai, by, ...,aj_l,bj_l,a]’-,B) = code(B, a, by, ...,aj_l,bj_l,a},b}) (by Pro-
position 18; for getting < instead of < use the fact that (¢;, B) # (d;, B)).

If a=a, then Db<b; (by Proposition 14). Thus, g¢(b)>g(b)). Also,
INTER(a,, by, "'vajvB)ESEMI—HULLQI,bl,...,a,-,l,b,-,l,a;,B' Thus, code(B,ai, b, ...,aj_1,bj_1,a;,b;)
= code(B,ay,by, ...,a;_1,bj_1,a;, B)<code(B,ai, b, ...,aj,l,bj,l,a]’-,B) = code(B,ay, by, ..., a;_1,
bj-1,d;,b;) (by Proposition 18). [
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Let map be a mapping from VALID to N* such that

map(ay, by, ...,an, b,) = (code(B,ay, by),g(b1),
code(B,ay,by,a,b,),9(b2), ...,code(B,ay, by, ...,a,,by),g(by)).

Now we suggest the reader to recall the properties of the ordering <. For example, note that if
Q = (INIT, COINIT) then (i,j)<o(#',j') would mean that i<i or (i =i and j>/').

Claim 2. Suppose (a,by, ...,a,,b,) and (a, b}, ...,d,, b)) are S-valid.

b
map(d,, b, ...,d b )<omap(ay, by, ...,a,,b,), then, for the least j such that
A) I B B < b by), th he least j such th
(@), by) # (@, b)), INTER(ar, by, ..., a7, b;) & SEMI_LHULL,, . o\ b\ g1y

B) If map(a,by,...,d,b,)<gmap(ai, by, ...,a,b,), Then,  INTER(ay,by, ...,a;,

ey Uy Uy

bj, ...,an,bn)g SEMI_HULLZ/ b a b
Y10 %,
O I SEMI—HULLZ,,b,,...,an,bnCSEMI—HULLZ'],b;,‘..,a;,b;v then map(ay,by, ..., a,,b,) <
omap(a\,b, ...,a,,b).

ey Uy Uy

Proof. (A) Let j be least number such that (g;, b;) # (a;, b}). Note that, for i<j, we must have

code(B,ay, by, ...,a;,b;) = code(B,d\,b, ...,a;,b.), and g(b;)) =g(b;). If INTER(a,b, ...,
aj7b/)ESEMI—HULL]al,bh...,a,-,l,b,-,],a]’.,b/’.’ then, by Claim 1 we would have code(B,a,
by, ...,a;,b;) <code(B,d\, b, ...,a]’-,bj’-) or code(B,ay, by, ...,a;,b;) = code(B,a}, b, ...,a]’-,bj’-) and
g(bj)>g(b]’-). Thus, map(ai,bi, ..., a,,b,)<omap(ay, b, ...,a,,Db),), a contradiction to the
hypothesis.

(B) Let j be the least number such that (a;,b;)+#(a},b;). Now (B) follows using part
(A) and the fact that INTER(ai,by,...,a;,b;)SINTER(ai,b, ...,a;b;, ...,a,b,) and
SEMI_HULLY ; 4y . 1 SSEMI-HULL ;.

©) Follows from part (B) and INTER(ay, by, ...,a;,b;, ...,a,b,) =
SEMI_HULL! , ... O

n

n

We now continue with the proof of the theorem. The aim is to construct & which maps

Y
SEMI_HULL; ,, ., tO Lmap(al,hl,...,a,,,b,,)'

Note that definition of ¥ mapping grammar sequence converging to a grammar for

Lgap(al,bl,...,ambn) to a grammar sequence converging to a grammar for SEMI_HULLZI’,,I"M%,}"
would be trivial. We thus just define ©.

Without loss of generality, we will be giving @ as mapping sets to sets.

For any finite X< N?, let Prop(X,ay, by, ...,a,,b,) be true iff following two properties are
satisfied.

(A) (a1 , b], R bn) € VALIDs.

(B) For all (d),b),...,d,,b,)e VALIDg such that map(d|,b!, ...,d,, b)) <omap(a, b, ...,

dnby), X & SEMI-HULLY 0 .
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Note that condition (B) above is equivalent to

(B') For all j, 1<j<n, (B'.1) and (B'.2) are satisfied.

(B'.1) For all dje N,be S, b;<B,

if code(B, a, by, ...,aj,l,bj,l,a;,b})<code(B,a1,b1, .eyaj_1,bi_1,a;,b;)), then

[(X¢ SEMI_HULL ).

/ /
a,by,... aj-1,bj-1,d,b;

(B'.2) If B<b;, then for all bj’.eS such that bj<b]’-, X<¢ SEMI_HULL

ar,bu,....ap-1,bj-1,a;,b}"

Note that B'.2 above is equivalent to

(B".2) If B<by, then for least b}e S such that b;<b}, X & SEMI‘HULLja],bl,.‘.,q,-,l,bj,l,aj,bj’.'

Note that whether X, ay, by, ...,ay, by, satisfy (A) and (B'.1) and (B".2) for all j, 1<j<n, is
effectively testable.

Thus, for any finite set X = N2, let

O(X) = L.ty | Prop(X an,bu, ... b))

For infinite X', @(X') = Uyc v carax)< o0 @(X)-
It is easy to verify that
(1) for any X< SEMI HULL"

alvblvnwan-bn’

0
© (X) = Lmap(cq by an,by)

(due to clause (B) in definition of Prop above, and the fact that for any valid I and I,

map(I) < g map(I'), implies Lanp( ngap([,

N )), and
(2) for any finite set X =N? such that {(x,y)eN?|x<maxinter(a,bi, ... ,a,,b,) and y =

min({)/'|(x,)")eINTER(ay, by, ...,a,,b,)})} = X =SEMI_HULL"

aj ab] gee- 7a117bn7
0
@(X) = Lmap(a; ,b],.‘.,a,,,b,,) ’

(By Claim 2(B), and definition of Prop and ©).

Thus, we have that ©(SEMI_HULL}, , ., )= O]

’nap(al»bla-»-;ambn).

Now we will show that the above theorem is in some sense optimal. That is, for Q =
(91,92, -, Qon—1,q2n), Where g1 = INIT, and q»;» = COINIT, for i<n, and any Q'€ BASIC*,
if #2¢™EX @0 then SEMI_HULL"S <™®* 22 Thus, Q in the above theorem cannot be

improved if we use components only from BASIC (whether we can improve it by using some
other basic components is open).

Theorem 4. Suppose ne N*, 1 <j<n. Suppose S is any rat™-covering set.

(1) Suppose (ai,b, ...,a;_1,b;j_1) is S-valid.

Let Q = (q1,92, -, @2(n—j+1)), Where qoiyy = INIT and qai» = COINIT (for i<n — j). Suppose
Q' € BASIC* is such that 92 < %9 .

Then

{SEMI—HULLZI,bI,...,a,,l,h,,l,a;,b;...,u;,b;’(al’blﬁ ...,aj,l,bj,l,a]’-,bj’»...,a;,b;) is S-valid} < TXEx 0
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(2) Suppose (ai,bi,...,aj_1,bj_1,a;) is such that there exists a b, such that
(ai, by, ...,aj—1,bj_1,a;,b;) is S-valid.

Let Q = (q1, .-, @o(n—j)+1), Where qaiy1 = COINIT , for i<n — j, and qyiy2 = INIT, for i<n —j.
Suppose Q'€ BASIC* is such that 2 < %2

Then {SEMI-HULLzl,bI,,..,aj,l,hj,l,uj,bj’..,.,a;l,b;l|(a17b17 ...,aj,1,bj,1,aj,b}...,a;,b;) is S-valid}
$TxtEx$Q’.

Proof. The intuitive idea of the proof is to use @’s to diagonalize against sequences of COINIT
and b’s to diagonalize against sequences of INIT.

For a fixed n, we prove the above theorem by reverse induction on j (from j =n to j = 1). For
each such j, we first show (2) and then (1).

Base Case: j = n, for (2):

In this case Q = (COINIT).

Now COINIT<™SEMI_HULL], , . . u|(a¢,bi,...;a¢n 1,6y 1,0, b,) is S-valid}
as witnessed by @ and ¥ defined as follows.

Let /2 be an isomorphism from Z to S such that A(i)<h(i + 1).

For any set YN, let O(Y) = U;.y SEMI_.HULL], ,

<ylp—1 bu1 sdn 7h(i) ’
It is easy to verify that @(Ll-Q) =SEMI_HULLy , . . ) Let ¥ be defined as follows.

- 5 s c 5 c n
If a sequence o of grammars converges to a grammar for SEMI_H ULLal,bl,m’a’H’bH,amh(l.), then

¥ (a) converges to a grammar for LI.Q.
It is easy to verify that ® and ¥ witness that
COINIT <™™{SEMI_HULL , . . . yl(a,bi,....au1,b0-1,a,b)) is S-valid}.

Thus, since COINIT <™ ¥ (2) is proven for j = n.

Induction Case (for (1)):

Suppose for j>;', we have shown both (1) and (2), and for j = j/, we have shown (2). Then we
show (1) for j ="

Note that Q = (q1,92, .., q2(n—j+1)), Where gaip1 is INIT and gaiyr is COINIT, for i<n —j.
Without loss of generality assume that Q' contains at least one INIT or HALF (otherwise just add
INIT at the end of Q). Suppose Q' = (4, ..., 41> U D15 ----q;), Where ¢y, ...,q,_, are
COINIT, ¢, may be either INIT or HALF, and for k + 1<i<!, ¢,e {INIT, COINIT, HALF?}.
Without loss of generality assume that ¢, is INIT (since otherwise we could just
replace ¢, = HALF with (COINIT,INIT) and consider Q' = (¢}, ...,q,_,, COINIT,
INIT, q;,\, ..., q)))-

Now, by hypothesis we know that #¢ ¢ ™Ex 2" Thus, by Corollary 1, Q is not a pseudo-
subsequence of Q'. Now consider Q” obtained from Q by dropping ¢ = INIT, Q" obtained from
Q' by dropping ¢, ¢, ...,q;_,;- Now, Q is not a pseudo-subsequence of Q" by repeated use of
Proposition 9(b), and thus Q" is not a pseudo-subsequence of Q" by Proposition 10(a). Thus, by

Corollary 1, 22" ¢ T™Ex 0"
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Now, suppose by way of contradiction that @ along with ¥ witnesses the reduction
{SEMI_HULL! [(a1,b1, ..., a1, bj1,d, by a4, b)) is S-valid }

al,bl,..‘,q/_l,b,_l,a;,b;.‘..,a;l,b; oY% ¥n
<TxtEx$Q"
Recall that SEMI_HULL® is N, Let
. i—1

vr = min({uy|(Jua, ..., u)[{ur,uny oo up ) e@(SEMI_HULL]%,)I7._7[[/_71’17/71)]}).

For 1<i<k, let
vi = min({u| Gy, o)) [v1, oo O Uy oD e@(SEMI_HULLJ‘;L]7_._’%_71ybH)]}).

Let o be such that content(o) QSEMI_HULLJ;;’ZIP

UL, 02y eeny U1, Uy .., U1 » EO(0).
Let a;j>max({xeN|(3yeN)[{x,y) econtent(s)]}) be such that, for some b;, (a,
bi,...,aj_1,bj_1,a;,b;) is S-valid. Note that, for all b7 a’ b} a’,b"”  such

a1 b_,» and there exist u, ..., u;, such that
a1

JO D Y e P Yo
that (ay, by, ...,aj_l,bj_l,aj,b]’.’,a]'-ﬂrl,bj’-ﬁrl, ey dn bl is S-valid, content(o) <
SEMI_HULLZl’bl_’_MaH,b/_th/_yb/,_,ya/,_,ﬂyb/,_,ﬂ,.__’a:lsz. Thus, @ (along with ¥) essentially witnesses that
{SEMI_HUL Zl,bl,...,aj,,,b,,,,a,,b;....,a;,b;,‘(alvblv @, bjy,a by ay, b)) is S-valid )
<TxtEx$Q”’

(since parameters for the first k — 1 COINITs in Q' are fixed to be vy, ...,vx_1). This is not
possible by induction hypothesis (since #2" ¢ TXEx ¥y,

Induction Case (for (2)): Suppose for j>;', we have shown both (1) and (2). Then we show (2)
forj =

In this case, Q = (91,92, ..., @2(n—j)+1), Where gaiy1 is COINIT, for i<n — j, and ¢y;y2 is INIT,
for i<n — j. Without loss of generality assume that Q' contains at least one COINIT or HALF
(otherwise just add COINIT to the end of (). Suppose Q' is of form (¢}, ....q, . ¢}, ---.4q)),
where ¢}, ...,q,_, are INIT, ¢, may be either COINIT or HALF, and for k+ 1<i</,
q;e{INIT, COINIT ,HALF}. Without loss of generality assume that ¢, is COINIT (since
otherwise we could just replace ¢, = HALF with (INIT,COINIT) and consider
O = (4}, ..o, @4_, INIT, COINIT , q;, .|, ..., q}))-

Now, by hypothesis we know that #2 <™ #? Thus, by Corollary 1, Q is not a pseudo-
subsequence of Q. Thus, for Q" obtained from Q by dropping ¢; = COINIT, Q" obtained from
Q' by dropping ¢, ¢5, ..., qj._, (note that g is COINIT, while the first ¢ in Q" is INIT), Q" is not a
pseudo-subsequence of Q" (this case is similar to the one in Induction Case for (1) with INIT's and
COINITs reversed). Thus, by Corollary 1, #¢" ¢ TXEx 0"

Suppose by way of contradiction that @ along with ¥ witnesses the reduction

{SEMI_HULL} (a1,b1, ..., aj-1,bj-1,a;,b; ..., b)) is S-valid }

al,bl,...,a/-,l,b,-,l,ahbj’....,a;,,b,’l % Y
< TxtEx Q'
Let X = {<uy,uz, ...,u; y|(ay, by, ...,aj_l,bj_l,q,-,b;...,a;,b;) is S-valid, and
O(SEMI_HULL" =LY

aybi,....a 7bj—laaj7bj/-'-~7a;,sh£,) uhuz,.--,u/}'
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Let v; = min({u;|(Jua, ..., u;) {ur,ua, .. yup ) €X}).

For 1<i<k, let v; = min({u; | (Fuir1, ... up) V1, ooy Vi1, Usy oyt » €X}).
/ Y _ 4
Let b}, ...,a,,b, be such that @(SEMI_HULLZIJ)lw"uH7,7/_717%__’,)],_'“#,”717,”) —Lle,..,vk,l,uk,...,u, for
some U, ..., Uj.

