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RESEARCH Open Access

Atlas-based white matter analysis in individuals
with velo-cardio-facial syndrome
(22q11.2 deletion syndrome) and unaffected
siblings
Petya D Radoeva1, Ioana L Coman2, Kevin M Antshel2, Wanda Fremont2, Christopher S McCarthy2, Ashwini Kotkar2,
Dongliang Wang3, Robert J Shprintzen4 and Wendy R Kates2,5,6*

Abstract

Background: Velo-cardio-facial syndrome (VCFS, MIM#192430, 22q11.2 Deletion Syndrome) is a genetic disorder
caused by a deletion of about 40 genes at the q11.2 band of one copy of chromosome 22. Individuals with VCFS
present with deficits in cognition and social functioning, high risk of psychiatric disorders, volumetric reductions in
gray and white matter (WM) and some alterations of the WM microstructure. The goal of the current study was to
characterize the WM microstructural differences in individuals with VCFS and unaffected siblings, and the
correlation of WM microstructure with neuropsychological performance. We hypothesized that individuals with
VCFS would have decreased indices of WM microstructure (fractional anisotropy (FA), axial diffusivity (AD) and radial
diffusivity (RD)), particularly in WM tracts to the frontal lobe, and that these measures would be correlated with
cognitive functioning.

Methods: Thirty-three individuals with VCFS (21 female) and 16 unaffected siblings (8 female) participated in DTI
scanning and neuropsychological testing. We performed an atlas-based analysis, extracted FA, AD, and RD measures
for 54 WM tracts (27 in each hemisphere) for each participant, and used MANOVAs to compare individuals with
VCFS to siblings. For WM tracts that were statistically significantly different between VCFS and siblings (pFDR< 0.05),
we assessed the correlations between DTI and neuropsychological measures.

Results: In VCFS individuals as compared to unaffected siblings, we found decreased FA in the uncinate fasciculus,
and decreased AD in multiple WM tracts (bilateral superior and posterior corona radiata, dorsal cingulum, inferior
fronto-occipital fasciculus, superior longitudinal fasciculus, superior cerebellar peduncle, posterior thalamic radiation,
and left anterior corona radiata, retrolenticular part of the internal capsule, external capsule, sagittal stratum). We
also found significant correlations of AD with measures of executive function, IQ, working memory, and/or
social cognition.

Conclusions: Our results suggest that individuals with VCFS display abnormal WM connectivity in a widespread
cerebro-anatomical network, involving tracts from/to all cerebral lobes and the cerebellum. Future studies could
focus on the WM developmental trajectory in VCFS, the association of WM alterations with psychiatric disorders,
and the effects of candidate 22q11.2 genes on WM anomalies.

Keywords: VCFS, 22q11.2 deletion, DTI, White matter, LDDMM
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Background
Velo-cardio-facial syndrome (VCFS; MIM#192430) is a
genetic disorder caused by a microdeletion of a portion
of the 11.2 band (spanning approximately 40 genes in
most cases) of one copy of chromosome 22. The pheno-
typic spectrum of VCFS includes cardiac malformations,
palatal anomalies with speech impairment, endocrine and
immune problems [1]. Notably, individuals with VCFS
often have cognitive deficits in attention, working mem-
ory, executive function, visuospatial perception, math
abilities, and reading comprehension [2,3]. In addition to
cognitive deficits, individuals with VCFS present with
emotion dysregulation [2,4,5], modestly difficult temper-
ament [6], and social withdrawal [7,8]. High prevalence
of psychiatric disorders [9] has been reported in VCFS
across multiple studies, including autism spectrum dis-
order (ASD) [10,11], attention deficit hyperactivity dis-
order (ADHD) [9], schizophrenia/schizoaffective disorder
[12,13], anxiety disorders [14], and mood disorders [9].
Neuroimaging studies of individuals with VCFS have

found volumetric reductions, including reduction in sub-
regions of the frontal lobe, decreased volumes of the gray
and white matter in the parietal, temporal, and occipital
lobes, smaller hippocampus (bilaterally), and smaller
cerebellum (for meta-analysis see [15]). In addition to
volumetric reductions, specific structural abnormalities
have been described in both the gray and white matter of
individuals with VCFS, including white matter hyperin-
tensities, cavum septum pellucidum/vergae, pachygyria,
polymicrogyria, cortical dysgenesis or dysplasia, and
Arnold-Chiari malformation [16-19]; for review, see [1].
Diffusion tensor imaging (DTI) has also been used to

evaluate the microstructure of WM in VCFS. Several mea-
sures can be derived from DTI scans, including fractional
anisotropy (FA), axial diffusivity (AD) and radial diffusivity
(RD). In general, decreases in FA are associated with vari-
ousWMneuropathologies, includingdemyelination, ische-
mia, and inflammation. While FA is a sensitive measure
of WM microstructural changes, it is not very specific as
to the type/cause of WM alteration [20]. Additional DTI
measures, including axial diffusivity and radial diffusivity,
can better characterize the specific types of WM micro-
structural changes, and it has been argued that such
measures should be routinely included in DTI studies
[20]. Increases in RD, for example, have been associated
with demyelination [21], while decreases in AD have
been correlated with increased axonal damage [21,22].
With the exception of one report [23], all previously

