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recursion-theoretic framework (see for example [5, 11, 17]) and a complexity-theoretic framework (see for example [2, 12, 16]). We give several examples.1. Let f be the function that, given a graph on n vertices, outputs thenumber of colors needed to color it. Krentel [16] showed that thisfunction can be computed with O(log n) queries to SAT in polynomialtime but cannot be computed with substantially fewer queries to anyoracle in polynomial time (unless P = NP).2. Let A be a nonrecursive set and a 2 N . Let #Aa be the function that,given (x1; : : : ; xa), returns jA \ fx1; : : : ; xagj (the number of elementsthat are in A). It is known that there are sets A;X such that #Aa can becomputed with dlog(a+ 1)e�1 queries toX. Kummer [17] showed thatthis is optimal, i.e., if #Aa can be computed with dlog(a+ 1)e queriesto some X then A is recursive.The following functions have been studied extensively in this light:De�nition 1.1 Let a 2 N and A � N . The function FAa : N a ! f0; 1ga isde�ned as FAa (x1; : : : ; xa) = A(x1) � � �A(xa):The function #Aa is de�ned as#Aa (x1; : : : ; xa) = jA \ fx1; : : : ; xagj:The function FAa is interesting because it has a certain intuitive appealand most lower bounds have reduced to lower bounds for FAa . We investigatethe complexity of computing an approximation to FAa . To do this we de�nea class of functions freqAb;a such that every element of freqAb;a approximatesFAa .Notation: If �; � are strings of the same length then � =a � means that �and � di�er in at most a places.De�nition 1.2 Let a; b 2 N be such that 1 � b � a, and let A � N .freqAb;a is the set of all functions f that map N a to f0; 1ga such that, forall x1; : : : ; xa, f(x1; : : : ; xa) and FAa (x1; : : : ; xa) agree in at least b places (i.e.,f(x1; : : : ; xa) =a�b FAa (x1; : : : ; xa)). In prose (though not in theorems) wewill informally treat freqAb;a as just one function: an upper bound on the2



complexity of freqAb;a means at least one function in freqAb;a has that com-plexity (or less), and a lower bound on the complexity of freqAb;a means thatevery functions in freqAb;a has that complexity (or greater).Note: The set freqAb;a was �rst de�ned by Rose [21] and has a long history.For more information see [13].We investigate the complexity of freqAb;a for several sets (or types of sets)A and parameters a; b. Our measure of complexity of a function is the numberof queries needed to compute it. Most of our results are recursion-theoretic;however, some of our techniques also apply in a polynomial framework.Information about the complexity of FAa will help in our study. Howeverthe complexity of freqAb;a is a harder question. We describe the di�erence.Assume that, given (x1; : : : ; xa), one could produce (the index for) an r.e. setW � f0; 1ga such that FAa (x1; : : : ; xa) 2 W . It has been shown (Lemma 2.4)that the size ofW completelydetermines the complexity of FAa . Does knowingW help us to compute freqAb;a(x1; : : : ; xa)? From W we can obtain W 0, theset of vectors that di�er from elements of W by at most a� b bits. FormallyW 0 = f~b : (9~c 2 W )[~b =a�b ~c]g:It is easy to see that freqAb;a(x1; : : : ; xa) 2 W 0. The complexity of freqAb;a iscompletely determined by jW 0j. Unfortunately it is impossible to determinejW 0j from jW j. To determine jW 0j we need to know the very structure ofW . This is the key reason that FAa is better understood than freqAb;a: thecomplexity of FAa is related to the cardinality of W while the complexityof freqAb;a is related to the structure of W . One theme of this paper will bethat the more we know about W the better we understand the complexityof freqAb;a.In Section 3 we prove a general lower bound on the complexity of freqAb;a(for nonrecursive A). It is based on a general lower bound for #Aa . In Sec-tion 4 we obtain exact bounds for the complexity of freqKb;a. In Section 5 welink the complexity of freqAb;a to the structure of the setW mentioned above.This will allow us to establish the exact complexity of freqAb;a for certain setsA. These exact complexities depend on functions from coding theory. InSection 6 we use our proof techniques to obtain results in complexity theory.Assuming P 6= NP we determine the exact query complexity of freqSATa;b .3