Let us fix a byj>Yk—"h, beS. Then, for any d/,b", j<w<n, such that

=j wr Ywo
(a1, by, ...,a;,b;,a}, b a,, b)) is S-valid, we have that

1 10 e ¥y P
n _ 70
@(SEMI—HULLal7171-,-~-«,!l/71,bjflyaj7bj7ﬂ,’»’+,717;/“7--»325172') - Lvly---,kalﬁukw--ﬁul’
for some values of u,...,u; (due to monotonicity of ©; note that
j n ..
SEMI—HULLaI,bl,...gf,I,b,-,l,a,-,b,-9SEMI—HULLu],bI,...,a,,I,bj,l,aj,h;...,a;ﬂbgl by Proposition 15, and,
n n
therefore, SEM]_HULL(J],bl,...,aj,l,bj,l,aj,bj,a;.;],b;;l,‘..,ag,b;’ ESEMI_HULLal,bl.,...,aj,hbj,],aj,b;.‘.,a,’l,b,’,’ but
v, ...,Ur_1; are chosen to be the minimum possible values, thus only uy,...,u; can vary for
a// b// a// b//
i1 i irs e s by).
Thus, @ (along with ¥) essentially witnesses that
n " i 1 /!
{SEMI—HULLaI,bI,...,aj,l7bj,1.a/-,bj,aj’/+l,b]’.’+]...,,aZ,bZl(al7b17 --~7ajflabjflaahbjaaj+17bj+17 ---7anabn)

is S-valid } <TxEx Q"

(since parameters for the first k — 1 INITs are fixed in Q' to be vy, ..., vx_1). This is not possible by
induction hypothesis (since 2% $Txt1<:x ng). O

Corollary 6. Suppose S is rat™-covering. Let Q= (qi,...,qum), where qy1 = INIT and
¢riir = COINIT, for i<n. Suppose Qe€BASIC* is such that %°< %Y. Then,
SEMI_HULL"S ¢ ™Ex g0’

8. O-classes which are reducible to SEMI_HULL"S

In this section, we establish the best possible lower bound on the complexity of SEMI_HULL"™S
in terms of the Q-classes. One can ask the question: using a learner powerful enough to learn
SEMI_HULL"™S, can a learner learn languages from the hierarchy based on BASIC? The next
result shows that, using a learner able to learn SEMI_HULL"S, one can learn all languages in
(HALF,INIT, ...,INIT), where INIT is taken n — 1 times.

We begin with two useful technical propositions.

Proposition 19. Suppose S is ratt-covering. Then there exists an S'SS, such that S’ is
rat*-covering, and for all b,b' € S’, if b<b' then 2b<b'.

Proof. Suppose / is an isomorphism from Z to S such that A(i) <h(i 4+ 1). Define /' as follows:
I (0) = h(0). Suppose we have defined #/(i) and /'(—i). Then define /(i + 1) and #'(—i— 1) as
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follows. 4'(i 4+ 1) = h(j), such that h(j) >2/ (i), and /' (—i — 1) = h(j") such that h(j') <l (—i)/2.
Note that such j and ;' exist since S is rat™-covering. It immediately follows that S" = range(/')
satisfies the requirements of the proposition. [

Proposition 20. Suppose S'<S. Then SEMI_HULL"S <™EXSEMT HULL"S.
Proof. Follows trivially, since SEMI_HULL™S = SEMI_HULL"™S. [

Theorem 5. Suppose S is ratt-covering. Let ne N*, and Q = (q1,42, .-, qn), where qg = HALF,
and for 2<i<n, ¢q; = INIT.
Then, ¢ <™EXSEMI HULL™S.

Proof. The intuitive idea of the reduction is as follows. Fix the first break point to be a; = 1. The
first HALF-component can be reduced to the first slope b;. Then the (j — 1)th INIT-component
is reduced to a;. Then b; is fixed based on ¢; in such a way that j;<i; would imply a;<a; and
bj>bi+ 3 i i<y bis for any potential values of b}, i>. This ensures the desired monotonicity in

the deﬁnltlon of the reducing operator 6.

Now we proceed with the formal proof.

Without loss of generality (using Propositions 19 and 20) we can assume that

(PropertyH) for each b, € S, if b<bd', then 2b<b'.

Let /1 be an isomorphism from Z to S such that A(i)<h(i + 1).

For iyeZ, and iy, ...,i,e N, let map(iy, is, ..., i,) = (a1, b1, ..., an, b,), where a;,b;, 1 <j<n are
defined as follows: a; =1, by = h(i; — a;). Suppose we have defined ay,by, ..., ax, br. Then let
A1 = {xeN|x>ar, [} <j<i bi* (x~a;)]eN}, and then let ai,1 to be the (i1 + 1)th least
element in Agyy. Let by = h(iy — axs1).

Claim 3. (i1, 2, ...,in) <o(i}, 15, ..., 1) implies SEMI_HULL"S =SEMI_ HULL"S

map(iy,..., map(i',...,i0)"

!

Proof. Suppose (i1, i, ...,1,) <g(if, 15, ..., 1,). Suppose map(iy, ..., i,) = (a1,by, ...,a,,b,) and
map(iy, ...,1) = (a},b), ...,a,,b)).

We consider the following cases.

Case 1: i, >1).

In this case,
(1) by >0}, and
(2) ay =d|, =1.

From (1) and (PropertyH) it follows that
(3) by >2xb.

Now, for 1<z<n since a;<dj_ |,
1 <i<n by hypothesis about elements of S.

and b} = h(iy — a;), we have b;>Db,, . Thus, b;>2 b/, for

i+1
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Thus, >, .,c, b;<2b}. Along with (3), we have that by>3" _;,_, b;. This along

with (2), Propositions 11 and 15 gives SEMI_HULL.S —  <SEMI_HULL) <
S
SEMI_HULLYS, .

Case 2: For some j, 1 <j<n, for 1<k <j, ix =i}, but i;<i.

In this case,

(4) a; = d; and b; = b}, for 1<i<j.

(5) bj>Db;, and

(6) a;<a.

From (5) and (PropertyH) it follows that

(7) bj>2 % b;.

Now, for 1<i<n, since a;<a,,,, and b; = h(i| — a;), we have b;> b, . Thus, b;>2 b/, for
1 <i<n by hypothesis about elements of S.

Thus, >, ;c, bi<2b. This, along with (7) gives us that b;> > ., b;. Thus using (6),
Propositions 11 and 15 we have SEMI—HULLZbe,_“,an,bn ESEMI_HULLbeh_“’%_’b/ c
SEMI_HULL"S,

IBOEE

Claim follows from above cases. [

/ / .
.a,,bl,

For any X< N, let O(X) = LJ@]P__JDE)(SEMI_HULL"WP([1 i)
Thus, it follows that @(LY, )= SEMI_HULL"S

i1, i map(it,...,in)*
Define ¥ as follows. If a sequence « of grammar converges to a grammar for

SEMI_HULL"® ) then ¥ (x) converges to a grammar for L2,

map(iy, ..., i 1,02y sin”

It is now easy to verify that ® and ¥ witness that 2 <™EXSEMT HULL®S. O

We now show that the above result is in some sense the best possible with respect to the Q-
classes considered in this paper. For example, as Corollaries 9 and 10 show, being able to learn the
classes SEMI_HULL™S cannot help to learn languages even in the classes (COINIT, COINIT)
and (INIT,COINIT).

The following technical result will be used to show that the Q-classes with n+ 1 INITs in Q
cannot be reduced to SEMI_HULL"™S.

Theorem 6. Let ne N*. Suppose 0<j<n. Q= (qi1,92, ..., qn+1—j), where q; = INIT, for 1<i<
n—j+1. Let R=R; X Ry x -+ X Ryy1_j, where Ry is of cardinality at least 2 and, for
2<i<n+1—j, R; is an infinite subset of N. Suppose S is rat*-covering, and (ai, by, ...,a;,b;) is
S-valid.

Then

DS,”Q’R$T’“EX{SEMI_HULLZI7b17._.’qf7b_‘a, boan (@b by b d.b)

i 15015 YD V4L o P Y
is S-valid}.
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Proof. We prove the theorem by reverse induction on j (from n to 0). For j=mn,

the theorem clearly holds (since Z%® contains at least two languages, whereas
{SEMI‘HULLZI,bl,...,a,-,b,-,aj’.ﬂ,b/’.ﬂ,4..,11;,,17{1 | (a1, b1, ...,a;,b; a}+1>bj/'+1v wo,d,, b)) is S-valid} contains
only one language).
So suppose the theorem holds for ;' <j<n. Then, we show that the theorem holds for j = ;'
Suppose by way of contradiction that @ (along with some Y¥) witnesses that

,R ~ TxtEx n / / / /
gQ < {SEMI—HULLaI,bl,...,tlj,b/,tl;-ﬂ’b/-H;---sa;,st | (alabla -..,aj7bj7aj+l7bi+la -..,awbn)

is S-valid}, for some S-valid (ai, by, ..., a;, b;).
Let w be the minimal element in R;. For i€eR,, suppose @(Lgi.min(R;).min(Rﬁ;) )=

SEMI_HULL'"

a1, by () (senesin (1) () If, as i varies, a;j.1(i) takes arbitrarily large

/ / 0 _ J ;
value then, for w'>w, weR, @(Lw',min(Rz),min(&),...) = SEMI_HULLahbh._#/_’b/ and is
thus not a member of {SEMI_HULLZI,bl,..‘,aj,bj,a/’,ﬂ.b".H,..‘,a;,b;|(a1’b17 ...,a/,bj,a}+l,bj’.+l7 e

a . b)) is S-valid}.

n)»=n

So suppose ij € R, maximizes a;;1(i1). Now for i>iy, if b;,1(i) takes arbitrarily small value,

0 J
then for w'>w, O(L g, min(ry),. )2 Ub}ﬂes SEMLHULLaI,b1,...,a_,-,b,-,a,-ﬂ(il),b]’.ﬂ' However,
any member of {SEMI_HULLZI7b1,...,a,-,b,-,a;-+17b;+1a---,a;,,b;l‘(Cll,bl, ...,aj,bj,q;+1,b}+l, cdy, b)) s
. . . . . /
S-valid}, misses out infinitely many elements in Ub}+leS SEMI-HULLaI,bl,...,a,,b,gm(i,),b;ﬂ' Thus,
0
@(Lw’,min(Rz)‘,min(Rg)ﬁ... ) ¢
{(SEMI_HULL) i (@151 i@, by, @ B ) s S-valid).
So, suppose i, > iy, ir € Ry, minimizes by (iy).
Thus, @ (along with ¥) essentially witnesses that
'R _ TxtE; . .
gQ < X{SEleHULLZhb],.‘.,(ljybj,aﬂ»l(iZ)abj+l<i2)7a;+27b]/'+21“'aa;ﬂb;z ‘ (a17b17 -.-7aj7bj7 aj+1(12)7 bj+1(12)7
@iig by oony iy, by) is S-valid}, where O is obtained by dropping ¢; from Q. R’ is obtained from R

by dropping R; and changing R, to Ry — {x|x<i}.
This is a contradiction to induction hypothesis. [

Corollary 7. Suppose Q = (q1,92, ..., qn+1), wWhere q; = INIT, for 1<i<n+ 1. Suppose S is
rat™-covering.
Then, 2 <™ SEMI_HULL"S.

Proof similar to the one used in proving Theorem 6 above can be used to show the following
theorem (we just need to interchange the role of w and w' in the proof, for j = 0 case).

Theorem 7. Let neN*t, and Q= (q1,492, ---,qn+1), where qi = COINIT, and q; = INIT, for
2<i<n+ 1. Let R=R; X Ry X -+ X Ryy1, where Ry is of cardinality at least 2 and, for 2<i<
n+ 1, R; is an infinite subset of N. Suppose S is any rat*-covering set.
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Then, 2R ™EXSEMT HULL™S.

Corollary 8. Suppose Q = (q1,92, ---,qu+1), where q = COINIT, and q; = INIT , for 2<i<n+ 1.
Suppose S is rat"-covering.
Then, #° <™ XSEMI_HULL"S.

Do there exist Q-classes reducible to SEMI_HULL"™S with COINIT on the second or greater
positions in Q? Our next results show that even (COINIT, COINIT) and (INIT, COINIT) are not
reducible to SEMI_HULL"™S.

Based on Corollary 3, let us define <ya4 as follows.

Definition 19. Suppose (a1, by, ...,a,,b,) and (a},b), ...,a,, b)) are valid. Then, (a;,b, ..., a,, by)

Yy T n
<valida(d}, by, ...,d,, b)) iff there exists an i, 1<i<n such that, for 1<j<i, aj:a]’-, bj:b]’-

ey Uy Uy

and a;<a. or a; = a; and b;>b’.

Note that <4 imposes a total order among valid sequences of form (ay,by, ...,a,,by,).
Moreover, SEMI HULL ,  , , <SEMI HULL}, , . ,, implies (ai,bi, ..., an, by)<yaid
YW lyeeestnsUn 1210y

(. B, o).

T Un

Similarly define (al,bl, ---,an,bn)gvalid(all,b/p . a b/) iff (al,bl, ...,an,b,1)<va1id

% P
(d), by, ....,d,. b)) or (a1, by, ...,ay,b,) = (d,b}, ...,d,, D).

>valid and > ,ig can be similarly defined.

For any fixed neN, X<{(a,by, ...,ay,by)|(a1, by, ...,an,b,) e VALIDs}, let maXy,iq(X) =
(a1, by, ...,an,b,)eX, if any, such that (¥Y(d},b),...,a,,b,)eX)[(d,,b,...,d,,b))<vaid
(alablv --'7an7bn)]-

Similarly, let miny,iq(X) = (a1, b1, ...,a,,b,) €X, if any, such that (V(a},d},...,d,,b,)eX)
[(alabl) ~-'aanabn)<valid(a/1ab/1a AN 4 )]

Sty Tn

Proposition 21. Suppose ne N, S is rat*-covering, and X ={(ay, b, ..., an,b,) | (a1,by, ..., ay, b,) €
VALIDs}. Then, if miny,iq(X) does not exist, then no subset of ((\;.y SEMI_HULLY) belongs to
SEMI_HULL"™S.

Proof. Suppose S, X is given as above, and miny,jiq(X’) does not exist. Then, there exists a j, such
that for some ay,bi,...,a-1,bj_1,a;, there exist arbitrarily large b; such that
(ai,by, ...,aj—1,bj_1,a;,b;, ...) e X, for some a1, bj41, ...,a, b,, (Which may depend on b;). Thus,
MNrex SEMI_HULL!<{(x,y)|x<a;}. But no subset of {(x,y)eN?|x<a} belongs to
SEMI_HULL"S (any language L in SEMI_HULL"® satisfies: for all x, there exists a y such
that (x,y)el). O

Theorem 8. Suppose S is rat™-covering and ne N. Let Q = (COINIT, COINIT), R = R; X R,
where Rj is infinite, and R, contains at least two elements. Then ¥ O.R $TXtEXSEMI_H ULL"S.
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Proof. Suppose by way of contradiction that Z2R<™EXSEMT HULL™S as witnessed by ©
(along with V).
Let w = min(Ry). Suppose @(LS,) = SEMI_HULL], .\, () 4 (5 (x) fOF XER2.

Note that, for x<x/, x,xXeRy, @(L%x)D@(L%x,
(a1 (x), ..., by(x)) > vatia (a1 (X), ..., by(X")), by Corollary 3.

Let X = {(a1(x),b1(x), ..., ay(x),buy(x))|x€ Ry }.

If minyg(X) does not exist, then for any w;>w, weR; and wyeRy,
O(LS ,.) < Nyer, SEMI_HULL] (\, , , does not belong to SEMI_HULL"® by

wi,W2

). Thus, for x<x', x,xX€Ry,

Proposition 21.

So suppose x; € R; is such that miny,g(X) = (a;(x1), b1 (x1), ..., an(x1), by(x1)). But then, for all
x=xi, (a1(x), ..., by(x)) <vaiida(ai(x1), ..., by(x1)) (due to monotonicity of @). Thus, for all x> x;,
XERy, (ai(x), ...,by(x)) = (a1(x1), ..., bu(x1)). A contradiction to © (along with ¥) witnessing
that ZOR<T™EXSEMT HULL™S. O

Corollary 9. Suppose S is rat™-covering, and neN. Let Q= (COINIT,COINIT). Then
POg™EXSEMT HULL™S.

