
Sacred Heart University Sacred Heart University

DigitalCommons@SHU DigitalCommons@SHU

School of Computer Science & Engineering
Faculty Publications School of Computer Science and Engineering

8-30-1996

Frequency Computation and Bounded Queries Frequency Computation and Bounded Queries

Richard Beigel
University of Maryland at College Park

William I. Gasarch

Efim Kinber
Sacred Heart University

Follow this and additional works at: https://digitalcommons.sacredheart.edu/computersci_fac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Beigel, R., Gasarch, W., & Kinber, E. (1996). Frequency computation and bounded queries. Theoretical
Computer Science, 163(1-2), 177-192. doi:10.1016/0304-3975(95)00149-2

This Article is brought to you for free and open access by the School of Computer Science and Engineering at
DigitalCommons@SHU. It has been accepted for inclusion in School of Computer Science & Engineering Faculty
Publications by an authorized administrator of DigitalCommons@SHU. For more information, please contact
santoro-dillond@sacredheart.edu.

http://digitalcommons.sacredheart.edu/
http://digitalcommons.sacredheart.edu/
https://digitalcommons.sacredheart.edu/
https://digitalcommons.sacredheart.edu/computersci_fac
https://digitalcommons.sacredheart.edu/computersci_fac
https://digitalcommons.sacredheart.edu/computersci
https://digitalcommons.sacredheart.edu/computersci_fac?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:santoro-dillond@sacredheart.edu

163 (1996) 177-192

Theoretical
Computer Science

Frequency computation and bounded queries

Richard Beige1 a~1, William Gasarch b,*, Efim Kinber ’

a Dept. of Computer Science, University of Maryland, A. V. Williams Building.
College Park, MD 20742, USA

b Department of Computer Science, Yale University, P. 0. Box 208285. New Haven,
CT 06520-8285, USA

c South College and Anstel Computer Information Sciences, University of Delaware, 103 Smith Hall,
Newark, DE 19716, USA

Received February 1995; revised July 1995
Communicated by R.V. Book

Abstract

There have been several papers over the last ten years that consider the number of queries

needed to compute a function as a measure of its complexity. The following function has been
studied extensively in that light: Ft(xl,. . .,x0) = ,4(x,). .A(x,). We are interested in the com-
plexity (in terms of the number of queries) of approximating Fi. Let b <a and let f be any
function such that Ft(xl, . ,x0) and f(x1,. . .,x0) agree on at least b bits. For a general set A we

have matching upper and lower bounds on f that depend on coding theory. These are applied to

get exact bounds for the case where A is semirecursive, A is superterse, and (assuming P # NP)
A = SAT. We obtain exact bounds when A is the halting problem using different methods.

1. Introduction

The complexity of a function can be measured by the number of queries (to some

oracle) needed to compute it. This notion has been studied in both a recursion-theoretic

framework (see, for example, [5, 11, 171) and a complexity-theoretic framework (see,

for example, [2, 12, 161). We give several examples.

1. Let f be the fiction that, given a graph on n vertices, outputs the number of

colors needed to color it. Krentel [161 showed that this function can be computed with

O(logn) queries to SAT in polynomial time but cannot be computed with substantially

fewer queries to any oracle in polynomial time (unless P = NP).

* Corresponding author. Email: gasarchQcs .umd.edu. Supported in part by NSF grants CCR-8803641 and
CCR-9020079.
’ Supported in part by National Science Foundation grant CCR-8958528

’ Supported in part by NSF

0304-3975196/$15.00 @ 1996-Elsevier Science B.V. All rights reserved
SSDIO304-3975(95)00149-2

178 R. Beige1 et al. I Theoretical Computer Science 163 (1996) 177-192

2. Let A be a nonrecursive set and a E N. Let #t be the function that, given

(Xl,..., x~), returns IA n {XI,. .,x,)1 (the number of elements that are in A). It is

known that there are sets A,X such that #;;’ can be computed with [log(a + 1)1 - 1

queries to X. Kummer [17] showed that this is optimal, i.e., if #t can be computed

with [log(a + 1)1 queries to some X then A is recursive.

The following functions have been studied extensively in this light.

Definition 1.1. Let a E JV and A C JV. The function Ft : JV’ + (0, 1)’ is defined as

F;;‘(xl ,...,xa) =A(xl)...A(x,).

The function #;;’ is defined as

~(xI,...J,) = IA n {x~,...,xa)t.

The function F;;’ is interesting because it has a certain intuitive appeal and most

lower bounds have reduced to lower bounds for F;;‘. We investigate the complexity of

computing an approximation to F,. A To do this we define a class of functions freq&

such that every element of freq& approximates Fi.

Notation. If CJ, r are strings of the same length then ~7 =’ r means that (T and r differ

in at most c places.

Definition 1.2. Let a, b E JV be such that 1 db <a, and let A C 4’“. jiieq& is the set

of all functions f that map N’ to (0, l}a such that, for all xi,. . . ,x,, f(xl, . . . ,x,)

and Ft(xi , . . . ,x,) agree in at least b places (i.e., f(xt,. . .,x,) =a-b F:(xi,. . . ,xn)).

We occasionally treat freq& as just one function: an upper bound on the complexity

of freq& means at least one function in freq& has that complexity (or less), and

a lower bound on the complexity of freq& means that every functions in freq& has

that complexity (or greater).