published DTI studies of individuals with VCFS have fo-
cused exclusively on FA. Alterations in FA have been re-
ported in VCFS-affected individuals in frontal, temporal
and parietal areas, including anomalous tracts between
frontal-temporal and frontal-parietal lobes [24,25], and the
posterior limb of the internal capsule [26]. Associations

between alterations in FA and neuropsychological/
psychiatric function in VCFS have also been reported
for schizotypy [26], arithmetic abilities [24] and (along
with AD alterations) spatial attention [23].
While these studies are important initial steps in the

study of white matter microstructure in VCFS and brain-
cognition correlations, several were limited, to some ex-
tent, by small sample sizes [26], wide age ranges [25] and
a primary focus on FA [24-26]. As noted above, analyses
of associations between DTI measures and neuropsycho-
logical data were also limited, in that many cognitive
functions that are impaired in VCFS (e.g., memory, ex-
ecutive functioning, social cognition) have not yet been
examined in relationship to white matter microstructure
in this disorder. A more detailed study, therefore, of add-
itional measures in multiple white matter tracts, in asso-
ciation with a wider range of cognitive functions, could
better elucidate the underlying neuropathology of white
matter changes in VCFS.
In our current study, therefore, we utilized a novel DTI

analysis method— atlas-based whole brain white matter
analysis [27], to assess the microstructure (including FA,
AD and RD measures) of a large number of white matter
tracts in 33 individuals with VCFS and their unaffected
siblings. Our goals were (1) to increase the power to de-
tect microstructural WM alterations in VCFS by using a
larger sample size of individuals with VCFS; (2) to inves-
tigate the relative contributions of AD and RD to WM
alterations in VCFS; (3) to evaluate the correlations of
WM microstructure with a wide variety of neuropsycho-
logical standardized tests, including attention, working
memory, executive functioning, social cognition, and psy-
chiatric measures. Based on the previous VCFS literature,
we hypothesized that relative to their siblings, individuals
with VCFS would display alterations in FA, RD and AD
which would be distributed in frontal, parietal and tem-
poral areas and the internal capsule. We further hypothe-
sized that psychiatric measures would correlate with DTI
measures in the internal capsule. Studies of WM micro-
structural underpinnings of cognitive function in the
non-VCFS population led us to further hypothesize the
following associations: executive function with cortico-
subcortical tracts [28], superior longitudinal fasciculus
(SLF), and superior corona radiata (SCR) [29]; working
memory with SLF [30], SCR, and posterior corona radiata
(PCR) [29]; and social cognition/socialization with un-
cinate fasciculus (UNC) [31], SLF, posterior limb of the in-
ternal capsule (PLIC), anterior limb of the internal capsule
(ALIC) and anterior thalamic radiation (ATR) [32].

Materials and methods
Participants
In this paper, we are reporting on the data collected on
49 individuals, who are participants in a longitudinal

Radoeva et al. Behavioral and Brain Functions 2012, 8:38 Page 2 of 11
http://www.behavioralandbrainfunctions.com/content/8/1/38



study of VCFS [33,34]. The study was approved by the
IRB at SUNY Upstate Medical University, and informed
consent was obtained from the participants and/or their
parents. We included data from all individuals who par-
ticipated in the study between December, 2008 and Feb-
ruary, 2011 on whom we collected DTI as well as
neuropsychological data. DTI data from four additional
individuals with VCFS were excluded due to poor image
quality or severe motion/scanning artifacts (see Section
DTI processing and data analysis). The VCFS diagnosis
was confirmed with fluorescence in situ hybridization
(FISH). This sample includes 33 individuals with VCFS
(12 male), and 16 unaffected siblings (8 male)a, with
average age for the VCFS group 17.7 (SD= 1.8) and for
the sibling group 18.0 (SD= 1.7) (Table 1 and Table 2).
Although all of the unaffected siblings who participated
in the larger longitudinal study had a matching brother
or sister with VCFS, four of the siblings reported here
did not, because imaging data from his/her counterpart
with VCFS could not be acquired/used due to braces
(n = 1), claustrophobia (n = 1), severe scoliosis (n = 1) or
severe motion/scanning artifacts (n = 1). All of the parti-
cipants were Caucasian except one participant with
VCFS and one sibling who were Asian. The average full-
scale IQ was 73 (SD= 12.9, ranging between 44 and 98)
for the individuals with VCFS and 113 (SD=11.5, ran-
ging between 98 and 141) for the siblings.