Similar to Theorem 8 we also have the following theorem (for proving it, we just need to
interchange the roles of LZ and L¢ _ in the proof of Theorem 8).

Theorem 9. Suppose ne N and S is rat™-covering. Let Q = (INIT, COINIT), R = R| X Ry, where
R, is infinite, and R, contains at least two elements. Then & Q°R$TXtEXSEMI_H ULL™S.

Corollary 10. Suppose S is rat*-covering. Let Q = (INIT, COINIT). Then
PO g™EXSENMT HULL™S.

9. Definitions for complements of open semi-hull

In this section, we define the classes of complements of SEMI_HULLs and establish some
useful propositions following from appropriate definitions.

Definition 20. Suppose a1, ...,a,€ N and by, ..., b,erat™, where 0<a; <ar < --- <ay,.
coSEMI_HULLY, ;. by . ar b, = {(x, y)eN?y< E b; * (x—'a,-)}
1<i<n

=N?> - SEMI_HULL"

ar,bi,az,b, ... ,an,by"

Definition 21. Suppose S<rat™ is rat™-covering.
coSEMI_HULL"S = {coSEMI_.HULL!, , ., |(a1,b. ..., b;) € VALIDs}.
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Proposition 22. Suppose (ai, by, ...,a,,b,) and (a},b}, ..., d, b)) are valid.

Y VmY Y m

Then, SEMI_HULLZI’bI’mamb”ESEMI_HULLZ?“Hl @b iff coSEMI_HULLZthWﬂmbn2
coSEMLHULLZ? b b
110

m*m

seney

Proof. Follows from the definitions. [

Definition 22. Suppose a1, by, ...,,a;,b; are given such that (ai, by, ...,a;,b;) € VALID. Then, let
coINTER(al,bl, ...,Clj,bj) =

U{coSEMI_HULLY, ,, . b |0Zin (a1 b1, . a;b;), .. an,by) € VALID} =

N? — INTER(a, by, ..., a;,b;).

Proposition 23. Suppose 1<j<n, and (ay,b, ..., ...,a,,b,) and (a\,b|,...,a,, b ) are valid.
Then coINTER(a), by, ...,a,,b,)2coSEMI_HULL, , ., iff INTER(d),b),...,a,,b,)<

SEMI_HULL} , . .

Proof. Follows from the definitions. [

Proposition 24. Suppose (a1, by, ...,aj_1,b;—) is wvalid Let (x,y)eN* be such that
y> Zl<i<j bi(x=a;). Then, there exists a B erat™ obtainable effectively from ay, by, ...,a;_y,
bi_1,x and 'y such that for any (a},b}), if (al,bl,...,qj_l,bj_l,a},b;), is wvalid and
(x,y)ecoINTER' " then a;<x and b;>B'.

ar,by,....ap-1,b5-1.4;

Proof. Follows from Proposition 16. [

10. Classes to which coSEMI_HULL™S is reducible

In this section, we obtain nearly the best possible upper bound on the complexity of
coSEMI_HULLs in terms of Q-degrees. Intuitive upper bound £2 for Q = (q1,¢2, ..., @21, q2n)
with ¢»;.1 = COINIT and ¢y, = HALF can be easily established using the following learning
strategy for coSEMI_HULL™S: apply a COINIT-type strategy to learn the first break point a;,
then apply a HALF-type strategy to learn the first slope by, etc. However, the upper bound
established below contains only 7 + 1 components!

Theorem 10. Suppose ne N and S is rat™-covering. Suppose Q = (q1,q2, ..., qn+1), Where q; =
INIT and q; = COINIT, for 2<i<n+ 1. Then coSEMI_HULL™S <T™tEx ¢Q

Proof. The intuitive strategy for learning coSEMI_HULL™S providing the desired upper bound
operates as follows: first, it applies an INIT-type strategy to learn a bound on the maximum
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slope: ), b;; then, using this bound, it applies COINIT-type strategies to learn every pair of
parameters a;,b;. This COINIT-type strategy is in some sense mirror image of the INIT-type
strategy used in the proof of Theorem 3. The technical details though become somewhat more
complicated.

Now we proceed with the formal proof.

Fix S which is rat"-covering. Let & be a recursive bijection from Z to S such that (i) <h(i + 1).
Fix code as in Proposition 18.

Claim 4. Suppose BeS. Suppose (ay, by, ...,a;_1,b;_1,a;,b;), (a1, by, ...,aj,l,bj,l,aj’-,b]’-)e VALIDg,

where b, b'<B, and (aj,bj);é(a},b}). Suppose  coINTER(ay, by, ...,a;_1,bj_1,d;,b,)2

7
coSEMI_HULL, \ .\ ..
Then, code(B,ay, b, ...,aj,l,bj,l,a]’-,b]’-)<code(B,a1,b1, i1, bi1, a5, bj).

Proof. By Proposition 14 and definitions of SEMI_HULL,coSEMI_HULL,INTER, coINTER,
we have that ¢;<a;.

Now, since, coINTER(ai,by,...,a;_1,bj_1,d, b’-)gcoSEMI_HULL{lhbM

/5 O; w¢e

-slj-1,bj-1,a5,b;

have INTER(ay, by, ...,aj-1,bj_1,d, b)) < SEMI_HULL, , ., .. Thus, we have
g 1,01, --,8j-1,0j-1,4;,0j

code(B,ay, by, ...,aj-1,bj-1,a,b}) <code(B,a,by, ...,a;-1,b;-1,a;,b;) (by Proposition 18; for

getting < instead of < use the fact that (a;, ;) # (@}, b;)). O

Let map be a mapping from VALID to N* such that
map(ay, by, ..., a,,b,) = (h"'(B), code(B,ay,b,), code(B,ay,by,as,bs), ..., code(B,ay, by, ...,an b)),

where B is the least element of S such that max(h(0), ", ;<, bi)<B.
Claim 5. Suppose (ay, by, ..., a,,by) is S-valid. Let B = min({beS|b>max(h(0),> <<, bi)})-

(A) Suppose 1<j<n. Suppose B=bi, and (al,bl,...,aj_l,bj_l,a;-,bj’-) is  S-valid. If
code(B,ai, by, ...,aj_1,bj_1,d,,b})>code(B, ai,by, ...,a;_1,bj_1,a;,b;). Then

7Y
coINTER(ay, by, ...,a},b}) féCOSEMI—HULLJaI,bl,...,a,-,l,b,-,l,q,-.,b,-'
(B) Suppose (a},b), ...,a,, b)) is S-valid, and map(a\,b, ...,a,,b))<omap(ai, by, ...,a,,b,).

Then either B>min({beS|b=max(h(0),> ", <,c, b))}) or for the least j, 1<j<n, such that
(aj, b)) # (d, b)), cOINTER(d}, b}, ...,d,, b)) 2 coSEMI_HULL

75 RS ar,bi,....ai_1,bj_1,a;,b;"

(C) Suppose (d\,b\, ...,d,, b)) is S-valid, and map(a\,b, ...,a,,b),)<omap(ai, by, ... a,,b,).

n’-n Y T'n) T n
Then  either B>min({beS|b>max(h(0),> ., b))}) or coINTER(a,b},...,a;, b, ...,
a bl)2COSEMI-HULLZI,bl,,,.,a,,,b

n'“n n’

(D) If COSEMI—HULLZI,hl,...,an,h,,CCOSEMI—HULLZ;,b’l,...,a'”,b;,v then map(ay,by, ...,a,,b,)<
omap(dy, b, ...,d,,b).

(E) Suppose 1<j<n. There exists a finite Xj9COSEMI—HULLZI.bl,..‘,uj,bj such that, for all
S-valid  (ay, by, ...,aj,l,bj,l,aj'-’,b]’-’), if szj’-’ and  code(B,ay, b, ...,aj,l,bj,l,a]’-’,bj’-’)>

code(B,ay, b, ...,a;_1,b;_1,a;,b;), then coINTER(ay, by, ...,aj’.’,bj’.’),éXj.
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(F) There exists a finite X<coSEMI_HULL, , ., such that, for all S-valid
(ay, b, ...,a,,b,), if B=min({beS|b=max(h(0),> ,c,c, b))}), and map(a,b,, ...,a,,b,)

T U n Sy U n

<gmap(ay, by, ...,ay,by), then coINTER(d}, b}, ...,d,,b,)2X.

YT n

Proof. (A) Follows from Claim 4.

(B) Let B =min({beS|b>max(h(0), <<, b})}). Since  map(a),by,...,a,,b,)
<gmap(ay, by, ...,an,b,), h ' (B)<h '(B). Therefore, B'<B, and we must have
min({beS|b=max(h(0),>, .., b))})<min({beS|b>max(h(0),>,c,c, bi)}) = B. If
min({beS |b=max(h(0),>,;<, b})}) = B, then let j be the least value such that 1<;<n, and
(a},b]’-) # (aj, bj). Thus, code(B, ay, by, ...,aj,l,bj,l,a},b}) >code(B,ay, by, ...,a;_1,bj_1,a;,b;). Now
part (B) follows from part (A).

(C) Since coINTER(a), by, ...,d;, b)) 2coINTER(ay, by, ..., a;, b}, ..., a,,b,) (by Proposition 12

)b e b,
and definitions of INTER and coINTER), and COSEMI-HULLJCI,I,bl.,...7aj,,,bj,,7aj7b,~—
coSEMI_HULLy , ., (Proposition 11 and definitions of SEMI_HULL,coSEMI_HULL),
part (C) follows from part (B).

(D) Suppose coSEMI_HULLZI_’b]wvambnccoSEMI_HULLZ,I_’b,l_’wa;ﬂbz. Thus, we must have
min({be S| b=max(h(0),>,;c, b)) })=min({beS|b=(h(0),>, ;<, bi)}) (since otherwise,
for all but finitely many x, >, ., bi(x=a)>1+>,;,., bi(x=a;), which would contradict
coSEMI_HULL}, , ., <coSEMI_HULLY ;).

%Y n

If min({beS|b=max(h(0),> <, b))})>min({beS|b=max(h(0),>,.,., bi)}), then
clearly, map(ai,by, ...,a,,b,) <gmap(dy, by, ...,a,,b,). If min({beS |b=max(h(0),> <, b))})
=min({be S |[b=>max(h(0),> <;<, bi)}), then (D) follows from part (C), and the fact that
coSEMI_HULLy s . » ScoINTER(d},b}, ..., d,,b,).

(E) Let (x,y)eN? be such that (X’J’)eCOSEMI—HULLZI,bl,..‘,aj,bj9COSEMI—HULLZI,b,,‘..,an,b

but y> >, bi(x=a;). Note that there exists such (x,y).

n’

By Proposition 24, there exists a B’ erat™ such that, if (x,y)ecoIN TER . ua, then
a,by,...aj-1,bj-1.a] b

aj’-’<x and b]’->B'. Thus, it follows that for any (a]'-’,bj’-’), if a}')x, or b]'-’<B’,

(x,y)¢coINTER(ay, by, ...,aj_l,bj_l,aj’.’,b]'-’). Now, for each a]’-’<x, and bj’.’eS such that

B'<b/<B, if coSEMI.HULL, , & coINTER(ai,bi,...,a;1,b;1,a/,b/), then pick

7%
J
Xar s Va b such  that (Xq;',b;',yq;zb_;’) ecoSEMI_HULLal7b1,__.7ql_’b/_ — coINTER(ay, by, ...,a;_1,

b, dl, by if coSEMI_HULLLI’bhm’aﬁbjgcoINTER(al,bl, o1, by, dl b)), then  let
(Xar b, Var ) = (X, 9)-

Now let X; = {(x, )} o {(Xar sy, Var ) |af <x, B'<b}<B,b/eS}. Using part (A), it is easy to
verify that X; witnesses the claim of part (E).

(F)  Let X=Ug<, X where X; is as in part (E). Now, if
map(ay, by, ...,a,,b,)<omap(ai, by, ...,a,,b,), and B=min({beS |b=max(h(0),> <, b))}),

then there exists a j, 1<j<n such for I1<i<j, a;=da, and b;=05, and
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code(B,ay, by, ...,a_,-,l,b_,-,l,a/,b/)>code(B,a1,b1, ...,aj_1,b_1,a;,b;). Part (F) now follows from
part (E) and definition of X. [

We now continue with the proof of the theorem. The aim is to construct @ which maps
coSEMI_HULL} ,  , , to Lmap(a1 Do anb)”
Note that definition of ¥ mappmg grammar sequence converging to a grammar for

0 : n
map(as,br ... ) to a grammar sequence converging to a grammar for coSEMI_H ULL, ;. a,

would be trivial. We thus just define 6.

Without loss of generality, we will be giving @ as mapping sets to sets.

For any finite X = N2, let Prop(X,ay, b1, ...,a,,b,) be true iff following three properties are
satisfied. Let B =min({beS |b=h(0) A (¥(x,y) e X)[b=1]}).

(A) (a1,b1, ...,a,,by) e VALIDs,

(B) B=min({be S| b>max(h(0),>,;<, bi)}), and

(C) If B=min({beS|b>max(h(0),> <, b:)}), then for all j, 1<j<n, for all ;e N,bieS
such that (ay,by, ... a,-_l,bj_l,aj,bj) is S-valid, B=0b; and code(B, ay, by, ...,a;- l,bj l,a/,bj)
>code(B,ay, by, ...,a;_1,bj_1,a;,b;)), [X & coINTER,, p, . a,,l,b,.,l,aj’.,bj’.]-

Note that whether X,a;,by,...,a,,b,, satisfy (A) and (B) and (C) is effectively
testable.

Moreover, (C) along with definition of B above implies that

(D) For all (d),b),...,d,b,)e VALID such that bieS and map(a)},b,,...,a,b,)<
omap(ay, by, ..., a,,b,), X& coSEMI_HULL(d\,b}, ...,d,,b)).

Thus, for finite X = N2, let

U{ map(ay,by,...,an,by)

FOI‘ lnﬁnlte X’, @(X/) - UXEX/, Card(X)<Cﬁ @(X)
It is easy to verify that
(1) for any X ccoSEMI_HULL ,

.....

(X alabla --~>an7bn)}'

NN

0
@(X) Lmap(al,bl \nsbi)

(by (D) and the fact that for any valid I and I’, map(I) < gmap(I’), implies Lmap( n< map 0 ), and
(2) for all S-valid (ay,by,...,a,,b,), by Claim 5(F), there exists a finite

9
X<coSEMI_HULL} , ., such that O(X) QLmup(al,bl,...,an,bn)'

Thus, we have that @(coSEMI_HULL], , p) = O
1,015...,dp,0p

0
Lmap(al 1b1 seee ;an-,bn) :

The construction in the proof of above theorem can be slightly changed along the following
lines: instead of learning first the bound on the maximum slope, one can first apply a COINIT-
type strategy trying to learn the parameters a;, b; under assumption that b; is smaller than some
fixed bound Berat', and then apply an INIT-type strategy to learn both the bound on the
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maximum slope and b; if the latter becomes greater than the bound B. Thus, we obtain the
following theorem.

Theorem 11. Suppose ne N and S is rat™-covering. Suppose Q = (q1,q2, ..., qn+1), Where q; =
INIT and ¢; = COINIT, for 1<i<n—+1, i#2. Then coSEMI_HULL"S <™Ex ¢Q

11. Classes which are reducible to coSEMI_HULL"S

In this section, we will get a lower bound for coSEMI_HULL™S having n components, and thus
being very close to the upper bounds obtained in the previous section.