2 De�nitions, Conventions and useful Lem-masNotation: We use the following notation throughout this paper.1. M0;M1; : : : is a standard e�ective list of Turing machines.2. M ()0 ;M ()1 ; : : : is a standard e�ective list of oracle Turing machines.3. We is the domain of Me. Hence W0;W1; : : : is an e�ective list of all r.e.sets.4. K = fe :Me(e) #g.5. If A � N then A0 = fe : MAe (e) #g.6. De = fi : the ith bit of e is 1g. Hence D0;D1; : : : is a list of all �nitesets.Convention: Technically Me takes elements of N as input and returnselements of N as output; and We;De � N . We will sometimes need to useN a (or f0; 1g�) instead of N . In these cases we implicitly assume that thereis a �xed recursive bijection between N and N a (f0; 1g�) and code elementsof N a (f0; 1g�) into N accordingly.De�nition 2.1 Let a 2 N and let X � N . FQ(a;X) is the collection of alltotal functions g such that g is recursive in X via an algorithm that makes atmost a sequential queries to X. FQC(a;X) is the collection of all functionsg such that g is recursive in X via an algorithm M () such that (1) for allx, MX (x) makes at most a sequential queries to X, and (2) for all x; Y thecomputation MY (x) converges.The concept of bounded queries is tied to enumerability. Every possiblesequence of query answers leads to a possible answer. Hence the fewer queries,the less possible answers. 4



De�nition 2.2 Let a 2 N and f be any total function. f is a-enumerableif there exists a recursive function g such that, for all x, jWg(x)j � a andf(x) 2 Wg(x). We denote this by f 2 EN(a). (This concept �rst appeared ina recursion-theoretic framework in [3]. The name \enumerable" is from [7]where it was de�ned in a polynomial bounded framework.)If f is a-enumerable then, given x, we can �nd g(x) and try to enumerateWg(x) looking for possibilities for f(x). While doing this we do not knowwhen Wg(x) will have stopped generating possibilities. The next de�nitionimposes a stronger condition of enumeration. In this scenario we are givenan index of a set of possibilities as an index of a �nite set. Hence we canobtain all the possibilities and know we have them all.De�nition 2.3 Let a 2 N and f be any total function. f is strongly a-enumerable if there exists a recursive function g such that, for all x, jDg(x)j �a and f(x) 2 Dg(x). We denote this by f 2 SEN(a).Lemma 2.4 ([3, 5]) Let a 2 N and let f be any function.1. (9X)[f 2 FQ(a;X)] i� f 2 EN(2a).2. (9X)[f 2 FQC(a;X)] i� f 2 SEN(2a).In this paper we will prove upper and lower bounds in terms of enumer-ability (or strong enumerability). Using Lemma 2.4 the reader can obtaincorollaries about upper and lower bounds in terms of number of queries.The following lemma provides a lower bound on the enumerability of #Aa .We will use it in Theorem 3.1 to obtain a lower bound on freqAb;a.Lemma 2.5 ([17]) Let a 2 N and let A � N . If #Aa 2 EN(a) then A isrecursive.We now exhibit a nonrecursive set A such that if ba � 12 then freqAb;ais recursive. Since we are interested in how many queries are required tocompute freqAb;a the case where it takes zero queries is not of interest. Hencemost of our theorems will assume ba > 12.5