DTI acquisition
The DTI scans were acquired on a 1.5 T Philips Interra
scanner (release 11) equipped with a Sense Head coil to
improve the signal strength and the signal-to-noise ratio.
A multi-slice, single-shot EPI (SENSE factor = 2.0), spin
echo sequence (TR/TE = 8197/76 ms) was used to obtain
70 axial slices with no slice gap and 2.5 mm nominal iso-
tropic resolution (FOV= 240 × 240, data matrix = 96 × 96,
zero-filled and reconstructed to 256 × 256). Diffusion
weighting was applied along 15 directions [36] with a b
factor = 800 s/mm2. One minimally weighted volume
(b0) was acquired within each DTI dataset. The total
scan time to acquire one DTI dataset (15 DW and 1 b0
images) was 2 min 11 s. The total time, including image
reconstruction, to acquire 4 DTI datasets in a scan ses-
sion (for each participant) was approximately 9 minutes.

DTI processing and data analysis
The data were downloaded from the scanner, transferred
and processed using DTIStudio 3.0.2, DiffeoMap 1.7.1,
and ROI Editor 1.4.2 (https://www.mristudio.org/, [37])
on a 64-bit Dell PC, running Windows 7 operating sys-
tem. First, by utilizing a mutual information algorithm
[38], all diffusion weighted images from a study (the four
repeats) were coregistered to the same reference volume,
the b0 volume of the first repeat. Axial slices with severe
scanning and motion artifacts were excluded via auto-
matic outlier slice rejection in DTIStudio (with relative
error > 3%), and through visual inspection. The diffusion
weighted images (for each diffusion direction) were then
averaged, and the average set was used for further
analysis.
Tensor estimation was then performed, and Fractional

Anisotropy (FA), Axial Diffusivity (AD), Radial Diffusivity
(RD), and b0 maps were computed and saved (while ap-
plying a skull-stripped mask generated in ROI Editor for
the b0 image of each participant). The FA and b0 maps
of each participant were then used for Large Deform-
ation Diffeomorphic Metric Mapping (LDDMM) [27],
and regions of interest (ROIs) were generated for each
participant as follows. The b0 and FA maps of each par-
ticipant were first transformed linearly (using affine
Automated Image Registration (AIR) transformation,
with trilinear interpolation) and then non-linearly (using
LDDMM, with cascading alpha of 0.01, 0.005, and 0.002),
in order to match as well as possible the correspond-
ing Johns Hopkins University MNI-space single partici-
pant skull-stripped templates (JHU_MNI_SS_b0_ss and
JHU_MNI_SS_FA_ss). A detailed atlas of the white
matter tracts and gray matter ROIs had been previ-
ously constructed by [27] based on the data from the
participant used in the Johns Hopkins University MNI-
space single participant skull-stripped templates. Next,
the inverse transformation algorithms (inverse LDDMM
and then inverse AIR) were applied to the ROI atlas
(JHU_MNI_SS_WMPM_TypeII), in order to obtain ROIs
that are within each participant's original brain space.
To ensure the proper execution of the algorithms, the
ROIs generated were visually inspected for accuracy.
The mean FA, AD, and RD values for the ROIs were
then extracted in ROI Editor. For further analyses, we
focused on the measures FA, AD, and RD of all available
white matter tract ROIs (27 tracts in each hemisphere;
for a complete list see the list of Abbreviations at the
end of the paper). Sample ROIs are shown in Figure 1.

Neuropsychological Testing
As part of the larger longitudinal study, the participants
were tested with a wide array of neuropsychological tests.
The Wechsler Intelligence Scale for Children— Third
Edition (WISC-III) [39] was administered to participants

Table 1 Demographics of the participants

VCFS Siblings P-value

(N= 33) (N= 16)

Gender (N, % female) 21 (64%) 8 (50%) N.S.

Race (Caucasian/Asian) 32/1 15/1 N.S.

Age, in years (+/− SD) 17.7 (1.8) 18.0 (1.7) N.S.

FSIQ (+/− SD) 73 (12.9) 113 (11.5) < 0.001
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under 17 years of age, and the Wechsler Adult Intel-
ligence Scale (WAIS-III) [40] to participants 17 years of
age or older.

Attention, Memory and Executive Functioning Measures
Digit Span was evaluated as part of WISC-III or WAIS-
III. Forward and Backward z-scores were used for fur-
ther analyses.
Visual Span Test [41]: In this computerized instru-

ment, each participant was asked to reproduce an in-
creasing number of patterns of squares displayed on a
computer screen [10]. This test evaluates spatial/non-
verbal working memory, and the Forward and Backward
Visual Span Z-Scores were used.

CVLT (California Verbal Learning Test) [42]: All parti-
cipants completed the CVLT, which evaluated verbal
learning and memory. The CVLT (1) T-scores for List
A, trials 1–5; and (2) standard score for List A, trial 5
[33] were used for further analyses.
Wisconsin Card Sorting Test (WCST) [43]: Each par-

ticipant completed the WCST as part of evaluation of
executive functioning and, more specifically, cognitive
flexibility. The Perseverative Error Standard Score and
the Non-Perseverative Error Standard Score of WCST
were used for further analyses.
BRIEF (Behavior Rating Inventory of Executive Func-

tioning) [44]: Parents completed the BRIEF or BRIEF-A
questionnaires. The T-scores of the (1) Metacognition
Index (assessing initiation, organization, planning, moni-
toring, and working memory); and (2) the Behavioral
Regulation Index (evaluating inhibition, shift, and cogni-
tive control); were included for further analyses.