The proof of the following theorem is similar to the proof of the lower bound for
SEMI_HULLs, with COINITs replacing INITs.

Theorem 12. Suppose S is rat™-covering. Let ne N*, and Q = (q1,42, .-, qn), where qg = HALF,
and for 2<i<n, q; = COINIT.
Then, 9 <™EXcoSEMI_HULL™S.

The proof of the above theorem is given in Appendix A.

Note that upper and lower bounds for coSEMI_HULL™S given by Theorems 10-12 do not
match. The lower bound in Theorem 12 above is the best possible (for Q-classes involving
components from BASIC). However, it is open whether the upper bound can be improved for
general n. For n =1, we do know that the upper bound can be improved to show that
coSEMI_HULLYS <™EX 4 F (which is optimal by Theorem 12).

12. Open hulls—intersections of semi-hulls

Now consider the class of language-figures that are intersections of SEMI_HULLs adjacent to
the x-axis (that is with the first break point (a;,0)) and reverse SEMI_HULLs adjacent to the
y-axis (with the first break point (0, d})). These figures are the open hulls.

We give the formal definition below (preceded by the formal definition of the reverse
SEMI_HULLs adjacent to the y-axis).

Definition 23. REV_SEMI_HULL! , .. ={(x,y)|(y,x)eSEMI_HULL! , ., }.

REV_SEMI_HULL™S =
{REV_SEMI_HULL" | SEMI_HULL" eSEMI_ HULL™S}.
alrbl“--yambn al:blwv-rambn

Definition 24.
OP_.HULL"" . =SEMI_HULL], , p, "REV_SEMI__HULL? , . ..
m 15,015++5an,0n C1,A1y . Cmyam

ap,bi; ... an,buser,dys ... cm,
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OP_HULL"™> = {0P_HULLZ;’Z”S~“,a;lqbn;cl.dl‘,-.‘.’Cm-,dm | SEMI‘HULLZubl,.A.,an, by ESEMI_HULL"’S,

REV_SEMI_HULL? , . , € REV_SEMI_HULL™® and ., bi<ﬁ}.
o s = I<is<m i

The latter condition, >, ;. bi<ﬁ, ensures that the languages in OP_HULLs are
I<ism

infinite, and thus the corresponding geometrical figures are open hulls.>

Surprisingly, unlike SEMI_HULLs and coSEMI_HULL, upper and lower bounds for
OP_HULLs match. The following theorem establishes the lower bound for the OP_.HULLs.
Somewhat surprising is also the fact that the learnability degree of open hulls is below the
learnability degree of semi-hulls. However, the reader must note that while slopes of segments of
the border line for semi-hulls are bounded only by both axes, the slopes of the segments of border
lines in a open hull bound each other (the reader should note that, as we only consider (reversed)
semi-hulls with at least one angle in the theorems below, the (reversed) semi-hull cannot contain
the entire domain). Consequently, while learning the angles along both border lines in a open hull,
the learning algorithm becomes aware of these bounds and, as it turns out, can use a shorter
sequence of the primitive strategies to learn the concept in question.

Theorem 13. Suppose S is rat™-covering. Suppose n=1, m=1. Let Q = (qi, ...,qn), where each
qi = INIT. Then, (a) £2<™OP_HULL""™S, and (b) ¥ <™EXOP_HULL™"®.

The proof of the above theorem is given in Appendix A. We next show the upper bound for
OP_HULLs.

Theorem 14. Suppose S is rat*-covering. Suppose n=m=>=1. Let Q = (q, ..., qn), where each q; =
INIT. Then, (a) OP_HULL""S <™ 20 gnd (b) OP.HULL""S < TEx 0

The proof of the above theorem is given in Appendix A.

13. Complements of open hulls
In this section, we define and explore the classes of complements of OP_HULLs.

Definition 25. REV _coSEMI_HULL"

ag ,b] yeeeslpy
REV _coSEMI_HULL"S
= {REV _coSEMI_HULL}, , ., |coSEMI_HULL] ,  , € coSEMI_HULL"S}.

b, = {(x, )] (y,x) ecoSEMI_HULLZthWﬂlhbn}.

21f we do not require Doi<icn bi <ﬁ, then the geometrical figure may be finite. In this case, the complexity of
I<ism

learnability shows similar properties as the classes considered (with the above constraint on slopes), however the
analysis becomes more complex.
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= coSEMI_HULL"

U
ap 7bl-,~-~1anabn

Definition 26. coOP_HULLZ;'_’,',l_A

cosnsber,dyy oGy
m _ 2 n,m
REV_ coSEMI_ HULL}! ;, . , = N°—OP.HULL;", .\ . 4 -

coOP_HULL"™S = {coOP_HULL""" o | cOSEMI_HULL?, , -

€
ay,by, ... an,buicr diy ... Cm, <+ 50D

coSEMI_HULL™S REV_coSEMI_HULL? , eensConstln € REV-coSEMILHULLY, and
Di<i<n b"<m}'

The following theorem gives the lower bound for coOP_HULLs.

Theorem 15. Suppose S is rat™-covering. Suppose n=1, m=1. Let Q = (qi, ..., qn), where each
gi = COINIT. Then (a) 2 <™ coOP_HULL""S and (b) ¥°<™coOP_HULL""S.

Proof of the above theorem is given in Appendix A. The following theorem gives the upper
bound for coOP_-HULLs.

Theorem 16. Suppose n=m=>1. Let Q= (qi,...,qn), where each q; = COINIT. Then (a)
coOP_HULL""™S <™¥x 29 gnd (b) coOP-HULL™"S <T™Fx 20

Proof of the above theorem is given in Appendix A.

14. Conclusions

A new complexity scale has been successfully applied for evaluating the complexity of
learning various geometrical figures from texts. Many upper bounds obtained by us are
surprisingly lower than the ones suggested by intuitive learning strategies. Another surpris-
ing result is that upper and lower bounds match for OP_.HULL and their complements,
while there is a gap between upper and lower bounds for SEMI_HULLs that cannot be narrowed.
One more interesting aspect of this picture is that upper bounds for OP_HULLs, the inter-
section of SEMI_HULLSs, are much lower than that for SEMI_HULLs themselves! In general,
the picture of upper and lower bounds for OP_HULLs and their complements is much more
uniform than for SEMI_HULLs and their complements: bounds for coOP_HULLs can be
obtained from the bounds for OP_HULLs by just replacing INITs by COINITs, while bounds
for SEMI_HULLs and coSEMI_HULLs differ even in the number of components in
O-vectors.

There are many other interesting types of geometrical concepts whose complexity can be
explored in terms of the Q-classes. For example, one can evaluate the complexity of
learning SEMI_HULLs and all other figures observed in our paper dropping requirement of
the first angle being adjacent to x- or y-axis. Even more promising seems to be the class
of finite unions of OP_HULLs (though proofs may become technically messy). In general,
we are convinced that the Q-classes (possibly using some other basic classes/strategies)
are very promising tools for exploring the complexity of learning hard languages from
texts.
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Appendix A

A.1. Proof of Theorem 1

Theorem 1. HALF ="™®x INIT x COINIT.

Proof. ForaeZ, let L, = {xeZ|x>a}. Fori,jeN, let X;; = {xeN | x<i} x {x | x>}

We now define @ and ¥ witnessing that HALF <™®XINIT x COINIT.

For any finite subset Y of Z, let O(Y) = J,>¢4c y X0uV Ua<07aey X_40.

It can be easily verified that ©(L,) = Xy, (if a=0), and O(L,) = X_,o (if a<0).

¥ is defined as follows. Suppose a sequence o of grammars converges to grammar p. Suppose
i=max({xeN|(IyeN)[{x,y)eW,]}), and j =min({yeN | (IxeN)[{x,y) e W,]}). Then, if
i =0, then ¥(a) converges to a program for L;. If i>0, then ¥ () converges to a program for L_;.

It is easy to verify that @ and ¥ witness that HALF <™®XINIT x COINIT.

Now, we show that INIT x COINIT <™ XHALF.

Define /1 as follows:

for i,jeN,

h(i,j)=—[G+1D)(+2)/2]+ 1+, if i=);
h(i,j) =[G+ 1)/2] —i, if i<].

Intuitively, picture 4(i,j) as follows:

h(2,0) h(2,1) h(2,2) h(1,0) h(1,1) h(0,0)
e e 0
h0,1) h(1,2) h(0,2) h(2,3) h(1,3) h(0,3)

1 2 3 4 5 6

Note that for all i,j,k, /e N, if i>k and j</, then h(i,j) <h(k,l). Now, for any set Y = N2, let
O(Y) =Uijyey Lnuy)- 1t is easy to verify that ©@(X;;) = Ly,).-

¥(a) is defined as follows. If a sequence o of grammars converges to a grammar p for Ly ),
then ¥ () converges to a grammar for X;;. (Note that, if p, is a grammar for some Ly j, then such
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i,j can be determined in the limit from p.) It is easy to verify that ® and ¥ witness that
INIT x COINIT<™EHALF. O

A.2. Proof of Theorem 2

Theorem 2. Suppose Q= (qi, ..., qx)€ BASIC* and Q' = (q},...,q))€BASIC'. Let R= R x
Ry x -+ X Ri, R =R} xXRyx - xR, where each R; (R]) is an infinite subset of N, if
q:€{INIT, COINIT} (q:€{INIT, COINIT}), and R; (R) is a subset of Z, with infinite intersection
with both N and Z~, if q; = HALF (q; = HALF).

If Q is not a pseudo-subsequence of Q' then ¥R ¢ ™EX O .K

Proof. We prove the theorem by double induction (first on k£ and then on /). Fork =0o0r /=0
theorem clearly holds. Suppose by induction that the theorem holds for k<m, /e N, and for
k =m+ 1, I<r. We then show that the theorem holds for k =m + 1 and / = r + 1. Suppose by
way of contradiction that @ (along with ¥) witnesses that ¥R < TxtEx o R

We consider the following cases:

Case 1: q = INIT.

Case 1.1: ¢ = COINIT.

Consider o, which minimizes ie N such that {i, ... > econtent(@(a)). Let je N be the maximum

number such that {j, ... ) econtent(o). It follows that, for any j/>j, /'€ Ry, @(L].Q ), for any

goos

values of other parameters, is of the form LZQ’, for some values of the other parameters. Thus, @
(along with ¥) essentially witnesses that ZRR < TxtEx Q@ RR' where RR is obtained from R by
replacing R; by R; — {x | x<}, and QQ' is obtained from Q' by dropping ¢} and RR’ is obtained
from R’ by dropping R|. Now we are done by induction hypothesis.

Case 1.2: ¢y = INIT.

In this case, k=2.

Case 1.2.1: g = INIT.

Fix i; € Ry, and consider the set

arbitrarily large #j. Then for any ii;>i; (since Ll% QL[%__ for all possible values of other

oLy,

beRo.. ). Suppose this set contains {7, ... >, for

parameters) we have that @(L2

ii),min(R;),min(R3),...
o Q /
large 7}. Thus, @(Liil,min(Rz),min(R3),4..)¢$ ¢

So let #; be maximum value such that some element of form {7}, ... > isin (J; cp, . @(Li?.iz....)'

) contains elements of form {7}, ... > for arbitrarily

.....

be maximum value such that some element of form {ij, i, ... ) is in content (o). It follows that, for
all iiy> iy, ii € Ry, O(LY

. /
iLin....), for any value of other parameters, is of form Ll.,Q , for some value
32y et 1100

of other parameters. Thus, @ (along with ¥) essentially witnesses that $20RR < TxtEx QO .RR'
where QQ is obtained from Q by dropping ¢;, QQ’ is obtained from Q' by dropping ¢}, RR’ is
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obtained from R’ by dropping R} and RR is obtained from R by dropping R; plus changing R; to
Ry — {x|x<i}. Now we are done by induction hypothesis.

Case 1.2.2: g = COINIT.

In this case, by Proposition 10(a) QQ obtained from Q by dropping ¢; is not a pseudo-
subsequence of Q'. Thus, we are done by induction hypothesis.

Case 1.2.3: g = HALF.

If / = 1, then we are done. So assume />2.

Case 1.2.3.1: ¢4 = INIT or HALF.

Then, by replacing ¢, by COINIT , using Proposition 10(d) we still have that Q is not a pseudo-
subsequence of Q'. Thus, we can use Case 1.2.2.

Case 1.2.3.2: ¢, = COINIT .

Then, by replacing ¢, by INIT, using Proposition 10(e) we still have that Q is not a pseudo-
subsequence of Q'. Thus, we can use Case 1.2.1.

Case 1.3: ¢y = HALF.

In this case, let ie R;. Suppose @(LlQ) = Lfﬁn, for some values of other parameters. But

then for all 7>, @(L?_m), for any value of other parameters, must be of form ngm, for
some value of other parameters, where j'<j. Thus, one could essentially consider ® (along
with ¥) as a reduction from Z2RR to ¥2¢ KRR \where RR is obtained from R by replac-
ing Ry by R — {x|x<i}, QQ is obtained from ' by replacing ¢; with INIT, and RR' is
obtained from R’ by replacing R} by {xeN| —x+jeR|, —{y|y>=j}}. Thus, we can use
Case 1.2.

Case 2: gy = COINIT. This case is very similar to Case 1. We give the analysis for completeness
sake.

Case 2.1: ¢y = INIT.

Let ie N be minimum value such that ©(L? ) = LIQ,, for some values of the other parameters.

J'>Jj,J eRy, @(L/.%”), for any value of other parameters, is of form Ll-?_/__, for some value of other
parameters.

Thus, @ (along with ¥) essentially witnesses that PORRLTXEX pOO.RR =~ where RR
is obtained from R by replacing R, by R; — {x|x<j}, and QQ’ is obtained from @ by
dropping ¢} and RR’ is obtained from R’ by dropping R|. Now we are done by induction
hypothesis.

Case 2.2: ¢y = COINIT.

In this case k>2.

Case 2.2.1: g = INIT.

In this case, by Proposition 10(a) QQ obtained from @ by dropping ¢; is not a pseudo-
subsequence of Q'. Thus, we are done by induction hypothesis.

Case 2.2.2: ¢ = COINIT. Fix i; € Ry, and consider @(Lg ) = LI.Q . If 7 achieves arbitrary

high value (for some values of other parameters) then, for ii; >1ij, since Li%o_o ELI-%_., and
Nier, LY =0, O(Liygo..) = 0¢ 22F.
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So let 7 be maximum value such that for some value of other parameters, @(L,%R ) = L?/’Rl. Let

i» be such that, for some value of other parameters, @(L-Q’R ) = LI.Q’R/. It follows that, for all
e

i,i2- .

iy > Iy, @(L.Q’R ) is of form Ll.,Q”R’. Thus, © (along with ¥) essentially witnesses that
e

11,0y, ...
POORR L Txthx pQO'.RR  where (O is obtained from Q by dropping ¢i, QQ' is obtained
from Q' by dropping ¢), RR' is obtained from R’ by dropping R] and RR is obtained
from R by dropping R; plus changing R, to R, — {x|x<i}. Now we are done by induction
hypothesis.

Case 2.2.3: ¢y = HALF.

If / =1, then we are done. So assume />2.

Case 2.2.3.1: ¢, = INIT or HALF.

Then, by replacing g, by COINIT, using Proposition 10(d), we still have that Q is not a pseudo-
subsequence of Q. Thus, we can use Case 2.2.2.