De�nition 2.6 [15] A set A is semirecursive if there exists a recursive linearordering < on N such that A is closed downward under <.The following is a folk theorem. It will also be a consequence of Theo-rem 5.9.Proposition 2.7 Assume ba � 12. If A is semirecursive then freqAb;a is re-cursive. Hence every tt-degree contains a set A such that freqAb;a is recursive.Proof: Let A be semirecursive via <. Given (x1; : : : ; xa) we may assumex1 < � � � < xa. Since FAa (x1; : : : ; xa) 2 f1i0a�i : 0 � i � ag we have1da2e0b a2c =a�b FAa (x1; : : : ; xa). Output 1d a2e0ba2c.Part 2 follows from part 1 since Jockusch [15] showed that every tt-degreecontains a semirecursive set.It is known that Proposition 2.7 is optimal: if ba > 12 and freqAb;a isrecursive then A is recursive. This was proven by Trakhtenbrot [22]. We willgive an alternative proof (Corollary 3.2).3 A General Lower Bound for freqAb;aWe prove a general lower bound on the enumerability of freqAb;a for anynonrecursive A.Theorem 3.1 Assume 1 � b � a, ba > 12 , and A � N . If freqAb;a \EN(l a+12(a�b)+1m� 1) 6= ;, then A is recursive.Proof: Assume that f 2 freqAb;a \ EN(l a+12(a�b)+1m� 1). Let (x1; : : : ; xa) 2N a. Every time a possibility for f(x1; : : : ; xa) is generated it yields at most2(a� b) + 1 possibilities for #Aa (x1; : : : ; xa). Hence#Aa 2 EN( & a+ 12(a� b) + 1'� 1! (2(a� b) + 1)) � EN(a):By Lemma 2.5 A is recursive.Corollary 3.2 ([22]) If ba > 12 and freqAb;a is recursive, then A is recursive.Note: Theorem 3.1 has been obtained independently by Kummer and Stephan [19]using di�erent methods. 6



4 Exact Bounds for freqKb;aIn this section we determine the exact complexity of freqKb;a in terms ofenumerability. In Corollary 5.18 we will determine the exact complexity offreqKb;a in terms of strong enumerability. It is known that #Ka (x1; : : : ; xa)completely determines FKa . Hence the structure of the set of possibilities forFKa is well understood. This is why we are able to obtain exact bounds.Theorem 4.1 If 1 � b � a then freqKb;a \ EN(l a+1(a�b)+1m) 6= ;:Proof: Given (x1; : : : ; xa) we show how to enumerate � l a+1(a�b)+1m possi-bilities such that one of them is =a�b FKa (x1; : : : ; xa).Let k = l a+1(a�b)+1m. Since b � 1 we have k � 1. Let I1; : : : ; Ik be intervalsof length � a� b+ 1 that partition f0; : : : ; ag.For each interval I = [c; d] we enumerate a possibility that is based onthe belief that #Ka (x1; : : : ; xa) 2 [c; d]. By dovetailing these computations weenumerate � k possibilities.For interval I = [c; d] we do the following. If c = 0 then output (0; : : : ; 0).If c > 0 then simultaneously run all of Mx1(x1); : : : ;Mxa(xa) until exactlyc of them halt (this need not happen). Output a string that indicates thatthese c programs are in K and no other programs are in K.We show that if #Ka (x1; : : : ; xa) 2 I = [c; d] then the possibility associatedto I is correct. Clearly the c 1's are correct. Since there are at most dprograms in K, at least a�d of the 0's are correct. Hence at least c+a�d =a+ (c� d) = a+ 1 � jIj � a+ 1� (a� b+ 1) = b bits are correct.Note: By Lemma 2.4, (9X)[freqKb;a\FQ(llog a+1(a�b)+1m;X) 6= ;]. The oraclesis unspeci�ed. In this case we can do just as well with oracle K: by atruncated binary search, freqKb;a \ FQ(llog a+1(a�b)+1m;K) 6= ;.The enumeration procedure used in Theorem 4.1 is not a strong enumer-ation. In Section 5 we show that a strong enumeration for freqKb;a requiresmany more possibilities than an enumeration.We show that the above bound is tight.Theorem 4.2 If 1 � b � a then freqKb;a \ EN(l a+1(a�b)+1m� 1) = ;:7



