








during the months with larger frequency of high tides (> 0.8 m), from November 2014

through January 2015 (Fig 12B).

The observed evolution shows that from the time the CC-B reclamation was completed the

area was subjected to increasing stress from the combination of ship wakes and higher tidal

levels which determined an immediate start of the erosion processes, though slowed in its ini-

tial phases by the presence of the rip-rap protection.

The collapse of the scarp, combined with the higher water levels, explains much of the spa-

tial-temporal variability observed in the short-term. After the failure of slabs of the CC-B edge,

the debris accumulates over the beach at escarpment base and acts as a temporary shoreline

protection, until complete removal by ship-wake associated currents. In the short-term, the

erosion process is an intermittent movement which proceeds irregularly as a result of the spa-

tial changes in the textural and rheological properties of the reclaimed materials.

The correspondence between short- and long-term shoreline retreat also suggests that the

cross-section of the navigation channel and its margins have not yet reached a stable profile

and are still adapting to the impacts of traffic. The port traffic has increased over time both in

size and number of vessels, likely preventing an equilibrium being reached, and the channel

section is still adapting. Rapaglia et al. [25] studied the effects of the depression waves on the

mudflat at east of the channel. They found that wakes of this type can cause significant sedi-

ment resuspension at a distance of>300 m from the channel. The results of theoretical models

by Rodin et al. [29] showed that the wakes maintain significant heights for even larger dis-

tances from channel margins.

Tate et al. [56] modeled vessel traffic in a channel surrounded by shoals and found that ship

induced circulation can suspend sediment in the channel and adjacent shallow-water areas even-

tually causing channel shoaling. Similar effects of ship wakes were observed in the MMC by Geli-

nas et al. [28] and Rapaglia et al. [27]. These authors showed that the passage of vessels in the

channel and the dynamics of the associated depression waves can cause the resuspension of large

amount of sediments from the channel sides and adjacent mudflats. According to their results,

these materials are transported towards the channel during every ship passage. The resulting effect

of frequent transits is a stepwise movement of sediments from the mudflats to the channel.

The progressive erosion of the channel margins and, more generally, of the mudflats can

therefore cause the accumulation of the eroded sediments on the channel bottom. In the long

term, the described process can be responsible for a significant proportion of the total volume

lost by the central lagoon basin after the construction of the MMC waterway [47]. The net sed-

iment flux calculated for the recent period through the Malamocco inlet is in fact considerably

lower than the flux through the other two inlets [57], so that we can reasonably assume that

most of the sediments currently mobilized from mudflats eventually redeposit into the MMC

and other natural tidal channels of the central lagoon basin leading to aggradation. Erosion

and channel aggradation is also documented in similar contexts worldwide. According to

Rosati et al. [58], dredging interventions historically performed in the Galveston-Houston

channel, U.S.A., to increase the section width and depth, always led to further aggradation of

the channel bed, presumably at the expense of the shallows. Although the ship wakes and their

effects were not investigated in detail by these authors, there are recent visual evidences of high

ship wakes in the area, similar to those studied in the Lagoon of Venice. Townsend et al. [16]

described shoals developing in the Gulf Intracoastal Waterway, U.S.A., as a result of the ero-

sion of channel margins. Their estimates of erosion rates of the channel margins are compara-

ble to those determined in this study. In the Elbe River, near the port of Hamburg, where high

depression waves are frequently observed during the passage of large vessels, there is visual evi-

dence of erosion, and groins have been built in some locations to protect the shoreline from

sediment removal.
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In the Lagoon of Venice, the progressive depth reduction of the channel results in an increased

cost of maintenance dredging. According to data published by the local Port Authority [59], the

costs of dredging and disposal of about 800.000 m3 of sediment from shipping channels is 40 mil-

lion Euro. Assuming that the volume lost by CC-B is all deposited in the navigation channel we

can calculate a dredging cost of 1.5 million Euro per year or 60 million Euro for the 40 years

period considered in this study (at today’s values). However, dredging is not the only cost associ-

ated to the morphological changes. The consistent loss of habitat associated to the erosion of chan-

nel margins and mudflats has an impact on the ecosystems services, which needs to be evaluated.

Moreover, the extensive deepening of the central lagoon basin also had consequences on its gen-

eral hydrodynamics, increasing its vulnerability to the effects of storm waves and exceptional high

tides with possible feedbacks to the costs of storm-surge protection measures.

Contamination is another important consideration related to the erosion of the CC-B and

the other reclaimed channel margins. These artificial landforms were created with a mixture of

dredging materials and industrial wastes and their erosion has caused the release of contami-

nants into the environment. In the northern part of the CC-B the red muds consisting of baux-

ite residues from aluminum processing are frequently resuspended and mobilized by ship-

wake associated currents. These and other by-products of industrial processes have long con-

taminated the sediments of the area [60]. For this reason the Porto Marghera Industrial Zone

was designated as a contaminated site of national interest (SIN, Italian law 426/1998). Large

areas of the lagoon near the PMIZ have high concentration of organic and inorganic contami-

nants in the sediments [60–65]. As suggested by Rapaglia et al. [27], these contaminants can be

remobilized by the frequent resuspension and the consequent reaeration of bottom sediments

with potential harmful effects on the whole ecosystem of the central Lagoon of Venice.

Conclusions

The design and management of waterways in shallow water coastal systems is undoubtedly a

challenge. Besides other environmental impacts, the effects of ship traffic can significantly

affect the morphology of the channel margins and the surrounding shallow water areas, as

shown by this case study.

From the results of our investigation it follows that a few decades of traffic in the Venice

Lagoon caused extensive shoreline retreat along the waterway. The maximum recession over

four decades is ~160 m and regression rates up to 4 m/y. The total volume lost from the stud-

ied system is 1.19×106 m3 corresponding to 3.0×104 m3/y most of which consists of protected

areas for the conservation of fauna.

The progressive erosion of the channel margins and of the adjacent mudflats determines

the accumulation of the mobilized sediments on the channel bottom, increasing the frequency

and cost of maintenance dredging. However, the economic implications of the erosion are not

the only undesirable effect. Firstly, in the long term, the process can be responsible for a signif-

icant proportion of the total loss of habitat observed in the central lagoon basin with conse-

quences on ecosystem services. Secondly the progressive deepening of the central lagoon basin

also has consequences on the general hydrodynamics of the lagoon, increasing its vulnerability

to the effects of storm waves and exceptional high tides. Finally, the continuous sediment

mobilization and re-aeration can mobilize contaminants into the water column, with poten-

tially harmful effects on the whole lagoon ecosystem.

Although it is hard to imagine a strong pressure, such as that of modern international port

facility, without significant impacts on the environment, a conceptual model which considers

the effects of the described processes, would surely permit the management of vessel traffic in

a sustainable way minimizing the impacts on the morphology and on the ecosystem.
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