Social Cognition/Skills Measures
The following instruments were used:
Emotional Recognition Test [45]: In this computerized

test, each participant was asked to discriminate between
happy, sad and neutral faces. The total number of cor-
rect responses was used for further analysis.
BASC-2 (Behavior Assessment System for Children,

Second Edition): Parents completed the BASC-2 [46],
which contains 150 items that are rated on a 4-point
scale. Scores were then derived for a variety of domains
such as social skills, withdrawal, conduct problems. The
T-scores of the BASC-2 social skills domain, atypicality,
and anxiety were used for analysis in this report.
Vineland-II (Vineland Adaptive Behavior Scales, Sec-

ond Edition): Parents were interviewed with Vineland-II
[47], evaluating various aspects of the child's behavior,
including social skills (socialization subdomain).

Table 2 Number (and percent) of participants with psychiatric diagnoses in the current study based on the Schedule
for Affective Disorders and Schizophrenia for School-Age Children—Present and Lifetime Version (K-SADS-PL) [35]

Psychiatric Diagnoses VCFS (N = 33) Siblings (N = 16)

N (%) N (%)

Schizophrenia 1 (3.0) 0 (0)

Major depressive disorder (includes NOS) 6 (18.2) 0 (0)

Bipolar disorder 1 (3.0) 0 (0)

Anxiety disorder (includes generalized, overanxious, separation and panic) 7 (21.2) 0 (0)

Simple or social phobia 11 (33.3) 3 (18.75)

ADHD 10 (30.3) 1 (6.25)

Enuresis 1 (3.0) 0 (0)

Chronic motor or vocal tic disorder 2 (6.1) 0 (0)

Oppositional defiant disorder 3 (9.1) 0 (0)

Any disorder listed above 20 (60.6) 3 (18.75)

ALIC

PLIC

PLIC

PTR

ACR

SCR

CGC

CGC

CGH

SFO

IFO

EC
Fx

Fx

GCC

BCC

SCC

RLIC

Figure 1 White matter tracts analyzed in the current report
represented on the FA map of one individual with VCFS.
Abbreviations: ACR: Anterior corona radiata; ALIC: Anterior limb of
the internal capsule; BCC: Body of the corpus callosum; CGC:
Cingulum (cingulate gyrus); CGH: Cingulum (hippocampus); EC:
External capsule; Fx: Fornix (column and body of the fornix); GCC:
Genu of the corpus callosum; IFO: Inferior fronto-occipital fasciculus;
PLIC: Posterior limb of the internal capsule; PTR: Posterior thalamic
radiation; SCR: Superior corona radiata; SS: Sagittal stratum; RLIC:
Retrolenticular part of the internal capsule. For the full list of WM
tracts analyzed in the current study, see the List of Abbreviations.
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SRS (Social Responsiveness Scale): Parents completed
the SRS, which consists of 65 items [48,49], and mea-
sures aspects of social awareness, social cognition, social
communication, social motivation, and autistic manner-
isms, and provides a total score. The items are slightly
different (but comparable) for children aged 18 or
younger vs. adults (19 or older). Since norms, T-scores,
and domain classification are provided only for the
child/adolescent scale (but not for the adult version), the
total raw score was used for further analysis for all
participants.
CGAS (Children's Global Assessment Scale) [50]: A

clinician evaluated the global functioning of each partici-
pant (based on an interview with the parent and the
child), and completed the CGAS.

Statistical Analysis
The Shapiro – Wilk Test of Normality was used to inves-
tigate the distribution of all data (see results, below).
Three MANOVAs were conducted with dependent var-
iables mean FA (or AD or RD) values (in each of the
tracts) and independent variable Group (VCFS vs. sib-
lings), using SPSS 18 (http://www.spss.com/). FDR (false
discovery rate) correction for multiple comparisons was
applied in the program R (http://www.r-project.org/) on
the p-values from each of the three MANOVAs [51]. For
tracts that showed significant differences between the par-
ticipants with VCFS and controls (pFDR < 0.05), Pearson's
correlations were performed (in SPSS) between the DTI
measures of the tracts, and each of the neuropsychological
measures (described above), across all of the study parti-
cipants. Since multiple correlations were performed, the
p-values of the correlations were also FDR-corrected.
As noted in the background, individuals with VCFS

have a higher prevalence of certain brain abnormalities,
including cavum septum pellucidum/vergae. Four VCFS
participants in our current sample have this variant as
evaluated by a neuroradiologist. The presence of cavum
septum pellucidum/vergae seems to be associated with
an alteration of the anatomy of the fornix, such that the
columns and body of the fornix do not join in the mid-
line and seem to run separately within the left and right
hemispheres between the cavum septum pellucidum and
the lateral ventricles [52]. Thus, the automated fornix
measures in the current study might not be valid for
individuals with cavum septum pellucidum/vergae, so we
excluded these four individuals from the analyses only of
the fornix measures.