Proof: Assume f 2 freqKb;a \ EN(l a+1(a�b)+1m� 1) 6= ;. Assume f 2EN(l a+1(a�b)+1m� 1) via g. We create a programs xi that conspire to cause(8~b 2 Wg(x1;:::;xa))[:(~b =a�b FKa (x1; : : : ; xa))]:We plan to have di�erent blocks of programs invalidate di�erent elementsof Wg(x1;:::;xa). Let k = l a+1(a�b)+1m � 1. Since b � 1 we have k � 1. LetJ1; : : : ; Jk be intervals of length � a� b+ 1 that partition f0; : : : ; ag.By the a-ary recursion theorem we can assume that xi has access to thenumbers fx1; : : : ; xag.ALGORITHM FOR xi1. Let j be such that i 2 Jj (if no such j exists then diverge).2. Enumerate Wg(x1;:::;xa) until j elements appear (this step might notterminate). Let that jth element be ~b = b1 � � � ba.3. If bi = 0 then converge. If bi = 1 then diverge.END OF ALGORITHMFor all j, 1 � j � k, if Wg(x1;:::;xa) has the jth element ~b, then ~b andFKa (x1; : : : ; xa) di�er on the bits speci�ed by Jj. Hence they di�er on at leasta� b+ 1 places, so (8~b 2 Wg(x1;:::;xa))[:(~b =a�b FKa (x1; : : : ; xa))].5 Exact Bounds for freqAb;aIn this section we prove a general theorem relating the complexity of freqAb;ato the structure of the set of possible values for FAa . We then apply thistheorem to semirecursive sets, joins of semirecursive sets, and supertersesets.We will need some de�nitions from coding theory.De�nition 5.1 Let a; r 2 N . Let z 2 f0; 1ga. The closed ball of radius rcentered at z is the set B(z; r) = fy 2 f0; 1ga : y =r zg. If D � f0; 1ga thenD is covered by k balls of radius r means that there exist z1; : : : ; zk such thatD � Ski=1B(zi; r). 8



De�nition 5.2 Let a; r 2 N and D � f0; 1ga. k(D; r) is the minimalnumber j such that D can be covered by j balls of radius r. The quantityk(f0; 1ga; r) is denoted by k(a; r).LetD be a set of possibilities for FAa (x1; : : : ; xa) such that k(D; a� b) = j.Let ~b 2 D be the correct possibility. Let ~c be the center of the ball thatcontains ~b. Since ~b and ~c di�er on at most a � b places they must agree onat least b places. Hence ~c is a suitable value of freqAb;a.The quantity k(a; r) is known as the covering number. It has been studiedextensively (see [8, 9, 10, 14, 23]). No exact formula is known for it, howeverwe present some known estimates.Fact 5.3 Let Sa;r =Pri=0 �ai�.1. 2aSa;r � k(a; r) � 2aSa;r (1+log Sa;r) ([8, Theorem 3]. (Better lower boundsare known [23, Theorem 10].)2. k(r + 1; r) = k(r + 2; r) = � � � = k(2r + 2; r) = 2 ([10, Theorem 14]).3. k(2r + 3; r) = 3, and 7 � k(2r + 4; r) � 12 ([10, Theorem 14]).De�nition 5.4 Let a; r 2 N and D � 2f0;1ga. We de�ne k(D; r) to bemaxfk(D; r) : D 2 Dg.We need to de�ne the notions of D-verbose and strongly D-verbose inorder to state our main result. Note that every set is strongly 2f0;1ga-verbose.De�nition 5.5 Let a 2 N . Let D � 2f0;1ga. A set A is D-verbose ifthere is a recursive function g such that, for all x1; : : : ; xa, Wg(x1;:::;xa) 2 Dand FAa (x1; : : : ; xa) 2 Wg(x1;:::;xa). A set A is strongly D-verbose if thereis a recursive function g such that, for all x1; : : : ; xa, Dg(x1;:::;xa) 2 D andFAa (x1; : : : ; xa) 2 Dg(x1 ;:::;xa).The following theorem provides for any A � N : (1) matching upper andlower bounds for the strong enumerability of freqAb;a, and (2) lower bounds forthe enumerability of freqAb;a. All results in this paper, except those involvingfreqKb;a, will follow from it. 9