Case 2.2.3.2: ¢, = COINIT.

Then, by replacing ¢, by INIT, using Proposition 10(e), we still have that Q is not a pseudo-
subsequence of Q. Thus, we can use Case 2.2.1.

Case 3: qi = HALF.

Case 3.1: ¢y = INIT.

Then by Proposition 10(b) replacing ¢, by COINIT, still gives us that Q is not a pseudo-
subsequence of Q. Thus, we can use Case 2.

Case 3.2: ¢y = COINIT.

Then by Proposition 10(c) replacing ¢; by INIT, still gives us that Q is not a pseudo-
subsequence of Q'. Thus, we can use Case 1.

Case 3.3: ¢y = HALF.

In this case, let ie R; and consider @(L,Q ), for some value of other parameters. Suppose it is
L]g“, for some value of other parameters. Then for all i/ <i, i’ e R, @(L?) must be of form Lj%“,
where j'<;j. Thus, one could essentially consider this as a reduction from Z2¢RR to @QC.RR
where QQ is obtained from Q by replacing ¢; by INIT, RR is obtained from R by replacing R; by
{xeN| —x+ieR —{y|y=i}}, OQ is obtained from Q' by replacing ¢} with INIT, and RR’is
obtained from R’ by replacing R} by {xe N| —x+jeR| —{y|y=j}}. Now we can use Case 1.

It follows from above cases that @R ¢ TXEX @R

A.3. Proof of Theorem 12

Proposition A.1. Suppose S'<S. Then coSEMI_HULL™S <™®xcoSEMI_HULL"S.

Theorem 12. Suppose S is rat™-covering. Let ne N*, and Q = (q1, 92, ..., qn), where g = HALF,
and for 2<i<n, q; = COINIT.
Then, 42 <™EXcoSEMI_HULL™S.
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Proof. Without loss of generality (using Propositions 19 and A.1) we can assume that, for each
b,b'eS, if b<b', then 2b<b'. Let h be an isomorphism from Z to S such that A(i)<h(i + 1).

Let map(iy,is, ..., i) = (a1,b1, ...,an,b,), where a;,b;, 1<j<n are defined as follows.
a; =1, by =h(—iy —ay). Suppose we have defined ay,by,...,ar,br. Then let Ay =
{xXeN|[x>a,[D 1 <i<i bi* (x=a;)]eN}, and then let aiyy to be the (i1 + 1)th least element
in Ap1. Let by = h(—il — ak+1).

Claim AL (i1, b2, ..., 0n) <ol b, ..., 1}) implies oSEMI_HULL)> . . =coSEMI_HULL}

..... i) (#eens)”

Proof. Suppose (i1, i, ..., 1) <g(if, 15, ...,i,). Suppose map(i, ...,i,) = (a1,b1, ...,a,,b,) and
map(iy, ..., i) = (d, b}, ...,d,,bl).

We consider the following cases.

Case 1: iy >1).

In this case,

(1) by <b), and

(2) ay = a'l.

From (1) it follows that

(3) 2b, <.

Now, for 1<i<n, since a;<a;.1, and b; = h(—i; — a;), we have b;>b;,;. Thus, b;>2 % b;y,
for 1<i<n by hypothesis about elements of S§. Thus, >, _;., bi<2b;. Along with (3),
we have that bj>>7,_,, bi. This along with (2), Propositions 11, 15 and 22 gives

N 1,S S
coSEMI_HULL},  <coSEMI_-HULL,, <coSEMI_.HULLy, .

Case 2: For some j, 1 <j<n, i = i, for I <k <}, but ij>ij’..

In this case

(4) a; = d; and b; = b}, for 1<i<].

(5) bj<b;-, and

(6) a;>a.

From (5) it follows that

(7) 2% b; <D,

Now, for 1<i<n, since a;<a;.1, b; = h(—i} — a;), we have b;>b;;,. Thus, b;>2* b, for
1 <i<mn, by hypothesis about elements of S.

Thus, >, bi<2b;. This, along with (7) gives us that b;> > ., b;. Thus using (6), Pro-
positions 11, 15, and 22 we have coSEMLHULLZbe’m’ambngcoSEMI_HULLj’S

a,by,... a1 bj-1,d.b;
S
ScoSEMI_HULL)”, ., ..
101550

The claim follows from the above cases. [

Welet O(X) = Uy, ey cOSEMI_HULL!

..... map(iy,...,in)"

Thus, it follows that @(LY, ) = coSEMI_HULL"S

i, map(iy,....in)"
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Define ¥ as follows. If a sequence o of grammars converges to a grammar for
coSEMI_HULL,? . Q0

, L1105 T

It is now easy to verify that ® and ¥ witness that 2 <™EXcoSEMI_HULL™S. O

;> then ¥(a) converges to a grammar for L

A.4. Proofs of Theorems 13 and 14

The following proposition is an obvious corollary of the definition of OP_HULLs.
Proposition A.2. Suppose SSS'. Then OP_HULL""S <™¥xQp_HULL"™S .

Theorem 13. Suppose S is rat™-covering. Suppose n=1, m=1. Let Q = (qi, ...,qn), where each
gi = INIT. Then, (a) L2 <™ QP _HULL"™S and (b) <™ XQp_HULL""S.

Proof. We only show part (a). Part (b) can be proved similarly.

The desired reduction works very similarly to the analogous reduction in Theorem 5: we just fix
a REV_SEMI_HULL and try to reduce a language in ¥ to the SEMI_HULL part of the
OP_HULL; the slope of the REV_SEMI_HULL provides a starting point for learning the first
slope by, thus HALF being replaced with INIT in the first component of Q.

Now we proceed with the formal proof.

Without loss of generality (using Propositions 19 and A.2) we can assume that, for each
b,b' €S, if b<b', then 2b<b'. Let h be an isomorphism from Z to S such that h(i)<h(i + 1).

Let (c1,d, ..., Cm,dy) be S-valid such that ), di<1/h(1) (note that there clearly exist
such c¢y,dy, ..., cm, dn).

Let map(iy, iy, ..., 10,) = (a1, b1, ..., an,by; c1, d\, ..., Cm, dn), Where aj,b;, 1 <j<n are defined as
follows. a; =i + 1, by = h(—a;). Suppose we have defined ay,by, ...,ar,br. Then let Ax,) =
{xeN|x>ar,[D 1 <i<i bi* (x=a;)]e N}, and then let ai,; to be the (ix + 1)th least element in
Ay Let by = h(—ak+1).

Note that, for all (ij, i, ..., i) e N", if map(iy,ia, ..., 10,) = (a1,by, ..., a4y, by; c1,d1, ..., Cnydi),
then since @;<a;,, by definition of b;, we have b; = h(—a;)>h(—a;+1) = b;+1. This along with
requirement on S gives b;>2b;;1. Thus, >, ., bi<2b; <2h(—a;)<2h(0)<Ah(1). Since,
Y i<iem di<1/h(1), we immediately have that >, _;_, bi<ﬁ, for all (i1, iz, ..., 0y).

1<i<m !

Claim A.2. (i1, s, ...,0,) <o(i}, 1), ..., 1) implies OP_HULL"™> cOP_HULL™™3

o tn map(iy,...,i) map(iy,....in)"

Proof. Suppose (i1, i, ..., 0In) <o(i{, 15, ...,0,).  Suppose  map(ii, ...,i,) = (a1,b1, ..., ay, by;

crydyy ooy Cpydy) and map(iy, ..., 1) = (a},b), ....d,, b c1,dy, ..., Cm, dy).
Let j be the least number such that i = i, for 1<k </, and i;#i.
Thus,
(1) a; = d; and b; = b}, for 1 <i<j.
(2) bj>Db;, and

(3) aj<a;.
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From (2) it follows that

(4) bj>2 %D

Now, for 1<i<n, since a;<a, , we have b; = h(—a;)>h(—a},,) = b}, . Thus, b;>2x b},
1 <i<n by hypothesis about elements of S.

Thus, > .., b;i<2b;. This, along with (4) gives us that b;>> .., b;. Thus using

(3), Propositions 11 and 15 we have SEMI HULL), . <SEMI HULL},  ,
S
SEMI_HULLY, .

The claim follows. [
We now define ©(X) for any finite set X as follows.
We let O(X) = U, i yex OP-HULL!

for

map(iy,...,in)"
Thus, it follows that @(Li?.,iz,..‘,in) =OP.H ULLZ;Z"I;EI _____ W)
Define ¥ as follows. If a sequence o of grammars converges to a grammar for
OP_H ULLZ;;”’S. ., then ¥(x) converges to a grammar for L2, .
p(it,... i) i3, 0050

It is now easy to verify that @ and ¥ witness that #2<™®xop_ HULL""S. O

Before proving Theorem 14 we need some propositions.

Definition ~ A.1. Suppose  (ai,bi,...,a;,b;)) is  valid. REV_INTER(ay,b,...,a;,b;) =
{(X,y) | (yvx)EINTER(alabla --~7aj’bj)}'

Definition  A.2. Suppose (ai,by,...,a;,b;) and (ci,di,...,ck,di) are valid. Then,
INT-OP-HULL(CI] y b], ceey djy bj; Ci, d], veey Cley dk) =
~{OP_HULL""

alab]a-'-7qf7bf7"'$an7bn;cl7d|7"'!Ck7dk*,"'7cm7dm

n=j and m>=k and (a,by,...,a,b,) and

i

(c1,dy, ... Cm, dy) are valid and >, _;_,, bi<ﬁ}.

I<i<m

Proposition  A.3. Suppose  (ai,by,...,a;,b;) and (ci,di,...,ck,dy) are wvalid, and
Zl<i<j bj<ﬁ Then,

I<i<k '
(@  {(x,»y)|x<maxinter(a,b, ...,a;,b;),y = min({y’ | (x,)") e INTER(ay,by, ...,a;,b;)})} =
INT,OP,HULL(al,bl, ...,aj,bj;cl,dl, ...,Ck,dk).
) {(x,») | y<maxinter(cy,d\, ..., ck,di), x =min({x"| (x',y) e REV_INTER(ci,d,, ...,c;,d;)})}
EINT_OP_HULL(al,b1, ...,aj,bj;cl,dl, ...,Ck,dk).

Proof. We show only part (a). Part (b) can be proved similarly. Suppose
(x0,y0) €{(x, ) | x<maxinter(a\, by, ...,a;,b;), y =min({y' | (x,)")eINTER(ai,b, ...,a;,b;)})}.
Then, 1 4+ ZKK]. bi(xo=~a;)>yo= leisj bi(xo~a;). Thus, 1 + lefsj b; * xo =yo. Hence,

(D) Xi<icy bi= (0 — 1) /0.

Clearly, (xo,y0) eINTER(ay, by, ...,a;,b;). Thus, (xo,y0) ESEMI—HULLZI,bL

'~--7af7bj7--'7a)17b)17 for all
valid (a1,by, ...,a;,bj, ..., a,,b,) (by definition of INTER).
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Thus, if (x0,»0)¢INT_-OP_.HULL(ay,b, ...,a;,b;;c1,d, ..., ck,dx), there must exist a
valid  (c1,di, ..., chydpy ..., Cmydy),  and Zlgigjbi<ﬁv such  that  (xg,¥0) ¢

ai
REV—SEMI—HULL’CTI,dI,...,ck,dk,...7cm,d,,,'

1<i<m
But this would mean, xo<3}) ., di(yo=ci)<
Zl<i<m di(yo=1). Thus,
() Xi<icm di>x0/(vo = 1).

From (1) and (2) we have
——— A contradiction to the hypothesis. [

D i<i<n bi>z

I<i<sm '

Proposition A.4. Suppose (ai, by, ...,a;,b;), (a}, by, ...,aj’.,b]’.), (cr,dy, ... e, di), (), dy, ..., ¢, dy)

are valid. Suppose further that Y, bi<ﬁ’ and 3, io; b;<ﬁ.
1<i<k 1<i<k

i .
i

If INT_OP_.HULL(a),b, ...,a},bj’.; c,dy, ....c,dp) EOP_HULL‘{l’Ifbhmﬂj_,bm_’dhm_’(,k,dk, then,
INTER(a), b}, ..., d, b)) S SEMI_HULL] , ~, and

REV_INTER(¢,,d;, ..., ¢}, d}) = REV_SEMI_HULL!

Lseen s Choslic®

Proof. Suppose INT_OP_HULL(d},b}, ...,d,,b};c\,d;, ..., ¢\, d;) < OP_HULLC{;]fbl’_.ﬂhbﬁchdh“_,%dk.

** ]’ ]7
Thus (using Proposition A.3) {(x,) | x<maxinter(ay, b, ..., a;, b)),
y=min({)'| (x,)") e INTER(d\, b}, ..., a;,b)})} SINT_OP_-HULL(a}, by, ..., d;, bi; ¢}, dy, ..., ¢, dyp)

COP_HULLqp,. . apyerd.cod SSEMI_HULL , . Tt follows that INTER(a),b}, ...,

a;, b}) QSEMI_HULLL{l by
Similarly, it can be shown that

REV_INTER(c),d}, ..., c},d})= REV_SEMI_ HULL! , 0

csChodi

Corollary A.1. Suppose 1 <j<n, 1<k<n. Let S be any rat"-covering set.
Suppose  (ay, by, ...,a;_1,bj_1,a;,b;), (ci,di,....cx-1,dk—1,ck,d) are  S-valid,  and

Then, there exist only finitely many (a,b', ¢, ,d}) such that

AR
~ i
O by Yrerey bi<gy=— and
(i) (a1,b1, ...y aj-1,bj1,a, D)), (c1,dh, ..., Ck—1, di1, €, dy) are S-valid, and
(i) INTER(a1,by, ....a-1,by1,a, b)) SSEMI.HULL! , . and REV_INTER(cdj, ...,

k1, di1, ¢}, dy) SREV_SEMI_HULLY ;. ..

Moreover, canonical index for the finite set of (a;, b}, ¢, dy) satisfying above three conditions can
be obtained effectively from ay, by, ...,a;,b;,c1,di, ..., cp, dj.
Furthermore, for any (a]’-,b]’-,c]’.,d;) satisfying the above three conditions, aj’-Saj, ¢, <ck, and if

a; = a; then b= b;, and if ¢j = ¢, then dj > dj.
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Proof. Suppose INTER(ay, by, ...,aj-1,bj-1,a;, b)) gSEMI_HULLC{I_blw_aﬁb/_, and REV_INTER(cy,
di, ...,ck_l,dk_l,c}c,d,;)EREV_SEMI_HULLfl'dIM_ codes BY Corollary 5 and Proposition

14 it follows that a;<a;, ¢ <¢, and there exists only finitely many (a},b))

such that bj’-<bj and INTER(al,bl,...,aj_l,bj_l,aj’.,b]’.)gSEMI_HULLJI7,)17.“,“]_’1,]_, and only
finitely many (c,d;) such that d;<d, and REV_INTER(ci,d,, ..., ci—1,di_1,¢},d}) <
REV—SEMI—HULLIZI,dl,.,..,ck,dp and these (a},b)), (c;,d;) can be obtained effectively from
(al,bl, ...,a_,-,b,-;cl,dl, ...,Ck,dk). Let Bj/ = mln({b,}u{bj’|b]’<b,/\INTER(a1,b1, ...,aj,l,b/,l,a]'.,

b)SSEMI_HULL) , . }). Let D} =min({dc}u{d; |d<dAREV_INTER(c1,d, ..., ck 1,

ayby,.

di1, ¢, d) S REV_SEMI_HULLY , . . }).
Note that clause (i) in the corollary implies that 5} <7 and dj <y.
k J

It follows that, for any (a}, b}, ¢, d;) to satisfy the hypothesis of the corollary we must have
0<a;<a;, 0<¢ <cx, Bi<b;<1/Dj, and D;<d;<1/B}. Thus, there exist only finitely many
(a;, b}, ¢ d)) which can satisfy clauses (i)-(iii) of the corollary. Moreover, since for any
(aj’-, b;, ¢, di.) it is effectively testable whether clauses (i)—(iii) of the corollary are satisfiable, we can
find the canonical index for the set of (a;, b}, ¢, d; ) satisfying the clauses (i)—(iii) of the corollary
effectively from ay, by, ..., a;,b;,c1,dy, ..., ck, d.