Note. The set freq& was first defined by Rose [22] and has a long history. For more

information see [131.

We investigate the complexity of freq& for several sets (or types of sets) A and

parameters a, b. Our measure of complexity of a function is the number of queries

needed to compute it. Most of our results are recursion-theoretic; however, some of

our techniques also apply in a polynomial framework.

Information about the complexity of F;;’ will help in our study. However, the com-

plexity of freq& is a harder question. We describe the difference. Assume that, given

(Xl,..., x0), one could produce (the index for) an r.e. set W &{O, 1)’ such that

F;;‘(xi,..., n,) E W. It has been shown (Lemma 2.4) that the size of W completely de-

termines the complexity of Ft. Does knowing W help us to compute freq&(xl, . . . ,x0)?

From W we can obtain W’, the set of vectors that differ from elements of W by at

R. Beige1 et al. I Theoretical Computer Science 163 (1996) 177-192 179

most a - b bits. Formally,

w’ = (8: (33 E W)[v’=“-b 21).

It is easy to see that freq&(xl, . . . , x,) E W’. The complexity of freq& is completely

determined by 1 W’I. Unfortunately, it is impossible to determine 1 W’I from 1 WI. To

determine I W’I we need to know the very structure of W. This is the key reason that

F;;’ is better understood than freq&: the complexity of F;;’ is related to the cardinality

of W, while the complexity of fred, is related to the structure of W. One theme

of this paper will be that the more we know about W the better we understand the

complexity of freq&.

In Section 3 we prove a general lower bound on the complexity of freq& (for

nonrecursive A). It is based on a general lower bound for #;;‘. In Section 4 we obtain

exact bounds for the complexity of freq&. In Section 5 we link the complexity of

fre4;f, to the structure of the set W mentioned above. This will allow us to establish

the exact complexity of freq& for certain sets A. These exact complexities depend on

functions from coding theory. In Section 6 we use our proof techniques to obtain results

in complexity theory. Assuming P # NP we determine the exact query complexity of

fre9::.

2. Definitions, conventions and useful lemmas

Notation. We use the following notation throughout this paper.

1. MO,Mi,... is a standard effective list of Turing machines.

2. M$,M() 1 , . . . is a standard effective list of oracle Turing machines.

3. W, is the domain of A4,. Hence, WO, WI,. . . is an effective list of all r.e. sets.

4. K = {e : M,(e)J}.

5. If A C JV” then A’ = {e : Mt(e)l}.

6. D, = {i : the ith bit of e is 1). Hence Do,Dl,. . is a list of all finite sets.

Convention. Technically, A4, takes elements of JV as input and returns elements of M

as output; and W,, D, C JV. We will sometimes need to use Jlr“ (or (0, 1 }*) instead of

JV. In these cases we implicitly assume that there is a fixed recursive bijection between

N and Mu ((0, 1 }*) and code elements of Na ((0, I}*) into N accordingly.

Definition 2.1. Let a E _N and let XC JV. FQ(a,X) is the collection of all total

functions g such that g is recursive in X via an algorithm that makes at most a

sequential queries to X. FQC(a,X) is the collection of all functions g such that g is

recursive in X via an algorithm MO such that (1) for all x, MX(x) makes at most a

sequential queries to X, and (2) for all x, Y the computation My(x) converges.

The concept of bounded queries is tied to enumerability. Every possible sequence of

query answers leads to a possible answer. Hence, less answers are possible with fewer

queries.

180 R. Beige1 et al. I Theoretical Computer Science 163 (1996) 177-192

Definition 2.2. Let a E M and f be any total function. The function f is a-enumer-

able, and we write f E EN(a), if there exists a recursive function g such that, for all

x, I@‘,(,)lGa and f(x) E I+‘,,). (This concept first appeared in a recursion-theoretic

framework in [3]. The name “enumerable” is from [7] where it was defined in a

polynomial bounded framework.)

If f is a-enumerable then, given x, we can find g(x) and try to enumerate IV,,,,

looking for possibilities for f(x). While doing this we do not know when IV,(,) will

have stopped generating possibilities. The next definition imposes a stronger condition

of enumeration. In this scenario we are given an index of a set of possibilities as an in-

dex of a finite set. Hence, we can obtain all the possibilities and know we have them all.

Definition 2.3. Let a E .Af and f be any total function. The function f is strongly

a-enumerable, and we write f E SEN(a), if there exists a recursive function g such

that, for all x, ID,(,)1 <a and f(x) E D,(,). We denote this by f E SEN(a).

Lemma 2.4 (Beige1 [3,5]). Let a E JV and let f be any function.

1. (X)[f E FQ(a,X)] $f f E EN(2’).

2. (X)[f E FQC(a,X)] ifs f E SEN(2’).

In this paper we will prove upper and lower bounds in terms of enumerability (or

strong enumerability). Using Lemma 2.4 the reader can obtain corollaries about upper

and lower bounds in terms of number of queries.

The following lemma provides a lower bound on the enumerability of #;;‘. We will

use it in Theorem 3.1 to obtain a lower bound on freq&.

Lemma 2.5 (Kummer [17]). Let a E ,Ir, and let A 2 N. If #;;’ E EN(a), then A z’s

recursive.