Theorem 5.6 Assume 1 � b � a and A � N . All D mentioned in thistheorem are understood to be subsets of 2f0;1ga. For all k the following hold.1. If there exists D such that A is strongly D-verbose and k(D; a� b) � kthen freqAb;a \ SEN(k) 6= ;.2. If freqAb;a \ SEN(k) 6= ; then there exists D such that A is stronglyD-verbose and k � k(D; a � b).3. If freqAb;a\EN(k) 6= ; then there exists D such that A is D-verbose andk � k(D; a � b).Proof:(1) AssumeA is strongly D-verbose via g. Given (x1; : : : ; xa) we strongly enu-merate� k possibilities one of which must be =a�b FAa (x1; : : : ; xa). FindD =Dg(x1;:::;xa). Find a set of vectors f~b1; : : : ;~bkg such that D � Ski=1B(~bi; a� b).(Such vectors exist since k(D; a� b) � k.) Enumerate ~b1; : : : ;~bk as possibili-ties. Since FAa (x1; : : : ; xa) 2 D(9i)[FAa (x1; : : : ; xa) 2 B(~bi; a� b)]so (9i)[FAa (x1; : : : ; xa) =a�b ~bi]:(2) Assume freqAb;a\SEN(k) 6= ;. Then there exist k total recursive functionsp1; : : : ; pk such that (8x1; : : : ; xa)(9i)[pi(x1; : : : ; xa) =a�b FAa (x1; : : : ; xa)]. LetDg(x1;:::;xa) = Ski=1B(pi(x1; : : : ; xa); a� b)D = fDg(x1;:::;xa) : x1; : : : ; xa 2 NgClearly A is strongly D-verbose. Since every element of D is a union ofk balls of radius a� b, k � maxfk(D; a� b) : D 2 Dg.(3) Similar to the proof of part 2.Theorem 5.6 yields matching upper and lower bounds; however they arenot readily computable. The following lemma will be helpful in computingthem.Lemma 5.7 Let a; r 2 N and A � N .10



1. If there exists D such that A is strongly D-verbose and k = k(D; r) then#Aa 2 SEN(k(2r + 1)).2. If there exists D such that A is (strongly) D-verbose then FAa is (strongly)maxfjDj : D 2 Dg-enumerable.Proof:(1) Assume A is strongly D-verbose via g. We show how to k(2r + 1)-enumerate #Aa . On input (x1; : : : ; xa) �nd D = Dg(x1 ;:::;xa). We know D canbe covered by k balls of radius r. Let ~b1; : : : ;~bk be the centers of those balls.Let ai be the number of 1's in ~bi. Enumeratefai + a : 1 � i � k and � r � a � rg:These are the k(2r + 1) numbers one of which must be #Aa (x1; : : : ; xa).(2) This follows from the de�nition of (strongly) D-verbose.Note: Kummer and Stephan [18, Corollary 4.3,4.4] have found a di�er-ent connection between covering numbers and freqAb;a. Let 
(b; a) = fA :freqAb;a is recursive g. They have shown the following.1. (8a � 2)(9A;A 2-r.e. )[A 2 
(1; dlog(k(a; 1) + 1)e)� 
(2; a)].2. (8b � 2)(9A;A r.e. )[A 2 
(1; 2b � b)� 
(2; 2b � 1)]:5.1 Semirecursive SetsWe established matching upper and lower bounds for freqAb;a when A issemirecursive using Proposition 2.7 and Theorem 3.1. Here we give an alter-native proof using our general theorem.Lemma 5.8 Let D = f1i0a�i : 0 � i � ag, and let 0 � r � a. Thenk(D; r) = l a+12r+1m. 11