Furthermore clause of the corollary follows using Corollary 5. [

Proposition A.5. Let S be any rat™-covering set. Then, there exists a recursive function Icode with
domain VALIDs x VALIDg, and range =N such that following is satisfied.
SuppOse (alabla ceey aj*lubj*haj)bj)v (a17b1) ceey aj*l)bj*ha/' b/)a (Cladlv ceey Ck*lvdkflvck)dk))

(cr,di, ..., ch—1,di-1, ¢, di) are S-valid, and Zl<z<j biéﬁ and b} + ZKKJ. bi<
—dHZLKk 7 Then

(A) IfINTER(a],bh ...,aj_1,bj_1,a],-,bjl») gSEMI_HULLJ[,b[,...,aj7bj7 andREV_INTER(cl,dl, caey
ck,l,dk,l,cﬁc,d,’c)EREV_SEMI_HULLfI’dl,m’%dk then Icode(ay, b, ...,aj,l,bj,l,a},b};cl,dl, s
ck,l,dk,l,c}(,d,’()élcode(al,bl, ...,aj,1,bj,1,aj,bj;C],d], ...,Ckfl,dkfl,ck,dk).

(B) If (aj,b,,ck,dk)yé(a},b},c}c,d,’{), then Icode(ay, by, ...,a_,-,l,bj,l,a_;,bj’.;cl,dl, ooy Ch—1, i1, €,

d//()#ICOde(Cll,bl, '“7aj*17bj*laajabj;cludl7 --wckflvdkflvckadk)‘
(C) {Icode(al,bl, ---761./717bj713a_;',ab';',;Clydla ...,Ckfl,dkfl,CZ,dZ) | (al,bl, ...,q,,l,b/,l,cz_;’,b;’)e
VALIDs, (c1,d), ..., k-1, dk—1,¢],d) € VALIDs, and b} + 3, _;_; bj<m} =N.

Proof can be done along similar lines as of Proposition 18.
Now we show the upper bound for OP_HULLs.

Theorem 14. Suppose S is rat*-covering. Suppose n=m=>1. Let Q = (qy, ..., qy), where each q; =
INIT. Then, (a) OP_.HULL""S <T™Ex @0 gnd (b) OP_.HULL™"S <TXEx ¢Q
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Proof. We show only part (a). Part (b) can be done similarly.

Intuitively, we use INIT-type strategy to learn every set of parameters (a;,b;, ¢;,d;). This is
possible based on Proposition A.5 above.

Now we proceed with the formal proof.

Let /1 be a recursive bijection from Z to S such that h(i)<h(i + 1), for ie Z. Let Icode be as in
Proposition A.5. For (ay,by,...,a,,b,) and (ci,d,...,cm,dy) in VALIDg, such that
D oi<i<n bi<ﬁ’ we let map(ay, by, ...,an,by;c1,dy, ... Cmydy) = (Icode(ay, by; ey, dy),

I<ism

i

Icode(ay, by, az,by;ci,dy, cr,dh), ..., Icode(ay, by, ..., apy, by;c1,dy, ..., Cmydn), Icode(ay, by, ...,
am—&-labm—&-l;cladly "'7cm7dm)7 -"7ICOde(alabla ...,an,bn;CI,dl, ...,Cm,dm)).

: / / / /
Claim A.3. Suppose (ai,bi,...,ay,b,) and (a\,b},...,d,b,), (c1,d\,...,cm,dp) and
/g / ! . 1 / 1
(¢, dy, ....c,,d),), are S-valid, and ), _,, bi<ﬁa and 3y i, bi<ﬁ'
1<ism ' I<i<sm i

(A) Suppose map(dy, by, ...,d,bl;c\.di,....c..d,)<omap(ay,by, ..., ay, by;c1,di, ..., cn, dy).

YT o Y my m

Then, for the least j such that (aj,b;, cwmin jmy: dmin(jm) (@, B}, Coin iy Aining jm))»
INTER(a1,b1, ..., a;, b)) ¢ SEMILHULL] , s ys 07

REV_INTER(e1,, ..., o ) doin ) & REV-SEMIHULLY 4 oy
(B) Suppose map(ay, b, ...,a,,b,;c\.di,....c..d,)<omap(ai,by, ..., ay, by c1,dy, ...,y dy).

Then, INTER(ay,bi, ....a;by, ...,dn,b,) ¢ SEMI_HULL", ,, ., or REV_INTER(c\,di, ...,
. . PP nn
Cmy dp) & REV_SEMI_HULL" , ., .

©) Suppose OP_HULLZ;”})1 b
map(ay, by, ..., a4y, by;c1,dy, ..., dy) <omap(dy, by, ...,a,,b,;c.di, ....c,,,d,).

(D) Suppose map(ay, b, ...,a,,b,;c\.di,....c,.,d,)<omap(ai,bi, ..., ay, by;c1,di, ..., Cn, dy).
Then, {(x,y)eN?|x<maxinter(ay,by,...,a,,b,) and y=min({)y'|(x,)')eINTER(ay,by, ...,
an,by)}) or y<maxinter(c\,di,...,cm,dy) and x =min({x'|(x’,y)e REV_INTER(c,,d,, ...,

Cm, dm)})} g OP_HULme ' d ¢ d

! / / /.
ay,bls..aybricdl s 0,d,

n,m
d COP_HULLQ/I,b/l,...,(l;,,b:l;c/l,d;7<- od Then

-+ 5CmyAm <Cmm

Proof. (A) Let j be least number such that (a;,b;,Cmin(jm)> @min( j,m))#(a};b}76‘;1in( im)
d/

min(j’m)). Note that, for i<j, we must have Icode(ay,by,...,a;,b;cy,di, ...,
Crmin(iym)» Amin(im)) = Icode(ay, b, ... a;,bj; ¢y, dy, ... c, d’ ). If INTER(ay, by, ...,

. *00 Fmin(i,m)? “min(i,m)
aj, bj) < SE]\JI_I'IULL;1 by, and REV_INTER(Cl , dl, -+« Cmin( j,m)s dmin(j,m)) <
REV_SEMI_HULL’

Cl-,dlw-':Cmin(j,m)—ladmin(j.m)fhc/ d 5 then, by PI‘OpOSltlon AS we Would

min( j,m)’ min( j,m)

. o AN ]
have Icode(ay, by, ...,a;,bj;c1,d, ..., Cmin( jm)s dmin(jm)) <Icode(ay, b, ..., a;,b}; ¢y, dy, ... c

VAN
<stj-1,bj-1,d},)

/

BEAVARSE 0 Ymin( j,m)’
i jmy)- Thus, —map(ar, by, ..., dn, by; 1, dy; ... Cning jmys dmin(jm)) < @map(dy; by, .. @, b5 ¢y,
di, ...,cfmn( ) dl’mn( j’m)), a contradiction to the hypothesis.

(B) Follows from the fact that INTER(ai, b, ...,a;,b;)SINTER(ay,by, ...,a;,b;, ..., a,,by),
REV—INTER(Clydla ---7Cmin(j,m)ydmin(j,n1)) EREV_INTER(Cl,dl, s cmin(j,m)ydmin(j,m)a <eo5 Gy dm)7
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SEMI_-HULLY , ,, SSEMI.HULL} , ., and  REV_SEMI_HULL ,
IREA REEEE) ay, /'7 j “10%
REV_SEMI_HULL’CT g a and part (A).

177 min( j,m)’ min( jm)
(C) If OP-HULL)", .\ i cra ©OP-HULL "Z, bl then by Proposition
A4, INTER(ay,by, .. a,,,bn)CSEMI HULL”, B, and REV_INTER(c\,d,, ...,cm,dy)
S REV_SEMI_ HULL’L" d ooy’ Now part (C) follows from part (B).

(D) Follows from (B) and definition of OP_.HULL™™. [

&
c sy,

mo

We now continue with the proof of the theorem. The aim is to construct @ which maps

n,m,S 0
OP HULL“ b1~--- ambn;Chdh---scmadm to Lmap(al-,bl-,u-;an-,bn;('hdlwu-,Cmvdm)'

Note that definition of ¥ mapping grammar sequence converging to a grammar for

Q .
Lip(ar ... anbucrdr...cmdy) O @ grammar sequence converging to a grammar for

OP_HULL)", ¢,.q, Would be trivial. We thus just define 6.

see sl buser,dy - Con i
Without loss of generality, we will be giving ® as mapping sets to sets.

For any finite X = N2, let Prop(X,ay, by, ...,a,,by;c1,dy, ..., cm, dy) be true iff following two
properties are satisfied.
(A) (al,bl, ...,an,b,,)e VAL[Ds, (Cl,dl, ...,Cm,d )G VALIDs, and Zl<t<n b <=

Z]<I<I7l i
/ /g ! / 1 P
(B) For all (a,by,...,a,,b,),(c},di, ..., ¢y, dy) € VALIDs, 37 e, bj<s~——, such that
I<ism 1
map(alﬂblh . 7anabincladiv . ,Cm,d )<Qmap(al>bl7 "-aanabn;cladb "-acmadm)a
n.m
X g OP HULLa b, al/'l bl/'l C/l d; Cﬂl dIYl
Note that condltlon (B) above is equivalent to
/ ; ; wy 1o /
(B') For all j, 1<j<n, for all s Conin( jm) eN,b],dmm () eS, such that b+
Sicioi bi< !
1<i< i 1 19
J dmin(jm)+21<i<min( Jjm) di
: /
if ICOde(al ) b17 e djt, bj*l )y U b], C1, dl PEEEE) Cmin(j,m)—lv dmin(j,m) 1) Chnin (7,m) %min( j, m)) <
ICOde(al ) bla <oy dj—1, bj*l ) 4, bj; ap dlu -++5 Cmin(jm)—1, dmin(j,m)—l » Cmin( j,m)s dmm(],m)) then
j,min 1m)
(X OPHULLL 0 by b s sy -1 sy

Note that whether X, ay, by, ..., ay, by, c1,d\, ..., Cm,dn, satisfy (A) and (B), for all j, 1 <j<n, is
effectively testable.
Thus, for finite X < N?, let

= (L2 map(ar by | PTOP(X 1,1, . a, by) ).

For infinite X’, @(X’) = Uyc v carax)< o ©(X).
It is easy to verify that
(1) for any X< OP_HULL,", . . . .

~-<7cmadm’

0
@(X) ngaP(al 1blv~~- 7an-,bn;cl ‘,d] geen -,C)mdm)
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(due to clause (B) in definition of Prop above, and the fact that for any valid I and I,
), and

(2) for any finite set X such that {(x,y)eN?|x<maxinter(ay,bi, ... ,a,,b,) and y =
min({y’ | (x,)')eINTER(ay, by, ...,a,,b,)}) or  y<maxinter(cy,d,...,cmn,dy) and x=
min({x' | (', y) € REV_INTER(c1,d, ..., cm,dy)}) } EX SOP_-HULLY"

map(I) < gmap(I'), implies Ll%ap( nsL map 0

PR 76"7)d)1’l ’
O(X)=2L? .
= Tmap(ay,by,....anbpic1,dr, ... Cnydiy)
(By Claim A.3(D), and definition of Prop and ©).
_ 70
Thus we haVe that @(OP HULLZIWIZI anfbn;clﬁdlv--?cnndm) - Lr”ap(al-,hl-,-~~7aiz-bn:,(‘17d1«,-~7cm7dm). ‘:‘

A.5. Proofs of Theorems 15 and 16

Proposition A.6. Suppose SS'. Then coOP_-HULL""™S <™Exco0p HULL"™S .
The following theorem gives the lower bound for coOP_HULLs.

Theorem 15. Suppose S is rat™-covering. Suppose n=1, m=1. Let Q = (qi, ..., qn), where each
gi = COINIT. Then (a) L2 <™ xcoOP_HULL"™S and (b) 2 <™ coOP_HULL""S.

Proof. We only show part (a). Part (b) can be proved similarly. The proof is very similar to the
proof of lower bound for OP_HULLs with INITs being replaced by COINITs. Without loss of
generality (using Propositions 19 and A.6) we can assume that, for each b, €S, if b<b', then
2b<b'. Let h be an isomorphism from Z to S such that i(i)<h(i + 1).

Let (c1,dy, ..., ¢m,dy) be S-valid such that ), d;<1/h(1) (note that there clearly exist
such ¢y, dy, ..., cn, dn).

Let map(iy, iy, ..., i) = (a1, b1, ..., an, by; c1,dy, ..., Cm, dyy), Where a;, b, 1<j<n are defined as
follows. a; =i, + 1, by = h(—a;). Suppose we have defined ay,by, ..., ar,br. Then let Ay, =
{xeN|x>ar, [><i<k bi* (x=a;)]eN}, and then let ai; to be the (ix1 + 1)th least element in
Api1- Let by = h(—ag41).

Note that, for all (i1, i, ...,0)eN", if map(i, iz, ..., 0n) = (a1,b1, ..., @n, by; c1,dy, ... Cy i),
then since @;<a;y1, by definition of b;, we have b; = h(—a;)>h(—a;11) = b;1. This along with
requirement on S gives b;>2b; 1. Thus, >, ., bi<2b; <2h(—a;)<2h(0)<h(1). Since,
Y i<icm di<1/h(1), we immediately have that ), _;_, b,~<ﬁ, for all (i1, i, ..., 1,).

1<ism !

Claim A4. (i1, i, ...,in) <o(#}, i, ..., 1) implies coOP- HULL:;Z;Eg .... ) coOP- HULL”mZ;(S oy

Proof. Suppose (i1, i, ..., 1) <o(i{, 15, ..., 1,). Suppose map(iy, ... i) = (a1, by, ..., ay, by;

’'n

:/ =/ / /
ci,dy, ..., Cm,dy) and map(iy, ..., 1) = (a},b], .. blierydyy .. cmdp).

' %n * n7 n’

Let j be the least number such that i = i}, for 1<k <j, and i;#i;.
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Thus,

(1) a; = d; and b; = b}, for 1<i<j.

(2) bj<b}, and

(3) a; >aj’-.

From (2) it follows that

(4) 2b;<b;.

Now, for 1<i<n, since a;<a;,1, we have b; = h(—a;) >h(—a;1) = biyy. Thus, b;>2 x b;yy, for
1 <i<n by hypothesis about elements of S.

Thus, ngign bi<2b;. This, along with (4) gives us that b}> i<i<n Di- Thus using (3),

Propositions 11, 15, and 22, we have coSEMI_HULL'S, . ccoSEMI_HULL)S, .
15,015++5an,0n a, l7~~~',£lj7 )j
=coSEMI_HULL"?S

ap,by,....aby
The claim follows. O

We now define ©(X) for any finite set X as follows.
We let @(X) = Y i,y e)(COOP_HULLn’m

map(iy,...,in)"
Thus, lt fOllOWS that @(Ll%iz,,..,l.n) = COOP_HULanm,S

map(il,...,i,,)'
Define ¥ as follows. If a sequence o of grammars converges to a grammar for

coOP_HULL""™® ;> then ¥(a) converges to a grammar for L?