We now exhibit nonrecursive sets A (namely the semirecursive sets) such that if

b/a< i then freq& is recursive. Since we are interested in how many queries are

required to compute freq&, the case where freq& is recursive is not of interest.

Hence, most of our theorems will assume b/a > i.

Definition 2.6 (Jockusch [15]). A set A is semirecursive if there exists a recursive

linear ordering C on &@ such that A is closed downward under C. (This definition is

equivalent to the following: A is semirecursive if there exists a total recursive function

f such that A n {x, y} # 8 + f (x, y) E A n {x, y}. The proof of the equivalence is in

[151 and credited to Appel and McLaughin.)

The following is a folk theorem. It will also be a consequence of Theorem 5.10.

Proposition 2.7. Assume b/a d i. If A is semirecursive then freq& is recursive. Hence,

every tt-degree contains a set A such that freq& is recursive.

R Beige1 et al. I Theoretical Computer Science 163 (1996) 177-192 181

Proof. Let A be semirecursive via C. Given (xi,. . . ,x,) we may assume xi C. . . C x,.

Since Ft(xi ,...,X,) E {l’OQ-’ : O<i<a} we have I~“‘21~la/2J =a-b Ft(xi,...,x,).

output 1 r@lo l@J .

Part 2 follows from part 1 since Jockusch [15] showed that every tt-degree contains

a semirecursive set. q

It is known that Proposition 2.7 is optimal; if b/a > i andfred,, is recursive then A

is recursive. This was proven by Trakhtenbrot [25]. We will give an alternative proof

(Corollary 3.2).

3. A general lower bound for freq&

We prove a general lower bound on the enumerability of freq& for any non-

recursive A.

Theorem 3.1. Assume 1 <b <a, b/a > i, and A C N. Iffre&f,nEN([(a + 1)/(2(a - b)
+ 1)I - 1) # 0, then A is recursive.

Proof. Assume that f E freq& n EN([(a + 1)/(2(a - b) + 1)1 - 1). Let (xl,. . ,xa) E

No. Every time a possibility for f(xi, . . . , no) is generated it yields at most 2(a - b) + 1

possibilities for #$(x1,. . . ,x0). Hence,

e E EN
a+1

2(a - b) + 1

By Lemma 2.5 A is recursive. 0

Corollary 3.2 (Trakhtenbrot [25]). Zf b/a > i and freq& is recursive, then A is re-
cursive.

Note. Theorem 3.1 has been obtained independently by Kummer and Stephan [191

using different methods.

The next theorem shows that Theorem 3.1 cannot be improved, and also extends

Proposition 2.7.

Theorem 3.3. Assume 1 d b da, bja > i. Zf A is semirecursive then

fred,, n SJW [(a + 1)/(2(a - b) + 1 11) # 0.

Proof. Let k = [(a + 1)/(2(a - b) + l)]. We present an algorithm for a function f E

freq& n SEW).
Assume the input is xi ,..., x,. Wecanassumethatxi C...Cx,.HenceFt(xi ,..., x,)

E S = {lcOu-c : O<C<U}. For l<i<k- 1 let Vi = 1 (2i-l)(a-b)+i-loo-(2i-l)(a-b)-i+l,

and let Uk = lbO’. Let f(xi,...,&) be an index for the finite set D = {q,...,vk}. It

is easy to check that for every w E S there exists v E D such that w =a-b v. 0

182 R. Beige1 et al. I Theoretical Computer Science 163 (1996) 177-192

4. Exact bounds for freq&

In this section we determine the enact complexity offreq:, in terms of enumerabil-

ity. In Corollary 5.19 we will determine the exact complexity of fieq$ in terms of

strong enumerability. It is known that #t(x 1,. . . ,xa) completely determines Ff. Hence,

the structure of the set of possibilities for F: is well understood. This is why we are

able to obtain exact bounds.

Theorem 4.1. If 1 Gbda then freq& n EN([(a +])/((a - 6) + l)]) # 0.

Proof. Given (xi,. . ,x,) we show how to enumerate < [(u + 1)/((a - b) + 1)1 pos-

sibilities such that one of them agrees with Ft(xi , . . . ,x,) on at least b positions.

Let k = [(a+l)/((a-b)+l)], and let Ii,. . . ,Ik be intervals of length at most

a - 6 + 1 that partition (0,. . . , u}. (Notice that k > 1 because b 2 1.) For each interval

I = [c, d] we enumerate a possibility that is based on the belief that #:(x1,. . . ,xa) E

[c,d]. By dovetailing these computations we enumerate at most k possibilities.

For interval I = cc, d] we do the following. If c = 0 then output (0,. . . ,O). If c > 0

then simultaneously run all of M,, (xi), . . , Mxa (n,) until exactly c of them halt (this

need not happen). Output a string that indicates that these c programs are in K and

no other programs are in K.

We show that if #:(x1,. . . ,x,) E I = [c,d] then the possibility associated with I

is correct. Clearly, the c l’s are correct. Since there are at most d programs in K,

at least a - d of the O’s are correct. Hence, at least c + a - d = a + (c - d) =

aft-Il(>a+l-(a-b+l)=bbitsarecorrect. 0

Note. By Lemma 2.4, (3X)Weq& fl FQ([log(u + l)/((u - b) + l)],X> # 01. The
oracle is unspecified. In this case we can do just as well with oracle K: by a truncated

binary search, fie&,, n FQ([log (a + 1 >/((a - b) + 1)I ,K) # 0.