Proof: Let k = l a+12r+1m. For 1 � i � k�1 let zi = 1(2i�1)r+i�10a�(2i�1)r�i+1,and let zk = 1a�r0r. It is easy to check that D � Ski=1B(zi; r). Hencek(D; r) � k.If � k � 1 balls of radius r are used then � (k � 1)(2r + 1) � a elementsare covered. Hence k(D; r) � k.Combining the inequalities we obtain k(D; r) = k.Theorem 5.9 Assume 1 � b � a, A is a nonrecursive semirecursive set,and k = l a+12(a�b)+1m. Then freqAb;a \ SEN(k) 6= ; but freqAb;a\SEN(k � 1) = ;.Note that if ba � 12 then k = 1 so freqAb;a \ EN(1) 6= ;, hence some functionin freqAb;a is recursive.Proof:LetA be a semirecursive set with ordering<. LetD = f1i0a�i : 0 � i � ag.Let D be the singleton set fDg. Semirecursive sets are strongly D-verbose:on input (x1; : : : ; xa) (assume x1 < � � � < xa) the only possibilities forFAa (x1; : : : ; xa) are 1i0a�i where 0 � i � a.By Theorem 5.6 freqAb;a \ SEN(k(D; a � b)) 6= ;. Since 0 � a� b � a wecan apply Lemma 5.8 with r = a� b. Hence freqAb;a \ SEN(k) 6= ;.Assume, by way of contradiction, that freqAb;a \ SEN(k � 1) 6= ;. ByTheorem 5.6 there exists D such that A is strongly D-verbose and k(D; a�b)= k � 1. By Lemma 5.7 #Aa 2 EN((k � 1)(2(a� b) + 1)) � EN(a). ByLemma 2.5 A is recursive.5.2 Joins of Semirecursive SetsIn this section we obtain an upper bound on the complexity of freqAb;a whenA is the join of several semirecursive sets. No lower bound is known in thegeneral case; however there are particular sets A of this type for which thelower bound is tight.De�nition 5.10 If D1 and D2 are sets of strings thenD1 �D2 = f�� : � 2 D1 and � 2 D2g:12



De�nition 5.11 If A1; A2 � N thenA1 �A2 = f2x : x 2 A1g [ f2x + 1 j x 2 A2g:Lemma 5.12 Let a1; : : : ; aq; r1; : : : ; rq and D1; : : : ;Dq be such that Di � f0; 1gaifor all i. Thenk(D1 �D2 � � �Dq; r) � min( qYi=1 k(Di; ri) : (8i)[ri � 1] and qXi=1 ri = r) :Proof: We prove this for q = 2. The general case is similar. Let r =r1+ r2 be some partition of r into nonzero parts. Let k1 and k2 be such thatk(Di; ri) = ki. Let y1; : : : ; yk1; z1; : : : ; zk2 be such that D1 � Sk1i=1B(yi; r1)and D2 � Sk2i=1B(zi; r2). It is easy to see thatD1 �D2 � k1[i=1 k2[j=1B(yi � zj; r1 + r2):Hence k(D1 � D2; r) � k1k2 = k(D1; r1)k(D2; r2). Since this holds for anynonzero partition r = r1 + r2 we can take r1; r2 that results in the minimalk(D1; r1)k(D2; r2).Theorem 5.13 Assume 1 � b � a, ba > 12 , and q � 1. Let A1; : : : ; Aq besemirecursive sets. Let A = A1 � � � � �Aq.1. freqAb;a \ SEN(k) 6= ; where k is de�ned as follows.k = maxfmin( qYi=1 �ai + 1ri + 1� : qXi=1 ri = a� b) : qXj=1 ai = ag:2. If q divides both a and b then freqAb;a \ EN(�l a+qa�b+qm�q) 6= ;.13