‘map(it,... 502y eeesln”

It is now easy to verify that ® and ¥ witness that 2 <™ coOP_ HULL""S. O

Before proving Theorem 16 we need some propositions.

Definition A.3. Suppose (ai,by,...,a;,b;) is valid. REV_coINTER(ay,by,...,a;,b;) =
{(x,) | (v, x)€co-INTER(ay, by, ..., a5, b;) }.

Definition A.4. Suppose (ai,b1, ...,a;,b;) and (c1,d\, ..., ck, di) are valid. Then,
C()INT,OP,HULL(CH s b], -4, bj; Cc, d], ceey Chey dk)
= J{coOP_.HULL",

alsbl:~~aaj7bj-,~~-7ambn:,("l7‘]17-~~-,C/c~,dk:~-~acm-,dm

(c1,di, ..., Cm,dy) are valid and ), ;. b,~<—Z 1 d_} =
1< !

ism

N? — INT_-OP_.HULL(ay, by, ...,a;,bj;c1,d\, ..., ¢k, di).

n =j and m>k and (ay, by, ...,a,,b,) and

Proposition  A.7. Suppose (ai,by,...,a;,b;)) and (ci,di,....ck,di) are wvalid. — Suppose
Zlgigj bi<ﬁ. Let (x,y)eN? be such that 1+Zl<i<j bi(x=a;)=y> Zlgkj bi(x—=aj).
I<i<k !

Then, if (x,y)€coINT_OP_HULL(a,by, ...,a;,bj;c1,di, ..., ck, dy), then (x,y)€e
coINTER(ay, by, ...,a;,b;).

Proof. Suppose (x,y)ecoINT_-OP_HULL(ay,bi, ...,a;,bj;¢1,dy, ..., ck,dr).  Then, (x,y)e
(U{coOP_-HULL”", g |n=j and m>=k and (a1, b, ...,an,b,) and

ay,b1y ..,y snsbaser,dy o Chodicy sl
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(c1,dy, ..., Cmydy) are valid and ), ;. b; <27} Thus,
1<i<m
ap, | 1=j and (a1, by, ... ay,by,) is valid}u

(x,y)e U{coSEMI_HULL}, , b s
(J{REV_coSEMI_ HULL? , and  (c1,dy,...,cmydy) is  valid and

Do <i<m di<ﬁ}. Thus,
1<i<j

e sChesGs e sConllm

. Ui

(x,y)€coINTER(ay, b, ...,a;,b;)) v \{REV_coSEMI_HULL], ,

(Cl,dla ...7cm>dm) is valid and ZlgiSm d’<z : b}'
1<i<j '

We claim that (x,y)¢ U{REV_coSEMI_HULLY ;, ., ., |m=kand (c1,d,...,Cn, dp)
is valid and ), _;,, di<27} This would prove the proposition. Suppose by way of
I1<i<j l

contradiction that (x,y)e REV_coSEMI_HULL?! A i oo
is valid and 7, d<21<,< = But, then (x,y)eREV coSEMI_ HULL”I’ S
X< Y iciem dily=1). If p<1, tﬁen clearly, the above cannot happen. So assume y>1. Thus,
X< ) i<icm 4i(y — 1). Hence,

(D) x/(y =)< Xicicm -

However, y<1+37, o, bi(x=a;). Thus, y — 1< 37, ;; bi(x=a;). Thus, y — 1< 37, ., bix.
Thus,

Q) (v = 1/x< 3 <) b

Multiplying (1) and (2) we have 1<[}, ;. bl*[> ccp @] But then,
Zl<t<n 1% Zl<l<j bz>1/[21<l<m d;]. A contradiction. [

m=k and

15 ck7dk7 e 7Cmydm

where m=k, (c1,di, ..., cm,dy)
Thus,

Similarly, one can show

Proposition A.8. Suppose (ai,by,...,a;,b;)) and (ci,di,...,ck,di) are wvalid. — Suppose
di<is bi<ﬁ. Let (x,y)eN? be such that 1+ Dicici Gy =) 2x= )00 di(y ).
1<i<k '

Then, if . Ex,y) €coINT_OP_HULL(ay, by, ...,a;,bj;c1,d, ..., ck, dy), then (x,y)€e
REV _coINTER(cy,d,, ..., ci,dy).
Proposition A.9. Suppose (ay, by, ...,a;,b;), (al,b’l, ) ,aj,bl) (cr,dy, ..o cr,di), (¢, dy, ... ¢, dy),

are valid. Suppose further that 3, ;; bi<sx~———, and 3, bi<—<1—.
= Zlgigk d; Zl<,<k 4;

If coINT_OP_HULL(d\,b},...,a,,b’;c),dy, ..., c,,d,)=2coOP- HULL* then

e ar,bi,....a;,bjcr,dy, ... cody?
coINTER(a}, b, ... ,al,b;)DcoSEMI HULLL bryeeesary and REV_coINTER(c|,d;, ...,c,,d;)=2
REV_coSEMI_HULLY , . .-

Proof. Follows from Proposition A.4. [

Theorem 16. Suppose n=m=>1. Let Q= (qi,...,q,), where each q; = COINIT. Then (a)
coOP_HULL"™S <T™Ex Q0 gnd (b) coOP_HULL™"S <TXEx @
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Proof. We show only part (a). Part (b) can be done similarly.

Intuitively, we use COINIT-type strategy to learn every set of parameters (a;, b;, ¢;, d;). This is
possible based on Proposition A.5 above using a method similar to that used in Theorem 14,
though technical details become more complicated.

Let /1 be a recursive bijection from Z to S such that h(i)<h(i + 1), for ie Z. Let Icode be as in
Proposition A.5. For (ay,by,...,a,,b,) and (c1,di,...,cmydy) in VALIDg, such that
D oi<i<n bi<ﬁ’ we let  map(a, by, ...,ay, by;c1,d, ... cm,dyn) = (Icode(ay, by;ci,dy),

. i
1<i<m

Icode(ay, by, ay,by;ci,dy,ca,da), ..., Icode(ay, by, ..., am, by;cr dyy ... Cmy i),
Icode(ay, by, ..., am1,bmrr;c1,d, ooy Cnydp), ..., Icode(ay, by, ... an, by cr,dy,y ... Cnydy)).

Claim  A.5. Suppose  (ay, by, ...,a;, b)), (a1, b1, ..., aj-1,bj-1,a;, b)), (c1,dy, ... cp,dy),

/ i . 1 /
(c1ydry ooy Chmty iy ¢, dy), are S-valid, where Y7, ; bj<ﬁ’ and b +3 7 bi<
I<i<k %

m. Suppose (aj,bj,ck,dk);é(a},bj’-,c;{,d,’{). Suppose coINTER(ay, by, ...,a;-1,b;_1,d., b))

77
2coSEMI_HULL, , .\ .\ and REV _coINTER(c1,dy, ..., cr—1,di_1,¢,,d}) 2
REV_coSEMI_HULLY , . . . ., then
Icode(ay, by, ..., aj-1,bj-1,a;, b5 c1,dy, ... ety dic—1, €, i)
<lIcode(ay, by, ...,aj_1,bj_1,a;,bj;c1,dy, ..., cx—1,dk—1, ck, di).

Proof. By hypothesis, we have INTER(ay, by, ...,a;_1,bj_1,d., b)) cSEMI_HULL

J? 7T ay,bi,...,aj-1,bj_1,a;,b;
and REV_INTER(ci,dy, ..., ck—1,di1, ¢ d}) SREV_SEMI_HULL, , ., . Thus, we
have Icode(ay, by, ...,aj_l,bj_l,a]’-,b]’.;cl,dl, ooy Ch—t1, di—1, €, dp) <Icode(ay, by, ..., a;_1,

bi_1,aj,bj;c1,dy, ..., cr—1,dir—1, ck,di) (by Proposition A.5; for getting <, use the fact that
(aJ'?bjaCkadk)7é(a_;'abjl'ac;cadll())' O

Claim A.6. Suppose (a1, by, ...,an,b,), (c1,dy, ...,y dy) are S-valid, and ), _; ., bi<ﬁ'
1<ism !

(A) Suppose 1<j<n, 1<k<m. Suppose (ai,bi,...,aj_1,bj_1,a;,b;) and (ci,di, ... ,cr1,

A
/ ! . ! 1
di_1, ¢}, dy) are S-valid, b; + El<i<j bi<m'
I<i<k '
Suppose Icode(ay, by, ...,aj_l,bj_l,aj’.,bj’-;cl,dl, ooy Chm1y i1, €, di ) > Icode(ay, by, ..., a;-1,bj_1,
aj, b ey, dy, ..., ck—1,di—1, ck, di). Then

[coINTER(ay, by, ...,a;-1,bj_1, a}, bj’) 2coSEMI_HULL’

aj ,b],..qaj,],bj,[ ,aj,bj
or REV_coINTER(cy,d\, ..., Cx—1,dk—1, ¢, d}y) 2 REV_coSEMI_HULLF

Llydl«,-u-ﬁ‘k—l,dk—l-,L'k-,dk]'
Y
COINT_OP_HULL(al , b], e i1, bj,l s aj, bj; C, d] g eney
g Jik
Cht5 i1 Cie> dk) 2 COOP_HULLIJI1bl7~--7aj—labj—l7aj~,bj§517d1-,u--"'k—hdk—lvclmdk'

(B) Suppose (ay, b}, ...,a,,b,) and (¢}, d,, ..., c,,,d,) are S-valid, 3, _, ., b;<ﬁ. Suppose
I<i<sm i

Thus,

YT n Y TYmY Tm

map(dy, b}, ....d,,b;c\,di, ....c,.d,)<omap(ai, b, ...,ay,,by;c1,dy, ..., cm,dy). Then, for the

oY T Y Ym m
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least j such that (aj,bj, Cmin jm)s dmin(jm)) 7 (a}, b;, c;nin(jm), dr’mnum)), coINTER(ay, by, ..., d, bj)
2 coSEMI_HULLJa] b by by ©

REV‘COINTER(CI vl s Cmin( jm)—1> dmin(_/,m)fla c;nin(j,m)7 dr/nin(j,m))

2 REV_COSEMI_HULL]C] 7d1 y+=+sCmin( jm)—1 ’dmin( Jum)—15Cmin( j,m) 7dmin( Jim) ’

(C) Suppose (dy, by, ...,a,,b,) and (|, d, ...,c,,,d,,) are S-valid, ), ;. b;<

Y Tn Y m 'm

r

1 S
—_—. up-
S
I<ism 1
pose  map(d), b, ....a,,b;c\,d,....c,.d,)<omap(ai, by, ...,a,,by;c1,dy, ..., Cm,dy).  Then,

oY YU < b

coINTER(a}, b}, ...,d., b, ....d b’),1_7coSEMI_HULLZI,blw,an_’b” or

* ]7 ]7 Yy Ynr ¥ n

REV_coINTER(¢),d;, ..., d’);QREV_coSEMI_HULL”idl7“.76””%.

YT mY m c
(D) Suppose (a}, b\, ...,a,,b,) and (c|,d\, ..., c,,d, ) are S-valid, y ", _; ,, b;<ﬁ. Suppose

I<ism i

coOP_HULL"™, ccoOP_-HULLY",, ., 0 - Then
B sl

ay,by,... an,byicr,dyy ... Conydy L dh
map(ai, by, ..., a4y, by;c1,dy, ... cp,dy) <o map(ay, by, ...,a, b, c\.di, ....c,,,d,).

(E) For 1<j<n, there exists a finite X}ECOOP‘HULLZ;’?;M,...7a,1,b,,;cl,d1,...,cm,dm such that, for all
S-valid (a,, by, ...,aj_l,bj_l,a_;,b;), (c1,d, ---’Cmin(j,m)—ladmin(j,m)—laC;nin(j,mydfmn(j,m))’ such that
/ 1 .
bj + Zl<[<j bi<dt/nin( j.nz)+21<i<min(j,m) d;’ lf
Icode(m 5 bl, e i, bjfl y a;, b;, Cy, dl, ) Cmin(j,m)—l s dmin(j,m)—l N c;nin(j,m)’ dr/nin(j,m))
>Ic0de(a1 s bl, ey dit, bj_l , j, bj; Cl, dl, ey Cmin(j,m)fl N dmin(j.,m)fl s Cmin(j,m)a dmin(j,m))> Zhen,
COINT_OP_HULL(al,bl, ceey aj,l,bj,l, a;, b Cl, dl, ceey Cmin(j,m)—lv dnﬁn(jm)_l, C;nin(j,mw dr/nin(j,m)) fé)(/

i V)
(F) There exists a finite X ©coOP_.HULL", ., ., such that, for all j, 1<j<n, for
S-valid (ay, by, ..., aj-1,bj—1,d;,b}), (c1,dy, ..., Cmin(jm)—15 Dmin( jm)—=1> Coning jm)> Dmin( jm))> Such that

o4+ .. bi< L if
1<i< i ' R
J J dmin( /‘)ﬂ)+21<i<min(j,m)

ICOde(al by, .., a1, bj—l ) Cl]/-, b]/’ cl,di, ..., Cmin( jm)—15 dmin(j,m)fl ) c;nin(j,m)’ drlnin(j,m))

>ICOde(a1 y by, ai—1, bjfl y &y bj; crydi, ..., Cmin( j,m)—15 dmin(j,m)fl y Cmin( j,m)» dmin(j,m))7 then,
coINT_-OP_HULL(ay, by, ..., aj-1,bj1,d, bis c1, dy, ... Coin( jm)—15 Ginin( jm)—15 Couin( j.my> Donin jm)) B X -
Proof. (A) Suppose the hypothesis. Then, it follows from Claim A.5 that [coINTER(aj,
bi,...,aj_1,bj_, aJ’., bj’) 2coSEMI_HULL! or  REV_coINTER(c\,dy, ...,cr-1,

ay,by,...,aj_1,bj_1,a;,b;
dk,l,c}c,d,’c)2REV_coSEMI_HULL’(‘,I’dI,'.'7(,}(7]7%]M”dk]. Thus, by Proposition A.9, we have

COINT_OP_HULL(al s b], ey i1, bj,l s a]’., b]/, C, d] g eeey Ch—1, dkfl y C;(, dllc)
2 coOP_.HULL'*

ay,by,....a;1,bj1,a;,bj;¢1,d1 .. Com 1,1 Cio i
(B) Let j be least number such that (a;,b;, cpin( j’m),dmin(_hm));é(a]’-,b]’.,c;nin( jm),dr’nin(j’m)).
Note that, for i<j, we must have Icode(ay, by, ...,a;bi;ci,di, ..., Cmingim)> Amin(im) =

Icode(a), b, ..., d;,bl; ¢, di, ...,c&lin(im),dl’nin(im). If
coINTER(ay, by, ..., a;_,bj_1,d;, b)) 2coSEMI_HULL], , -
REV_COINTER(Cl y d] g eney cmin(j,m)fl s dmin(j,m)fla c;nin(j,m)7 dr/nin(j,m))

2 REV_coSEMI_H ULL’;lAd1 B , then, by part (A) we would have

< sj-1,bj-1,a;,b; and

- >Cmin( j,m)—1 7dmin( jm)—1 acmin(j,n1)~,dmin(j,m)
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. / /. /
Icode(ay, by, ...,a;,bj; c1,dy, ..., Coin( jym)> Amin( jm)) > Icode(B,d\, by, ..., a,, b ¢, dy, ....c

MRy R B * “min( j,m)’
dllnm(/m))' Thus, map(alabla --~>an>bn;cladla ---7Cmin(j,m)admin(j,m))<Qmap(all, bl’ . ,an,b;,cl,
di; s Coin( jm)> Dmin( jm))» @ contradiction to the hypothesis.