The enumeration procedure used in Theorem 4.1 is not a strong enumeration. In Sec-

tion 5 we show that a strong enumeration for freq& requires many more possibilities

than an enumeration.

We show that the above bound is tight. For this we need the a-ary recursion theorem

which we state carefully. Smullyan ([23], see also [21, p. 1901) proved this for a = 2

but the general case is an easy extension.

Proposition 4.2. Let a > 1. For any finite sequence 91,. . . , ga of total recursive func-

tions there exists x1,. . ,x0 such that

% = ‘pw(h,...,xo~)

for every 1 < i f a.

Note 4.3. Note that program xi can use the numbers xi,. . .,x,. In this sense we think

of spx, as “knowing” xi,. . . ;x,.

R Beige1 et al. I Theoretical Computer Science 163 (1996) 177-192 183

Theorem 4.4. Zf 1 < b <a then fray& n EN([(u + 1)/((a - b) + 1)] - 1) = 0.

Proof. Assume, by way of contradiction, that there exists

f l freq~,nENKu+l)l((u-b)+l)l-1).

Assume that f E EN([(a + 1)/((a - b) + 1)] - 1) via g. We create programs xi,. . ,x,

that conspire to cause

(vc E Wq(x ,,.__, x,)X+ =‘-’ F:(xi,. . . ,4)1.

We plan to have different blocks of programs invalidate different elements of

W S(Xl>...,&)~ Letk=](u+l)/((u-b)+l)l-l.Sinceb>l wehavekal.Let.Zi,...,.Zk

be intervals of length 3 a - b + 1 that partition (0,. . . , u}.

By the a-ary recursion theorem we can assume that xi has access to the numbers

{Xl,. ..,&I).

ALGORITHM FOR Xi

1. Let j be such that i E Jj (if no such j exists then diverge).

2. Enumerate WgcX ,,..., X,) until j elements appear (this step might not terminate). Let

that jth element be v’ = bl . . . b,.
3. If bi = 0 then converge. If bi = 1 then diverge.

END OF ALGORITHM

For all j, 1 dj6k, if W,(, ,,_._, xa) has the jth element o’, then v’ and Ff(xi,. . . ,x,)

differ on the bits specified by Jj. Hence, they differ on at least u - b + 1 places, so

(= E W,, ,,..., x,,)[-(v’ =a-b F%,, . . . ,xa))l. 0

5. Exact bounds for freq&

In this section we prove a general theorem relating the complexity of freq& to the

structure of the set of possible values for F,. A We apply this theorem to semirecursive

sets, joins of semirecursive sets, and superterse sets.

The following definitions from coding theory are used extensively in this section.

Definition 5.1. Let u,r E Jf. Let z E {O,l}a. The closed bull of radius r centered at
z is the set B(z,r) = {y E {O,l}a : y =r z}. If D c{O, 1)” then D is covered by k
bulls of radius r means that there exist zi, . . . ,zk such that D C & B(zi, r).

Definition 5.2. Let a, r E _N and D C{O, l}a. Define k(D, r) to be the minimal number

j such that D can be covered by i balls of radius r. The quantity k((0, l}a, r) is denoted

by k(a,r).

The quantity k(u, r) is known as the covering number. It has been studied extensively

(see [8-10,14,26]). No exact formula is known for it, however we present some known

estimates.

184 R. Beige1 et al. I Theoretical Computer Science 163 (1996) 177-192

Fact 5.3. Let S,,, = CL=, (4).
1. 2a/S0,, <k(a,r)<(2”/&,)(1 +log&,) [8, Theorem 31. (Better Zower bounds are

known [26, Theorem lo].)

2. k(r + 1,r) = k(r +2,r) = ... = k(2r +2,r) = 2 [lo, Theorem 141.

3. k(2r+3,r)=3,and7dk(2r+4,r)<12 [lo, Theorem 141.

Definition 5.4. Let a, r E M and 9 5 2{O,‘}‘. We define k(9, r) to be max{k(D,r) :

D E 9}.

We now define the notions of g-verbose and strongly C&verbose in order to state a

very general result. Note that every set is strongly 2{0,‘)‘-verbose.

Definition 5.5. Let a E N. Let 9 C 2{OJ}‘. A set A is g-verbose if there is a recursive

function g such that, for all x1,. . .,x,, IV,,, ,,.,., ,.,) E 9 and F~(xI,. . .,x,) E Wscxl ,_,., x,). A

set A is strongly G&verbose if there is a recursive function g such that, for all xl,. . . ,xa,

D g(Xl ,..., x,) E 9 and Fi(x~,...,x,) E D,(, ,,..., XO).

The following theorem provides for any A C Jf (1) matching upper and lower

bounds for the strong enumerability of freq&, and (2) lower bounds for the enu-

merability of freq;f,,. All results in this paper, except those involving freq&, follow

from it.

Theorem 5.6. Assume 1 <b <a and A & JV. For all k the following hold.
(1) The following are equivalent.

(a) There exists $9 2 2{O,‘)’ such that A is strongly Suerbose and
k(9,a - b)<k.