Results
The MANOVAs demonstrated that the FA in the left and
right uncinate fasciculi (see Figure 2), and RD in the right
posterior corona radiata (PCR) differed between parti-
cipants withVCFS and siblings (pFDR < 0.05). Furthermore,

a widely distributed network of tracts showed signifi-
cantly lower AD in individuals with VCFS as compared
to siblings (pFDR < 0.05) (see Figure 3), including tracts
terminating in the parietal/occipital (posterior thalamic
radiation, PTR; posterior corona radiata, PCR; retrolenti-
cular part of the internal capsule, RLIC; sagittal stratum,
SS), and/or frontal cortices (superior corona radiata,
SCR; anterior corona radiata, ACR); as well as fronto-
parietal/occipital (inferior fronto-occipital fasciculus,
IFO; superior longitudinal fasciculus, SLF; external cap-
sule, EC); fronto-temporal (cingulum, CGC); and cer-
ebellar connections (superior cerebelar peduncle, SCP).
For reasons described below, both the uncorrected and
FDR-corrected P-values from the MANOVAs are in-
cluded in Appendix 1. The majority of the WM mea-
sures had normal distributions in both the VCFS and the
control groups. However, some of the distributions were
not normal, and there were outliers for some of the
tracts. Therefore, as a follow-up, we conducted non-
parametric analysis (Mann–Whitney U tests), which is
less sensitive to outliers and can appropriately be used
for non-normally distributed data, and compared the
DTI measures of the tracts (for VCFS vs. controls), and
corrected the p-values using FDR. All the tracts sum-
marized in Figures 2 and 3 remained significant with this
non-parametric analysis. RD in the right posterior cor-
ona radiata (PCR) was not significant in this analysis,
and was dropped from further analyses. In addition, sev-
eral tracts that had non-normal distributions showed
significant differences between patients and controls:
namely, the AD of the left and right ML, left UNC, right
MCP, and right RLIC (data not shown).
AD values were significantly correlated with several

neuropsychological and psychiatric measures across all
participants (Tables 3 and 4). AD values in fronto-parietal/
occipital circuits (SLF, IFO) correlated with measures of
working memory, executive functioning, and social cogni-
tion. In addition measures of executive functioning cor-
related with AD in PCR and PTR bilaterally. Overall
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Figure 2 Significant Differences in Fractional Anisotropy
(pFDR<0.05) in individuals with VCFS vs. siblings in the left and
right uncinate fasciculi (UNC, L and UNC, R respectively).
Error bars show SE.
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measures of cognitive skills (intelligence,VIQandPIQ) cor-
related with the majority of the studied tracts, which may
be expected, since IQ is a composite assessment of mul-
tiple domains including attention, working memory, ver-
bal comprehension, and processing speed (Tables 3 and 4).

Discussion
Differences between individuals with VCFS and siblings
Our current findings are partially consistent with some
of the data reported previously, and further suggest that
a more widely distributed set of tracts, including
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Figure 3 Significant Differences in Axial Diffusivity (pFDR<0.05) in individuals with VCFS (black) vs. siblings (grey) in the (A) left; or (B)
right sides of the brain. Error bars show SE. Abbreviations: SCP: Superior cerebellar peduncle; PTR: Posterior thalamic radiation; ACR: Anterior
corona radiata; SCR: Superior corona radiata; PCR: Posterior corona radiata; CGC: Cingulum (cingulate gyrus); SLF: Superior longitudinal fasciculus;
IFO: Inferior fronto-occipital fasciculus; SS: Sagittal stratum; EC: External capsule; RLIC: Retrolenticular part of the internal capsule.

Table 3 Correlations between neuropsychological measures and the Axial Diffusivity of white matter tracts in the Left
Hemisphere across all study participants

Domain Measure Left Hemisphere

Frontal/Temp Parietal/Occipital A/P Long Tracts Cer

CGC SCR RLIC EC PTR PCR SLF IFO SS SCP

Memory & Attention Digit Span FW 0.19 0.15 0.13 0.29 0.19 0.07 0.14 0.22 0.19 0.35*

Digit Span BW 0.15 0.15 0.17 0.08 0.37* 0.20 0.23 0.20 0.21 0.34

Visual Span FW 0.33 0.28 0.31 0.25 0.36* 0.47** 0.40* 0.28 0.29 0.25

Visual Span BW 0.34 0.28 0.43* 0.29 0.52** 0.48** 0.47** 0.40* 0.38* 0.27

CVLT_List A, Trials 1–5 0.07 0.18 0.08 0.09 0.30 0.35 0.37* 0.14 0.16 0.21

Executive Function WCST Perseverative Error 0.18 0.30 0.33 0.21 0.45** 0.43* 0.50** 0.27 0.33 0.34

BRIEF Behavioral Regulation 0.00 −0.18 −0.17 −0.24 −0.42* −0.28 −0.30 −0.23 −0.16 −0.30

BRIEF Metacognition −0.15 −0.15 −0.22 −0.26 −0.51** −0.31 −0.34 −0.32 −0.18 −0.27

Social Cognition BASC Social Skills 0.08 0.16 0.11 0.23 0.24 0.28 0.29 0.17 0.21 0.26