Proof:1) For any a0, 0 � a0 � a, let Ea0 = f1i0a0�i : 0 � i � a0g. Note that A isstrongly D-verbose where D = fQqi=1Eai : Pqj=1 ai = ag. By Theorem 5.6freqAb;a \ SEN(k) 6= ; wherek = maxfk  qYi=1Eai; a� b! : qXj=1 ai = ag:By Lemmas 5.12 and 5.8k(Qqi=1 Eai; a� b) � minfQqi=1 k(Eai; ri) : Pqi=1 ri = a� bg� minfQqi=1 lai+1ri+1 m : Pqi=1 ri = a� bgPutting this all together we obtain that freqAb;a \ SEN(k) 6= ;. wherek = maxfmin( qYi=1 �ai + 1ri + 1� : qXi=1 ri = a� b) : qXj=1 ai = ag:(2) If q divides b and a, then q divides a � b. In this case the internal minoccurs when all ri's are a�bq . Hencek = max8<: qYi=1 2666 ai + 1a�bq + 13777 : qXj=1 ai = a9=; :The max occurs when all ai's are aq . When this occursk = qYi=1 2666 aq + 1a�bq + 13777 = 0@2666 aq + 1a�bq + 137771Aq =  & a+ qa� b+ q'!q :There are semirecursive sets A1; : : : ; Ab where the upper bound fromTheorem 5.13 is an overestimate; for example, if A1 = � � � = Ab thenFA1�����Aba 2 SEN(a+ 1). However, Theorem 5.13 is optimal for the gen-eral case:Theorem 5.14 Let a; b; q; k be as in Theorem 5.13. There exist sets A1; : : : ; Aqand A = A1 � � � � �Aq such that freqAb;a \ EN(k � 1) = ;.14



Proof:This can be proven by a straightforward diagonalization similar to [11,Appendix].5.3 Superterse and Weakly Superterse SetsDe�nition 5.15 [5] A set A is superterse if (8n)(8X)[FAn =2 FQ(n� 1;X)].A set A is weakly superterse if (8n)(8X)[FAn =2 FQC(n� 1;X)].Lemma 5.16 ([4]) Let A � N .1. If there exists a such that FAa 2 EN(2a � 1) (FAa 2 SEN(2a � 1)), thenthere exists a constant c such that (18n)[FAn 2 EN(nc)] (FAn 2 SEN(nc)).2. Assume A is (weakly) superterse. For all n, FAn =2 EN(2n � 1). (FAn =2SEN(2n � 1)). This follows from part 1 and Lemma 2.4.(Note that [4] shows a complexity-theoretic version of this lemma, but theproof can be easily modi�ed to obtain this lemma.)Theorem 5.17 Assume 1 � b � a, ba > 12, and A � N .1. freqAb;a \ SEN(k(a; a� b)) 6= ;.2. If A is superterse then freqAb;a \ EN(k(a; a� b)� 1) = ;:3. If A is weakly superterse then freqAb;a \ SEN(k(a; a� b)� 1) = ;.Proof:(1) This follows from Theorem 5.6.(2) Let A be superterse. Assume, by way of contradiction, that freqAb;a \EN(k(a; a� b)� 1) 6= ;. By Theorem 5.6 there exists D such that A isD-verbose and k(D; a � b) = k(a; a � b) � 1. Hence, for every D 2 D,k(D; a� b) � k(a; a� b)� 1 so jDj � 2a�1. By Lemma 5.7, FAa 2 EN(2a � 1).By Lemma 5.16, A is not superterse.(3) Similar to part 2. 15