(b) freq& n SWk) # 0.
(2) Zf freq& n EN(k) # 0 then there exists 9 C_ 2{‘,‘)’ such that A is Suerbose

and k>k(g,a - b).

Proof. (l)(a) + (b): Assume A is strongly C&verbose via g. Given (XI,. . ,x,) we

strongly enumerate Q k possibilities one of which must agree with F;;'(xl, . . . ,x,) on

at least b positions. Fmd D = D,(, ,,,,., X,). Find a set of vectors { 51,. . . , i&} such that

D & ut, B(Ci, a - b). (Such vectors exist since k(9, a - b) <k.) Enumerate i?~, . . . , i&

as possibilities. Since Ft(xl, . , . ,x,) E D

so

W[F$xl,. . .,x,) =a-b 5.1 I .

(l)(b) + (a): Assume freq& n SEN(k) # 0. Then there exist k total recursive

functions ~1, . . . , pk such that (~xI,. . . ,x,)(di)[pi(xl, . . .,x,) =a-b F:(x~, . . .,x,)].

R Beige1 et al. I Theoretical Computer Science 163 (1996) 177-192 185

Let

9 = {D,(, ,,__., x0) : xl,. . . ,xa E J’-}.

Clearly, A is strongly g-verbose. Since every element of 9 is a union of k balls of

radius a - b, k> max{k(D,a - b) : D E 9}.

(2) Similar to the proof of part (l)(b) + (a). 0

Note 5.7. The converse of Theorem 5.6.2 is not known to be true. The proof of part

(1)(a) =+ (b), cannot be used. In that proof, since A is strongly G&verbose, we are able

to find D E 9 and then find its covering set. If A was merely g-verbose then we need

not ever really have D, only a subset of D. From this subset it may be impossible to

deduce what D really is.

Theorem 5.6 yields matching upper and lower bounds; however, they are not readily

computable. The following lemma will be helpful in computing them.

Lemma 5.8. Let a, r E Jf and A C JV.

1. If there exists 9 such that A is strongly %verbose and k = k(9, r) then e E

SEN(k ’ (2r + 1)).

2. If there exists 9 such that A is (strongly) g-verbose then F;;” is (strongly)
max{ IDI : D E 9}-enumerable.

Proof. (1) Assume A is strongly g-verbose via g. We show how to k(2r+ 1)-enumerate

#;;‘. On input (xi , . . . ,x,1 find D = D,(, ,,__., xep We know D can be covered by k balls

of radius r. Let Vi,. . . , & be the centers of those balls. Let ai be the number of l’s in

Gi. Enumerate

{Ui + a : 1 <i<k and - r<a<r}.

These are the k(2r + 1) numbers one of which must be #:(x1,. . . ,xa).

(2) This follows from the definition of (strongly) g-verbose. 0

Note. Kummer and Stephan [18, Corollary 4.3,4.4] have found a different connection

between covering numbers and freq&. Let Q(b,a) = {A : freq& is recursive}. They

have shown the following.

1. (\Jak2)(%4,A 2-r.e.)[A E Q(1, [log(k(a, 1) + l)]) - 52(2,a)].

2. (Vb>2)(3A,A r.e.)[A E 52(1,2’ -b) - Q(2,2b - l)].

5.1. Semirecursive sets

We established matching upper and lower bounds for jireq& when A is semirecursive

using Proposition 2.7 and Theorems 3.1 and 3.3. Here we give an alternative proof

using our general theorem.

186 R. Beige1 et al. I Theoretical Computer Science 163 (1996) 177-192

Lemma 5.9. Let D = {l’O’-’ : O<ida}, and let Obr<a. Then k(D,r) =

[(a + 1)/(2r + l>l.

Proof. Let k= [(u+ 1)/(2r+ 1)1. For l<i<k-1, letzi = l(2i-l)r+i-loa-(2i-l)r-if1
>

and let zk = l+‘O’. It is easy to check that D C_ &, B(zi,r). Hence k(D,r)< k.

If 9 k - 1 balls of radius r are used then 6 (k - 1)(2r + 1) <a elements are covered.

Hence k(D, r) > k.
Combining the inequalities we obtain k(D,r) = k. 0

Theorem 5.10. Assume 1 < b<u, A is a semirecursive set that is not recursive, and

k = [(a + 1)/(2(u - b) + 1)l. Then freq& n SEN(k) # 0 but freq;f,, n SEN(k - 1) =

0. Note that if bJu< i then k = 1 so freq& n EN(1) # 0, hence some function in

fre4Cl is recursive.

Proof. Let A be a semirecursive set with ordering C. Let D = { I’O”-’ : O<idu}.
Let $3 be the singleton set {D}. Semirecursive sets are strongly g-verbose: on input

(Xl ,...,x,) (assume xi C ... C x,) the only possibilities for Ft(xi,. . . ,x,) are liOa-’

where O<idu.

By Theorem 5.6 freq& rl SEN(k(D, a - b)) # 0. Since 0 da - b <a we can apply

Lemma 5.9 with Y = u - b. Hence freq& n SEN(k) # 0.

Assume, by way of contradiction, that freq& n SEN(k - 1) # 8. By Theorem 5.6

there exists 9 such that A is strongly G&verbose and k(9, a-b) = k- 1. By Lemma 5.8

#;;’ E EN((k - 1)(2(u - b) + 1)) G EN(a). By Lemma 2.5 A is recursive. 0

5.2. Joins of semirecursive sets

In this section we obtain an upper bound on the complexitV of freq& when A is

the join of several semirecursive sets. No lower bound is known in the general case;

however, there are particular sets A of this type for which the lower bound is tight.