(C) Follows from the fact that, for 1<j<n, coINTER(a,bi,...,a;,b;)2
coINTER(a1, by, ...,a;,b;, ..., a,,b,), REV_coINTER(cy,dy, ..., Coin( jm)> @min( jm)) 2
REV_COINTER(Cl,dl, Cmin(jm) dmin(jm) Cm,dm) COSEMI_HULLZ/ d b =2

1 1 nn
coSEMI_.HULL, , ., and REV_coSEMI_HULLY , ., ;2

7/ J ”1 m
REV _coSEMI_ HULL]C dd Z and part (B).
70 min( jum) min( jm)

(D) If coOP_HULLZ""Z1 b, dmccoOP_HULLZ,’rZ, bl then

m**'m

coOP_-HULLY", .\ . 4 . 4 <CcOINT. OP HULLZ "z, A d Thus by Proposition

D3 Cdy s -Gy

A9, coSEMI_HULL(ay,by, ...,an,bn)CcolNTERa B and REV coSEMI_HULL(cy,

Ay 0y

diy...,Cndpy) SREV_coINTERY ;. o - Now part (D) follows from part (C).

m*m

(E) Let (xl,yl)ecoSEMI_HULLjul_blw_ﬂi’bj be such that 1+, ; bi(xi~a;)>yi>
> i<i<j bi(x1 = a;). Note that there exists such (x1,y1). By Proposition A.7 if (xj,y1)€

COINT_OP_HULL(al,bl, ceey aj 1,bj 1,d ] y ] N Cl s dl, ey Cmin(j,n1)—l7dmin(j,n1) 15 gnm(] m) dr/llqm(/ m))
then (x1,y1)€coINTER(ay, by, ...,aj-1,bj-1,a/,b/). Thus, by Proposition 24, there exists
a Berat®™ such that if (xl,yl)ecoINT_OP_HULL(al,bl, ey @1, b, df ,b],cl,dl7 s
Cmin( jm)—1> dmin(j,m) 1 i;m(] m)? drlém(] m)) then a” <x; and b// >B.

Similarly, let (x2,y2)€REV_coSEMI_H ULL?“ZIK .'.”lmm(/m) Ao i be such that 1+

Zl<i<min(j,m) bi(ys =~ aj)=xy> ZKKmin(_i’m) bi(y2 =~ a;). Note that there exists such (xz,y7).
By  Proposition A8 if  (x2,2)€coINT_OP_HULL(ay,by, ...,aj_1,bj_1, J,b,,cl,dl,...,
Crmin( jm) 717dmin(jm) U Conin( jmy Doin( jmy)» - then (x2,32) € REV_coINTER(cy,d,, ..., Cmin( jm)-1,
Aimin( jm)—15 Conin () I’l’m ]m) Thus, by Proposition 24, there exists a B’eratt such that if

(x2,2) €coINT- OP-HULL(al b, ...;aj_1,bj_1,d} ,b;cr,dyi, ..., Cmin(jm)—1> min( jm)—1, Ci

]7 ]7 min(jv’”)’

dl’{lm(]m ), then cmm(]m) <y, and dr’;]m () >B".

Thus, for (x;,»1) and (x2,32) to be in coINT-OP_-HULL/'™™U™M (qy by, ... a;,
bj_l,a]’.,b};cl,dl, -+~ Cmin( jm)— 17dmin(jm) 1’c;nin(/m)7d1/nin(jm)) where b/'+21<i<j b;<
, le 2+ We must have a/<xi, ;=B len(jm)\y27 dmm(]m)>B and b/ <1/B" and
min( j,m <i<min( jm
diin(jm<1/B. Since there are only finitely many such (a], b;, min( j.m) ,dr’mn () ) with
b, dy; eS, we have part (E) using part (A).

min( j,m)

(F) Let X =U,<j<,X; where X; is as in part (E). Now, if map(d),by,....a,,b,)<

omap(ai, by, ...,a, b,), there exists a j, 1<j<n such for 1<z<], a;=d, and b; =5, and
Icode(al,bl, ...,aj,1,bj 1, ],b C],d], ---7Cm1n(j,m)fladmm(j,m)flv min( jm) mm]m)>ICOd€(a1,b1, ceey
a1, bj*laajubj; C17d17 -++» Cmin _/,m)fl)dmin(_[,m>fl7Cmin(j,m)vdmin(j,m))'

Part (F) now follows from part (E), and definition of X. [
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We now continue with the proof of the theorem. The aim is to construct @ which maps
COOP‘HULLnJmS A byicr,diy ... Conytin to LQ

ai 7b1 yeeey mﬂp(lll 7bl geee 7a117bn;cl 7dl geen 7Cln7dn1) :
Note that definition of ¥ mapping grammar sequence converging to a grammar for

Le
’nap(al ,b],...ﬂ,, b,,,L[,d[,...,Cm.,dm)

coOP_ HULLa1 Bro by s
Without loss of generality, we will be giving © as mapping sets to sets.
For any finite X = N?, let Prop(X,ay,by, ..., ay,by;c1,d,, ..., Cm,dy) be true iff the following
two properties are satisfied:
(A) (ay, by, ...,a,,b,) e VALIDg, (c1,d, ...,ch,dy) € VALIDs, and ), ., b; <Z :
1<i<m d;

(B) For all j, 1<j<n, for all a,ceN,bj,d; €S, such that b_;+21§1<j b;

i mln ]m
1

to a grammar sequence converging to a grammar for
4. would be trivial. We thus just define 6.

- Cmym

< .
dl’nin( jm)+ZI<i<min(j,m) dj
U
If Icode(a1 y b17 ey i, bj*l ) Uiy b]a C1, dl PEERE) Cmin(j,m)—la dmin(j,m) 1> Chnin (j,m)? “min( j, m)) >
ICOde(al ) bla -y 41, bj*l ) 4, bj; ap dlu -++5 Cmin(jm)—1, dmin(j,m)—l » Cmin( j,m)s dmm(],m))u then

J,min( j,m)
[Xg COINT OP HULL bl ceeylj— labj 17“ h (lvdl ~~~~~ (mm(jm ldmm (jm)—1> me(/m)’ l/nin(_/',m)
Note that whether X, ay, by, ..., ay, by, c1,d1, ..., Cm, dy, satisfy (A) and (B), for all j, 1<j<n, is
effectively testable.
Moreover, (B) above implies that
(C) for all (a’17 e d, b’) (c\,di, .

7}’17}’1

d,)eVALIDs, > ., bi<i=1=-d!, such that

1<i<m ™1
/. ! .
map(ay, by, ...,d,, b, di, . d )<Qmap(a1,b1,...,an,bn,cl,dl,...,cm,dm),

oY% Yo >m’ m

XQCOOPHULL,H bl dr

s Cds - Oy

Thus, for finite XENZ7 let

U { map(as b insb) ]Prop(X,al,bl, ey by}

For infinite X’, @(X") = Uyc v, cara(x) <0 @(X).
It is easy to verify that
(1) for any X ScoOP_ HULLa] Bro st by

) n’[?

. 7Cm7dm )

o(x)cL?

map(ai,by,....an,buscr,dr ;... .Cmydm)

(by (C) and the fact that for any valid 7 and I’, map(I) < 9 map(I'), implies Lmap( ne map( 1% ), and
(2) for any S-valid (ay, by, ...,an, b,) and (c1,d,, ..., ¢, dy), by Claim A.6(F) there exists a finite
set X ScoOP_HULL", ., . such that O(X)=2L¢

< sCms? map(ay,by,... an,busct,dy ... .Conydn)
Thus, we have that

@(COOP_HULLZ.II:ZIa--<7an7bn;(7ladl-,---7Cn17dm) = LQ : D

‘map(ay,by,...,an,by;c1,dy, ... Cmydin)



606

References
[BF72]

[Blu67]
[BEHWS89]

[BGGM9S]
[BGM98]
[Cas99]
[CL82]
[CS83]
[CA99]
[CM94]
[DS86]
[DGY5]
[Fel72]

[Fis95]

[FKS95]
[Gol67]
[GGY4]

[GGDMY4]

[GGS96]
[GKS01]
[GS99]
[Heg94]

[HU79]

S. Jain, E. Kinber | Journal of Computer and System Sciences 67 (2003) 546—607

J. Barzdins, R. Freivalds, On the prediction of general recursive functions, Soviet Math. Dokl. 13 (1972)
1224-1228.

M. Blum, A machine-independent theory of the complexity of recursive functions, J. ACM 14 (1967) 322-336.
A. Blumer, A. Ehrenfeucht, D. Haussler, M. Warmuth, Learnability and the Vapnik—Chervonenkis
dimension, J. ACM 36 (4) (1989) 929-965.

N.H. Bshouty, P.W. Goldberg, S.A. Goldman, H.D. Mathias, Exact learning of discretized geometric
concepts, SIAM J. Comput. 28 (1998) 674-699.

N. Bshouty, S. Goldman, D. Mathias, Noise-tolerant parallel learning of geometric concepts, Inform.
Comput. 147 (1) (1998) 89-110.

J. Case, The power of vacillation in language learning, SIAM J. Comput. 28 (6) (1999) 1941-1969.

J. Case, C. Lynes, Machine inductive inference and language identification, in: M. Nielsen, E.M. Schmidt
(Eds.), Proceedings of the Ninth International Colloquium on Automata, Languages and Programming,
Lecture Notes in Computer Science, Vol. 140, Springer, Berlin, 1982, pp. 107-115.

J. Case, C. Smith, Comparison of identification criteria for machine inductive inference, Theoret.
Comput. Sci. 25 (1983) 193-220.

Z. Chen, F. Ameur, The learnability of unions of two rectangles in the two-dimensional discretized space,
J. Comput. System Sci. 59 (1) (1999) 70-83.

Z. Chen, W. Maass, On-line learning of rectangles and unions of rectangles, Mach. Learning 17 (2/3)
(1994) 23-50.

R. Daley, C. Smith, On the complexity of inductive inference, Inform. Control 69 (1986) 12—40.

D. Dobkin, D. Gunopulos, Concept learning with geometric hypothesis, in: Proceedings of the Eighth
Annual Conference on Computational Learning Theory, Santa Cruz, CA, ACM, New York, 1995,
pp- 329-336.

J. Feldman, Some decidability results on grammatical inference and complexity, Inform. Control 20
(1972) 244-262.

P. Fischer, More or less efficient agnostic learning of convex polygons, in: Proceedings of the Eighth
Annual Conference on Computational Learning Theory, Santa Cruz, CA, ACM, New York, 1995,
pp- 337-344.

R. Freivalds, E. Kinber, C. Smith, On the intrinsic complexity of learning, Inform. Comput. 123 (1)
(1995) 64-71.

E.M. Gold, Language identification in the limit, Inform. Control 10 (1967) 447-474.

P. Goldberg, S. Goldman, Learning one-dimensional geometric patterns under one-sided random
misclassification noise, in: Proceedings of the Seventh Annual Conference on Computational Learning
Theory, ACM, New York, 1994, pp. 246-255.

P. Goldberg, S. Goldman, H. David Mathias, Learning unions of boxes with membership and
equivalence queries, in: Proceedings of the Seventh Annual Conference on Computational Learning
Theory, ACM, New York, 1994, pp. 198-207.

P.W. Goldberg, S. Goldman, S.D. Scott, Pac learning of one-dimensional patterns, Mach. Learning 25
(1996) 51-70.

S. Goldman, S. Kwek, S. Scott, Agnostic learning of geometric patterns, J. Comput. System Sci. 62 (2001)
123-151.

S. Goldman, S.D. Scott, A theoretical and empirical study of a noise-tolerant algorithm to learn
geometric patterns, Mach. Learning 37 (1999) 5-49.

T. Hegedus, Geometrical concept learning and convex polytopes, in: Proceedings of the Seventh Annual
Conference on Computational Learning Theory, ACM, New York, 1994, pp. 228-236.

J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison—
Wesley, Reading, MA, 1979.



[TKW99]

[TKWO00]

[7596]
[7597]
[KS95]
[LZ93]
[MY78]

[OW82]
[Rog67]

[Wie86]

S. Jain, E. Kinber | Journal of Computer and System Sciences 67 (2003) 546—607 607

S. Jain, E. Kinber, R. Wiehagen, Language learning: degrees of intrinsic complexity and their
characterizations, Technical Report LSA-99-02E, Centre for Learning Systems and Applications,
Department of Computer Science, University of Kaiserslautern, Germany, 1999.

S. Jain, E. Kinber, R. Wiehagen, Language learning from texts: Degrees of intrinsic complexity and
their characterizations, in: N. Cesa-Bianchi, S. Goldman (Eds.), Proceedings of the Thirteenth
Annual Conference on Computational Learning Theory, Morgan Kaufmann, Los Altos, CA, 2000,
pp. 47-58.

S. Jain, A. Sharma, The intrinsic complexity of language identification, J. Comput System Sci. 52 (1996)
393-402.

S. Jain, A. Sharma, The structure of intrinsic complexity of learning, J. Symbolic Logic 62 (1997)
1187-1201.

E. Kinber, F. Stephan, Language learning from texts: mind changes, limited memory and monotonicity,
Inform. Comput. 123 (1995) 224-241.

S. Lange, T. Zeugmann, Learning recursive languages with a bounded number of mind changes, Inter.
J. Found. Comput. Sci. 4 (2) (1993) 157-178.

M. Machtey, P. Young, An Introduction to the General Theory of Algorithms, North-Holland, New
York, 1978.

D. Osherson, S. Weinstein, Criteria of language learning, Inform. Control 52 (1982) 123-138.

H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967,
Reprinted, MIT, Cambridge, MA, 1987.

R. Wiehagen, On the complexity of program synthesis from examples, J. Inform. Process. Cybernetics
(EIK) 22 (1986) 305-323.



	Intrinsic Complexity of Learning Geometrical Concepts From Positive Data
	Recommended Citation

	Intrinsic complexity of learning geometrical concepts from positive data
	Introduction
	Notation and preliminaries
	Gold [Gol67]
	Gold [Gol67]
	Gold [Gol67], Case and Smith [CS83]
	Reductions
	Jain and Sharma [JS96]
	Jain and Sharma [JS96]
	Jain and Sharma [JS96]
	Based on [JS97]
	Q-classes
	Jain et™al. [JKW00]
	Based on [JS96]
	Q-hierarchy involving HALF
	Definitions for open semi-hull and some propositions
	Q-classes to which SEMI_HULLn,S is reducible
	Q-classes which are reducible to SEMI_HULLn,S
	Definitions for complements of open semi-hull
	Classes to which coSEMI_HULLn,S is reducible
	Classes which are reducible to coSEMI_HULLn,S
	Open hulls-intersections of semi-hulls
	Complements of open hulls
	Conclusions
	Acknowledgements
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 12
	Proofs of Theorems 13 and 14
	Proofs of Theorems 15 and 16

	References