Socialization Vineland Soc Skills 0.01 0.19 0.21 0.28 0.45** 0.37* 0.40* 0.27 0.33 0.29

SRS −0.08 −0.25 −0.26 −0.27 −0.49** −0.42* −0.42* −0.30 −0.25 −0.33

Emotion Emotion Recognition 0.17 0.24 0.33 0.20 0.30 0.27 0.33 0.20 0.10 0.22

Psychiatric BASC Anxiety −0.06 −0.21 −0.08 −0.07 −0.31 −0.28 −0.27 −0.11 −0.19 −0.34

Symptoms BASC Atypicality −0.01 −0.30 −0.25 −0.24 −0.37* −0.35 −0.36* −0.27 −0.15 −0.30

CGAS 0.07 0.24 0.06 0.12 0.39* 0.33 0.37* 0.21 0.16 0.26

Overall Verbal IQ 0.32 0.34 0.47** 0.35* 0.52** 0.54** 0.55** 0.36* 0.43* 0.43*

Cognition Performance IQ 0.39* 0.38* 0.50** 0.35* 0.62*** 0.55** 0.54** 0.38* 0.45* 0.42*

The subset of WM tracts included in this table had significantly different AD between individuals with VCFS and unaffected siblings, pFDR<0.05. The R values for
the correlations are given, and corresponding FDR-corrected P-values are indicated with a superscript according to the legend below the table. No significance
was found for the Non-Perseverative Error Standard Score of WCST, the standard score for List A, trial 5, and AD of the ACR tract in the left hemisphere: thus,
these measures were not included in this table.
Abbreviations BW: Backward; FW: Forward; CVLT: California Verbal Learning Test; WCST: Wisconsin Card Sorting Test; BRIEF: Behavior Rating Inventory of
Executive Functioning; SRS: Social Responsiveness Scale; BASC: Behavior Assessment System for Children; CGAS: Children's Global Assessment Scale; IQ:
Intelligence Quotient. Abbreviations for the white matter tracts are given in the list of Abbreviations at the end of the paper. A/P Long Tracts: Anterior-Poster
Long Tracts; Cer: cerebellum.
* pFDR< 0.05.
** pFDR< 0.01.
*** pFDR< 0.001.
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cortico-cortical and cortico-subcortical tracts, may show
abnormalities in VCFS than previously reported. Differ-
ences in individuals with VCFS and controls have been
reported previously, for FA putatively in the SLF and ILF
[23,25], pre- and post-central gyri (likely reflecting
cortico-spinal tract alterations) [25], radial diffusivity
likely in SLF and the fasciculus occipito-frontalis and
axial diffusivity possibly in SCR, PCR, and RLIC/PLIC
(according to Figure 3 in [23]). Our findings of group
differences in a greater number of tracts than previous
studies may be related to increased statistical power due
to larger sample size and novel data analysis method.
Our study had 33 participants with VCFS while the pre-
vious DTI studies have included between 11 and 19 indi-
viduals with VCFS [23-26]. Furthermore, the atlas-based
analysis (ABA) that we utilized has higher statistical
power than VBM (which has been used in previous DTI
studies of VCFS), because fewer comparisons are con-
ducted in ABA than in VBM (i.e., 27 tracts per hemi-
sphere vs. thousands of voxels across the brain), and
ABA does not need to utilize spatial, isotropic blurring,
which is often applied in VBM and can potentially ob-
scure differences and introduce noise within WM tracts
of close spatial proximity [27]. Furthermore, some of the

differences in our results relative to previous DTI find-
ings in VCFS may be related to age effects. For example,
the VCFS sample of [23] included a younger age group--
children aged 7 to 14. Here, we found fewer alterations
in RD than Simon and colleagues (2008) [23], and it is
possible that changes in myelination as the brain ma-
tures may account for some of these effects.
Interestingly, our findings of lower AD in multiple WM

tracts (in contrast to RD differences) in VCFS relative to
controls may suggest axonal damage/loss, or axonal fiber
maldevelopment in VCFS, rather than demyelination [22]
as a neuropathological correlate of the WM alterations in
VCFS individuals. Several 22q11.2 genes (COMT, PRODH,
ZDHHC8, DGCR6) are involved in at least 3 major neu-
rotransmitter systems (dopaminergic, glutamatergic and
GABAergic) [53-56]. Thus, it is likely that haploinsuffi-
ciency, SNPs on the remaining copy of these genes, and/or
gene-gene interactions can result in changes of synaptic
functioning, axonal maldevelopment or loss, and could
ultimately underlie the AD decreases observed in the
current study. Several myelin-related genes, including
PIK4CA, SNAP29, and RTN4R [57-60] are also located
in the 22q11.2 region and, therefore, could affect myelina-
tion, and possibly the RD and FA measures. Accordingly,

Table 4 Correlations between neuropsychological measures and Axial Diffusivity of white matter tracts in the Right
Hemisphere across all study participants