Joins of semirecursive sets are not that interesting; however, they make a nice illus-

tration of the power of our techniques.

Definition 5.11. If D1 and 02 are sets of strings then

Definition 5.12. If A,,AZ C &” then

A, @A2 = {2x : x E A,} u (2x f 1 1 x E A2}.

Lemma 5.13. Let al,. . . ,a4 and Dl,. . . ,Dq be such that Di G{O, l}nl for all i. Then

k(D, . D2. . . D,, r) < min fi k(Di,ri) : (Vi)[ri 2 l] and 5 ri = r .
i=l i=l >

R. Beige1 et al. I Theoretical Computer Science 163 (1996) 177-192 187

Proof. We prove this for q = 2. The general case is similar. Let r = ~1 + r2 be

some partition of r into nonzero parts. Let kl and k2 be such that k(Di,ri) = ki. Let

~1,. . . , _Y~,,zI,. . . ,zk2 be such that D1 & IJfL, B(yi,rl) and 02 G UfL, B(zi,rz). It is easy

to see that

D1 .D2i~~B(yi.zj,~~ +rz).
i=l j=l

Hence k(D1 . D2,r)<klk2 = k(Dl,rl)k(D;!,rz). Since this holds for any nonzero par-

tition r = rl + r2 we can take ~1, r2 that results in the minimal k(D1, rl)k(D2, rz).

0

Theorem 5.14. Assume 1 <bda, b/a > i, and qb 1. Let Al,. . . ,A, be semirecursive
sets. Let A=A, @...@A,.

1. freq& f~ SEN(k) # 0 where k is dejned as follows.

:,‘$ri=a-b} :,$ai=a}.

2. Zf q divides both a and b then freq& n SEN(([(a + q)@a - 2b + q)])‘) # 0.

Proof. (1) For any a’, 0 <a’ <a, let E” = { l’O”‘-’ : 0 6 i 6 a’}. Note that A is strongly

g-verbose where 9 = {ny=, Eal : Ji$, ai = a}. By Theorem 5.6 freq&nSEN(k) # 0
where

k=max(,@Ea’,a-b) :&ai=a}.

By Lemmas 5.13 and 5.9

k(bEal,a-b) <-in{ fik(EaL,ri):$ri=a-b}

< min

Putting this all together we obtain that freq& rl SEN(k) # 0 where

:,$r,=obj :&ai=a}.

(2) If q divides b and a, then q divides a - b. In this case the internal min occurs

when all ri’s are (a - b)/q. Hence,

188 R. Beige1 et al. I Theoretical Computer Science I63 (1996) 177-192

The max occurs when all ai’s are a/q. When this occurs

1 (1 = ,,2;,;+ Jq = (12a::hqtql)q. q

There are semirecursive sets Ai , . . . ,A, where the upper bound from Theorem 5.14

is an overestimate; for example, if Ai = . . . = A, then d’@...‘A’ E SEN(a + 1).

However, Theorem 5.14 is optimal for the general case.

Theorem 5.15. Let a, b,q, k be as in Theorem 5.14. There exist sets A, Al,. . . , A, such

that A = A, @ ... CB A, and freq& 0 EN(k - 1) = 0.

Proof. This can be proven by a straightforward diagonalization similar to [11, Ap-

pendix]. 0

5.3. Superterse and weakly superterse sets

Clearly, for all A and n, Ft E FQ(n,A). There are sets for which Fi requires n

queries. These sets make Fi as hard as possible in terms of queries. The next definition

defines such sets rigorously.

Definition 5.16 (Beige1 et al. [5]). A set A is superterse if (Vn)(M)[Ff $! FQ(n - 1,

X)]. A set A is weakly superterse if (Vn)(VX)[F;;’ $! FQC(n - 1,X)].

Clearly, for all A and n, Ft E EN(2”). There are sets for which F{ $! EN(2” - 1).

These sets make Ft as hard as possible in terms of enumerability. The next lemma

states that these are exactly the superterse sets.

Lemma 5.17 (Beige1 [4]). Let A 2 Jlr.
1. Zf for some a it holds that F;;’ E EN(2” - 1) (Fi E SEN(2’ - 1)), then there

exists a constant c such that (Tn)[Fi E EN((F;j E SEN(nC)).

2. Assume A is (weakly) superterse. For all n, F;;’ $Z EN(2” - 1) (Ff $! SEN(2” - 1)).

This follows from part 1 and Lemma 2.4.
(Zn [4] a complexity-theoretic version of this Lemma 5.17 is proved, however, the
proof can be modified to obtain Lemma 5.17.)

If A is superterse then the structure of the set of possibilities for Fi is well understood

since its just (0, 1)“. The next theorem uses this structure to obtain tight bounds.

Theorem 5.18. Assume 1 d b da, b/a > i, and A G JV.
1. freq& n SEN(k(a,a - b)) # 0. The algorithm that achieves this does not look

at the input and runs in constant time.
2. Zf A is superterse then freq& n EN(k(a,a - b) - 1) = 8.