Corollary 5.18 Assume 1 � b � a.1. freqKb;a \ SEN(k(a; a� b)) 6= ; but freqKb;a \ SEN(k(a; a� b)� 1) = ;.2. For every nonrecursive set A, freqA0b;a \ EN(k(a; a� b)) 6= ; butfreqA0b;a \ EN(k(a; a� b)� 1) = ;. (Recall that A0 is the halting problemrelative to A.)3. Every nonzero truth-table degree contains a set A such thatfreqAb;a \ SEN(k(a; a� b)) 6= ; but freqAb;a \ EN(k(a; a� b)� 1) = ;.Proof: By [11, Theorem 23], K is weakly superterse. By [5, Theorem 16],for all nonrecursive A, A0 is superterse. By [5, Theorem 14], every nonzerott-degree contains a superterse set.Theorems 4.1 and Corollary 5.18 o�er an interesting contrast. We obtainthe exact complexity of freqKb;a via (1) algorithms that need not halt if adi�erent oracle is used, (2) algorithms that halt regardless of the oracle.The following table shows that the di�erence in complexity is small whenb � a2 + 2, but is exponentially large when a� b is constant. We show howthe table is derived and impose bounds as to when the rows of the tableapply. The rule b � a always applies.1. If 2b = a+4 then a = 2(a�b)+4, hence k(a; a�b) = k(2(a�b)+4; a�b).If a�b � 1 then by Fact 5.3 7 � k(2(a�b)+4; a�b) � 12. If a�b � 1then by Corollary 5.18 and Lemma 2.4 the optimal number of queriesneeded to compute freqKb;a is either 3 or 4. This derivation only appliesto a � b � 1, hence the �rst row of the table may be excluded in thecase a = 4. In that case we are considering freqK4;4 which is the sameas FK4 . By [11, Theorem 23] FK4 2 FQC(4;K)�FQC(3;K). Hence theinformation in the table is still valid.2. If 2b = a+3 then a = 2(a�b)+3, hence k(a; a�b) = k(2(a�b)+3; a�b).If a�b � 1 then by Fact 5.3 k(2(a�b)+3; a�b) = 3. If a�b � 1 then byCorollary 5.18 and Lemma 2.4 the optimal number of queries needed tocompute freqKb;a is 2. This derivation only applies to a� b � 1, hencethe second row of the table may be excluded in the case a = 3. Inthat case we are considering freqK3;3 which is the same as FK3 . By [11,Theorem 23] FK3 2 FQC(3;K)�FQC(3;K). Hence the information inthe table is not valid for a = 3.16



3. If 2b = a+2 then a = 2(a�b)+2, hence k(a; a�b) = k(2(a�b)+2; a�b).If a�b � 1 then by Fact 5.3 k(2(a�b)+2; a�b) = 2. If a�b � 1 then byCorollary 5.18 and Lemma 2.4 the optimal number of queries neededto compute freqKb;a is 1. This derivation only applies to a � b � 1,hence the third row of the table may be excluded in the case a = 2. Inthat case we are considering freqK2;2 which is the same as FK2 . By [11,Theorem 23] FK3 2 FQC(3;K)�FQC(3;K). Hence the information inthe table is not valid for this value of a = 2.FQC complexity FQ complexity2b = a+ 4 3 or 4 22b = a+ 3 2 22b = a+ 2 1 1b = a� c a� c log c+�(1) log a� log c+�(1)b = a� 1 a� log a+�(1) log a+�(1)6 Complexity TheorySeveral of our results have analogues in complexity theory.De�nition 6.1 Let X � �� and let k 2 N . Then PFX[k] is the set offunctions that can be computed in polynomial time with k queries to X. Aset A � �� is p-superterse if (8k)(8X)[FAk =2 PFX[k�1]]. A function f is k-enumerable in polynomial time if there exists g 2 PF such that g(x) producesk values, one of which is f(x). We denote this by f 2 EN(k). Note that inthis context \strongly k-enumerable" is the same as k-enumerable.It is easy to see that analogues of Theorems 5.6 and 5.17 hold in a poly-nomial framework. Applying the analogue of Theorem 5.17 directly is hardsince few sets have been shown to be p-superterse outright. However thefollowing is known [1, 6, 20].Fact 6.2 If P 6= NP then SAT is p-superterse.Combining Fact 6.2 with the polynomial analogue of Theorem 5.6 yieldsthe following theorem. 17
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