Domain Measure Right Hemisphere

Frontal/Temp Parietal/Occipital A/P Long Tracts Cer

CGC SCR PTR PCR SLF IFO SCP

Memory & Attention Digit Span FW 0.23 0.20 0.25 0.17 0.16 0.25 0.36*

Digit Span BW 0.24 0.12 0.38* 0.26 0.30 0.36* 0.44*

Visual Span FW 0.42* 0.38* 0.29 0.48** 0.47** 0.48** 0.25

Visual Span BW 0.38* 0.24 0.25 0.51 0.57** 0.61*** 0.29

CVLT_List A, , Trials 1–5 0.18 0.17 0.29 0.36* 0.38* 0.25 0.26

Executive Function WCST Perseverative Error 0.29 0.29 0.37* 0.48** 0.58** 0.48** 0.32

BRIEF Behavioral Regulation −0.17 −0.31 −0.28 −0.40* −0.48** −0.34 −0.17

BRIEF Metacognition −0.22 −0.36* −0.30 −0.45** −0.53** −0.41* −0.18

Social Cognition BASC Social Skills 0.14 0.14 0.23 0.29 0.43* 0.24 0.22

Socialization Vineland Soc Skills 0.17 0.22 0.27 0.38* 0.54** 0.41* 0.31

SRS −0.24 −0.34 −0.27 −0.49** 0.41* −0.44* −0.27

Emotion Emotion Recognition 0.24 0.15 0.17 0.28 0.38* 0.41* 0.23

Psychiatric BASC Anxiety −0.13 −0.23 −0.19 −0.34 −0.39* −0.22 −0.31

Symptoms BASC Atypicality −0.16 −0.38* −0.26 −0.44* −0.48** −0.35* −0.23

CGAS 0.11 0.29 0.31 0.44* 0.57** 0.39* 0.33

Overall Verbal IQ 0.44* 0.24 0.46** 0.48** 0.60*** 0.52** 0.47**

Cognition Performance IQ 0.49** 0.37* 0.45** 0.58** 0.63*** 0.62*** 0.47**

* pFDR< 0.05.
** pFDR< 0.01.
*** pFDR< 0.001.
The subset of WM tracts included in this table had significantly different AD between individuals with VCFS and unaffected siblings (pFDR< 0.05). For abbreviations
and further details, see the legend of Table 3.

Radoeva et al. Behavioral and Brain Functions 2012, 8:38 Page 7 of 11
http://www.behavioralandbrainfunctions.com/content/8/1/38



haploinsufficiency of one or more of those genes could
account for our current findings. Future genetics studies
(e.g., focused on SNPs on the remaining copy of 22q11.2
genes in VCFS individuals) would be crucial in elucidat-
ing the roles of specific genes in the WM microstructural
deficits observed in VCFS.
Furthermore, we found that there was a somewhat lar-

ger number of WM tracts with significantly lower AD in
individuals with VCFS (as compared to controls) in the
left hemisphere (11 tracts) vs. the right hemisphere (7
tracts) (see Figure 3), particularly in tracts to the frontal,
and parietal lobes (ACR, SS, EC, RLIC). These results
may be relevant to the findings of reduced laterality pre-
ference in VCFS [61], although we cannot directly ad-
dress this relationship in our current study since we do
not have detailed laterality preference/handedness mea-
sures on the VCFS and control participants.

DTI correlates of neuropsychological performance
Several studies have reported working memory and execu-
tive functioning deficits in VCFS [62-64]. Neuroanatomical
correlates of working memory in typically developing chil-
dren (as rated by their parents) include frontal gray matter
(GM) volume [65], as well as neural activation in frontal
and/or parietal areas in VCFS (as evaluated by fMRI)
[66,67]. Our current results demonstrate that working
memory (andexecutive functioning) is associatedwithWM
microstructure in PTR and PCR (i.e., abnormal connec-
tions to the parietal/occipital cortex), as well as SLF and
IFO (abnormal frontal-occipital/parietal connectivity).
A wide variety of brain regions have been shown to sub-

serve social cognition (for review, see [68]). These struc-
tures include (but are not limited to) the prefrontal cortex,
limbic structures (e.g., amygdala, cingulate gyrus, orbito-
frontal cortex), as well as white matter tracts connecting
the cortical and subcortical regions. Damage to these
structures can result in impairments in social behavior,
recognition of emotions, empathy, judgment, decision-
making. Consistent with these results, in our current study,
we found correlations between social cognition measures
(e.g., VINESOC) and AD in the PCR (which is a continu-
ation of the fiber tracts that pass through the posterior
limb of the internal capsule), as well as in fronto-parietal/
occipital connections (SLF, IFO). Notably, lower FA values
in the posterior limb of the internal capsule had been
previously associated with schizotypy in VCFS [26] (and
increased schizotypy implies more social difficulties).