3. Zf A is weakly superterse then freq& n SEN(k(a, a - b) - 1) = 0.

R. Beige1 et al. I Theoretical Computer Science 163 (1996) 177-192 189

Proof. (1) This follows from Theorem 5.6, however we present a simpler proof. Let

k =k(a,a-b) and let pi,..., pk be the centers of the balls of radius a - b that cover

(0, 1)‘. On any input just output an index for the finite set { pl,. . . , pk}.

(2) Let A be superterse. Assume, by way of contradiction, that freq& n
EN(k(a,u - b) - 1) # 8. By Theorem 5.6 there exists 9 such that A is s-verbose and

k(S,u-b)=k(u,u-b)-I. Hence, foreveryDE9,k(D,u-b)<k(u,u-b)- 1 so

IDI <2” - 1. By Lemma 5.8, F;;’ E EN(2” - 1). By Lemma 5.17, A is not superterse.

(3) Similar to part 2. 0

Corollary 5.19. Assume 1 d b < a.

1. freq& fl SEN(k(u, a - b)) # 0 but freq& fl SEN(k(u, a - b) - 1) = 0.

2. For every nonrecursive set A, fre&$ n SEN(k(u,u - b)) # 0 but

frec&$ n EN(k(u,u - b) - 1) = 0. (Recall that A’ is the halting problem relative to
A; see [21,24].)

3. Every nonzero truth-table degree contains a set A such that
freq& n SEN(k(u,u - b)) # 0 but freq& n EN(k(u,u - b) - 1) = 0.

Proof. By [11, Theorem 231, K is weakly superterse. By [5, Theorem 161, for all

nonrecursive A, A’ is superterse. By [5, Theorem 141, every nonzero tt-degree contains

a superterse set. 0

Theorems 4.1 and Corollary 5.19 offer an interesting contrast. We obtain the ex-

act complexity of freq& via (1) algorithms that need not halt if a different ora-

cle is used, and (2) algorithms that halt regardless of the oracle. Table 1 shows

that the difference in complexity is small when b da/2 + 2, but is exponentially

large when a - b is constant. We show how the table is derived and impose con-

ditions as to when the rows of the table apply. The condition b <a always

applies.

1. If 2b = a + 4 then a = 2(u - b) + 4, hence k(u,u - b) = k(2(a - b) + 4,

a - b). If a - bZ 1 then, by Fact 5.3, k(2(a - b) + 4,~ - b) E (7,. . ., 12); hence,

by Corollary 5.19 and Lemma 2.4, the optimal number of queries needed to compute

fre&, is [log k(u, a - b)l E { 3,4}. This derivation only applies when a - b > 1, hence

the first row of the table may be excluded in the case a < 4. Also note that a must be

even; hence, the condition can be stated as a>6 and u even.

2. If 2b = a+3 then a = 2(u-b)+3, hence k(u,u-b) = k(2(u-b)+3,
a - b). If a - ba 1 then, by Fact 5.3, k(2(u - b) + 3,~ - b) = 3; hence, by Corol-

lary 5.19 and Lemma 2.4, the optimal number of queries needed to compute freq&
is [log k(a, a - b)] = 2 This derivation only applies when a - b 2 1, hence the second

row of the table may be excluded in the case a G3. Also note that a must be odd;

hence, the condition can be stated as aa5 and a odd.

3. If 2b = a + 2 then a = 2(a - b) + 2, hence k(u,u - b) = k(2(u - b) + 2,
a - b). If a - b> 1 then, by Fact 5.3, k(2(u - b) + 2,a - b) = 2; hence, by

190 R Beige1 et al. I Theoretical Computer Science 163 (1996) 177-192

Table 1

FQC complexity FQ complexity Conditions

2b=a+4 3 or 4 2 a>6,a even

2b=a+3 2 2 a>S,a odd

2b=a+2 1 1 aa4,a even

b=a-c a - O(cloga) loga-loge+@(l) c<a,b

b=a-1 a - @(log a) loga + O(1) c<a,b

Corollary 5.19 and Lemma 2.4, the optimal number of queries needed to compute

fire&, is [log k(a, a - b)] = 1. This derivation only applies when a - b > 1, hence the

third row of the table may be excluded in the case a < 2. Also note that a must be

even; hence, the condition can be stated as a 2 4 and a odd.

4. If b = a - c then k(a, a -b) = k(a, c). By Corollary 5.19 and Lemma 2.4 the op-

timal number of queries needed to compute freq,,, K is [logk(a,a - b)] = [logk(a,c)].

If a, b > > c then, by Fact 5.3, this is a - O(c log a).

6. Complexity theory

Several of our results have analogues in complexity theory.

Definition 6.1. Let XC C* and let k E JV. Then PFXlkl is the set of functions that

can be computed in polynomial time with k queries to X. A set A C C* is p-superterse

if (Vk)(VX)[Fi 4 PF Xlk-‘l]. A function f is k-enumerable in polynomial time if there

exists g E PF such that g(x) produces k values, one of which is S(x). We denote

this by f E SEN(k). Note that in this context “strongly k-enumerable” is the same as

k-enumerable.

It is easy to see that analogues of Theorems 5.6

nomial framework. Applying the analogue of Theorem

few sets have been shown to be p-superterse outright.

known [1,6,20].

Fact 6.2. If P # NP then SAT is p-superterse.

and 5.18 hold in a poly-

5.18 directly is hard since

However, the following is

Combining Fact 6.2 with the polynomial analogue of Theorem 5.18 yields the fol-

lowing theorem.

Theorem 6.3. Assume 1 <b < a and A 2 C”.

1. freq& n SEN(k(a,a - b)) # 0. The algorithm that achieves this does not look
at the input and runs in constant time.

2. If P # NP then freqiy nSEN(k(a,a-b)-l)=@

R. Beige1 et al. I Theoretical Computer Science 163 (1996) 177-192 191

Acknowledgements

We would like to thank Richard Chang, James Foster, Martin Kummer, Georgia

Martin, Nick Reingold, Dan Spielman, Frank Stephan, and two anonymous referees

for proofreading and helpful comments.

References

[l] M. Agrawal and V. Arvind, Polynomial time truth-table reductions to p-selective sets, in: Proc. 9th
Ann. Conf on Structure in Complexity Theory (IEEE Computer Society Press, Silver Springs, MD,

1994).

[2] A. Amir, R. Beigel, and WI. Gasarch, Some connections between bounded query classes and non-

uniform complexity, in: Proc. 5th Ann. Conf on Structure in Complexity Theory, pages 232-243.
(IEEE Computer Society Press, Silver Springs, MD, 1990). A much expanded version has been

submitted to Inform. and Comput.
[3] R. Beigel, Query-limited reducibilities, Ph.D. Thesis, Stanford University, 1987. Also available as Report

No. STAN-CS-88-1221.

[4] R. Beigel, A structural theorem that depends quantitatively on the complexity of SAT, in: Proc. 2nd
Ann. Conf on Structure in Complexity Theory (IEEE Computer Society Press, Silver Springs, MD,

1987) 28-32.

[S] R. Beigel, WI. Gasarch, J.T. Gill and J.C. Owings, Terse, superterse, and verbose sets, Inform. and
Comput. 103 (1993): 68-85.

[6] R. Beigel, M. Kummer and F. Stephan, Approximable sets, to appear. An earlier version appeared in

STRUCTURES 1994.

[7] J. Cai and L.A. Hemachandra, Enumerative counting is hard, Inform. Comput., 82 (1989) 34-44.
[8] G. Cohen and P. Frankl, Good coverings of Hamming spaces with spheres, Discrete Math. 56 (1989)

125-131.
[9] G. Cohen, M. Karpovsky and H. Mattson, Covering radius - survey and recent results, IEEE Trans.

Inform. Theory IT-31 (1985) 338343.
[lo] G. Cohen, A. Lobstein and N. Sloane, Further results on the covering radius of codes, IEEE Trans.

Inform. Theory IT-32 (1986) 680-694.
[I l] W. Gasarch, Bounded queries in recursion theory: A survey, in: Proc. 6th Ann. Conf on Structure in

Complexity Theory (IEEE Computer Society Press, Silver Springs, MD, 1991) 62-78.

[12] W. Gasarch, M.W. Krentel and K. Rappoport, OptP-completeness as the normal behavior of NP-

complete problems, Math. Systems Theory, to appear.

[13] V. Harizanov, M. Kummer and J. Owings, Frequency computations and the cardinality theorem, J.

Symbolic Logic 57 (1992) 682-687.
[14] I. Honkala, Modified bounds for covering codes, IEEE Trans. Inform. Theory IT-37 (1991) 351-365.
[15] C.G. Jockusch, Semirecursive sets and positive reducibility, Trans. AMS 131 (1968) 420436.
[16] M.W. Krentel, The complexity of optimization problems, J. Comput. Syst. Sci. 36 (1988) 49&509.

[17] M. Kummer, A proof of Beigel’s cardinality conjecture, J. Symbolic Logic 57 (1992) 677681.

[18] M. Kummer and F. Stephan, Some aspects of frequency computation, Intemer Bericht 21191, IJniversit;it

Karlsruhe, Fakult& fIir Informatik, 1991.

[19] M. Kmmner and F. Stephan, Effective search problems, Math. Logic Quart. 40 (1994).
[20] M. Ogiwara, Polynomial-time membership comparable sets, in: Proc. 9th Ann. Conf on Structure in

Complexity Theory (IEEE Computer Society Press, Silver Springs, MD, 1994).

[21] H. Rogers, Jr., Theory of Recurstoe Functions and E&ctiue Computability (McGraw Hill, New York,

1967).

[22] G. Rose, An extended notion of computability, in: Abstr. Internat. Congress for Logic, Methodology,
and Philosophy of Science (1960) 14.

[23] R. Smullyan, Theory of Formal Systems, Annals of Mathematical Studies, Vol. 47 (Princeton University

Press, Princeton, NJ, 1961).

192 R Beige1 et al. I Theoretical Computer Science 163 (1996) 177-192

[24] R.I. Soare, Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic (Springer,

Berlin, 1987).

[25] B.A. Trakhtenbrot, On the frequency computation of functions, Algebra Logika 2 (1964) 25-32 (in

Russian).

[26] G.V. Wee, Improved sphere bounds on the covering radius of codes, IEEE Trans. Inform. Theory
IT-34 (1988) 237-245.

	Frequency Computation and Bounded Queries
	Recommended Citation

	PII: 0304-3975(95)00149-2