Limitations
While the atlas-based whole brain white matter analysis
method is extremely valuable in automatically delineat-
ing ROIs, and it has been shown to have comparable re-
liability to manual tracing of ROIs, there are some
limitations when using this method. More specifically,

its accuracy could be decreased in the presence of cer-
tain brain abnormalities. For example, individuals with
VCFS often have enlarged ventricles, and we observed
that the AIR and LDDMM transformations did not al-
ways sufficiently warp the brain maps (especially for par-
ticipants with very large ventricles) to match the JHU
template, and thus, the corpus callosum ROIs sometimes
included a portion of the lateral ventricles (esp. the sple-
num of the corpus callosum). This artifact could result
in relatively noisy measurements of the corpus callosum
ROIs, and, thus, loss of power. Indeed, in the current
study, we did not find significant differences for the cor-
pus callosum ROIs between individuals with VCFS and
siblings. Another brain abnormality found more fre-
quently in VCFS is cavum septum pellucidum/vergae,
and 4 participants with VCFS in our current sample have
this finding. As mentioned in the methods, a cavum
septum pellucidum can significantly alter the anatomical
location of the fornix. In order to avoid possible noise in
the automated fornix delineation (in ABA), we have
excluded the individuals with cavum septum pelluci-
dum/vergae from our analyses of the fornix.
A relative strength (as well as potential weakness) of

our study is that we correlated a large number of white
matter tracts with neuropsychological measures. There-
fore, we had to perform corrections for multiple compari-
sons in order to avoid Type 1 error. Yet, by lowering the
p-value level for significance (by using FDR-correction),
we might have missed some true correlations that would
have been otherwise significant (if they were reported on
their own/separately). While our current study is the lar-
gest DTI study individuals withVCFS so far, larger samples
could result in higher statistical power and allow for the
examination of the effects of the presence of psychiatric
disorders or the use of medication on the DTI measures.

Conclusions and Future Directions
Our results suggest abnormalities in the structural con-
nectivity in a widespread cerebro-anatomical network,
involving WM tracts in all cerebral lobes as well as the
cerebellum (mostly evidenced by alterations in AD) in
individuals with VCFS (relative to unaffected siblings),
and correlations of WM microstructural measures to
working memory, executive function, social cognition
impairments, and/or IQ. These correlations may account
for some of the major phenotypic features reported in
VCFS. Future studies could focus on tractography of
specific white matter tracts, genetic correlates (e.g., indi-
vidual candidate genes in the 22q11.2 region) of WM
alterations in VCFS, and the characterization of white
matter abnormalities in individuals with VCFS and spe-
cific psychiatric diagnoses, including autism spectrum
disorder (ASD). Last, longitudinal studies of individuals
with VCFS in our current sample could explore whether
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the current DTI results (for individual participants) may
have predictive power, as to who might later on develop
schizophrenia/schizoaffective disorder.

Endnotes
aA subset of the participants in this report has been

included in an abstract for the 2011 Meeting of the
Organization for Human Brain Mapping [69] and a pres-
entation at the 2011 International Congress of Schizo-
phrenia Research. All of the current participants have
been included in an abstract presented at the 2011 Soci-
ety for Neuroscience Meeting [70].

Appendix
Appendix 1 Table with original P-values (Orig P, not
corrected for multiple comparisons), and FDR-corrected
p-values (FDR P) from the MANOVAs on FA, AD and
RD (in VCFS individuals vs. controls):

Abbreviations
CST: Corticospinal tract; ICP: Inferior cerebellar peduncle; ML: Medial
lemniscus; SCP: Superior cerebellar peduncle; CP: Cerebral peduncle;
ALIC: Anterior limb of the internal capsule; PLIC: Posterior limb of the internal
capsule; PTR: Posterior thalamic radiation (include optic radiation);
ACR: Anterior corona radiata; SCR: Superior corona radiata; PCR: Posterior
corona radiata; CGC: Cingulum (cingulate gyrus); CGH: Cingulum
(hippocampus); Fx/ST: Fornix (cres)/Stria terminalis (can not be resolved with
current resolution); SLF: Superior longitudinal fasciculus; SFO: Superior fronto-
occipital fasciculus (could be a part of anterior internal capsule); IFO: Inferior
fronto-occipital fasciculus; SS: Sagittal stratum (include inferior longitudinal
fasciculus and inferior fronto-occipital fasciculus); EC: External capsule;
UNC: Uncinate fasciculus; PCT: Pontine crossing tract (a part of MCP);
MCP: Middle cerebellar peduncle; Fx: Fornix (column and body of the fornix);
GCC: Genu of the corpus callosum; BCC: Body of the corpus callosum;
SCC: Splenium of the corpus callosum; RLIC: Retrolenticular part of the
internal capsule; ABA: Atlas-based analysis; AD: Axial diffusivity; A/P Long
Tracts: Anterior-Poster Long Tracts; ASD: Autism spectrum disorder;
BASC-2: Behavior Assessment System for Children 2nd ed; BRIEF: Behavior
Rating Inventory of Executive Functioning; CGAS: Children's Global
Assessment Scale; CVLT: California verbal learning test; DTI: Diffusion tensor
imaging; FA: Fractional anisotropy; RD: Radial diffusivity; SRS: Social
Responsiveness Scale; VBM: Voxel-based morphometry; VCFS:
Velo-cardio-facial syndrome; WCST: Wisconsin card sorting test; WM:
White matter.
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