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ABSTRACT We investigated the impact of sleep and training load of Division - 1 women’s basketball
players on their game performance and injury prediction using machine learning algorithms. The data was
collected during a pandemic-condensed season with unpredictable interruptions to the games and athletic
training schedules. We collected data from sleep monitoring devices, training data from coaches, injury
reports from medical staff, and weekly survey data from athletes for 22 weeks. With proper data imputation,
interpretable feature set, data balancing, and classifiers, we showed that we could predict game performance
and injuries with more than 90% accuracy. More importantly, our F1 and F2 scores of 0.94 and 0.83 for
game performance and injuries, respectively, show that we can use the prediction for informative analysis
in the future for coaches to make insightful decisions. Our data analysis also showed that collegiate athletes
sleep less than the recommended hours (6-7 instead of 8 hours). This coupled with a long hiatus in games
and training increases the risk of injury. Varied training and higher heart rate variability (due to better quality
sleep) indicated a better performance, while athletes with poor sleep patterns, were more prone to injuries.

INDEX TERMS Basketball, collegiate athletes, data mining, game performance, injury prediction, machine
learning, sports analytics.

I. INTRODUCTION

SPORTS data analytics has been gaining significant atten-
tion through collegiate and professional leagues and E-

sports. Any insights regarding athletic performance can make
a difference in games in terms of athletic performance or pre-
venting injuries, ultimately determining the overall success of
a team. This transdisciplinary research has brought athletes,
athletic trainers, exercise scientists, engineers, and data sci-
entists together to investigate a Division-1 basketball team’s
season where COVID-19 caused unprecedented disruptions.
Using daily sleep patterns of the athletes combined with
subjective training and survey data, this project positioned

itself in a way that game performance and injuries could be
predicted with machine learning (ML) methods.

A. ATHLETIC PERFORMANCE

Sleep and recovery strongly influence physical qualities such
as strength, anaerobic power, flexibility, and physical perfor-
mance [1]. Additionally, sleep is known to affect cognitive,
emotional, and mental performance [2]. Athletes, in general,
need more than eight hours of sleep to feel rested; however,
their average hours of sleep fall below seven hours a night
due to academic, social, and athletic commitments [3]. On
the other hand, sleep extension beyond 8 hours per day for

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3145368, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

several weeks was shown to improve shooting accuracy for
collegiate men’s varsity basketball team and reaction time for
college varsity tennis players [4, 5].

B. ATHLETIC INJURIES

Collegiate athletes are reported to spend up to 41 hours per
week on athletics, resulting in inadequate time for restorative
sleep [6]. It has been reported that sleeping less than 8 hours
per night resulted in higher injury rates in adolescent athletes
[7, 8]. Furthermore, a simultaneous increase in training load,
training intensity, and decreased hours of sleep resulted in
a significantly higher risk of injury in this population [9].
Limited research exists addressing the association between
sleep and injury rate, and data is limited to the use of
subjective questionnaires to characterize sleep metrics [10].

C. MACHINE LEARNING METHODS IN BASKETBALL

Modern basketball analytics focus on action-oriented and
proactive strategies [11]. ML in basketball can help roster
composition, gameplay strategies, and player flow during a
game [12]. Commonly, classification, regression, and clus-
tering techniques are used in basketball analytics [13]. For
example, the impact of a player’s game performance on
win probability was carried out by using the Bayesian linear
regression model [14]. In addition, Wang et al. [15] used
neural networks on basketball videos to classify offensive
strategies such as player movement and location, in-bound
plays, etc. Similarly, with the goal of improving the team
performance, Piette et al. [16] used network analysis to find
the path during the gameplay that generated maximum points
and predicted the outcome.

On the other hand, injury prediction is challenging due to
the multidimensional parameters coming from psychologi-
cal, social, nutritional, and training workload [17]. Data sci-
entists have used artificial neural networks (ANN), Bayesian
networks, decision trees, clustering, and Support Vector Ma-
chines (SVM) for injury prediction of a player [18]. Talukder
et al. [19] utilized game data, workload, and team schedules
with random forest and an autoregressive model with logistic
regression to predict player injury. Knee injury and heart
defect detections have also been explored using ML [20, 21].

D. COVID IMPACT IN ATHLETICS

Covid-19 has caused the cessation of daily activities by teams
and athletes in sports. Athletes missed technical, tactical, and
psychological preparation that disrupted injury prevention,
nutrition, and recovery programs [22] potentially raising the
risk of injury, [23]. Grazioli et al. [24] found that after 63
days of quarantine, professional soccer players lost lean body
mass and fat mass resulting in degraded sprinting ability and
lower body power. It has been suggested that athletes must
be gradually exposed to physical training after detraining
periods [25].

E. PROPOSED WORK
This holistic study incorporated training data from strength
coaches, sleep and recovery information from a wrist-worn
device, and perception questionnaires from the Women’s
Division-I basketball team to create a platform for predicting
game performance and injury risk assessment. Our research
questions (RQs) were:
RQ1: Which training, sleep, and survey data features are
more important for the following?
(a) Game performance
(b) Injuries

RQ2: Can we predict injury and game performance based
on training, sleep, and athletes’ perception for data collected
during a pandemic?
Considering the above RQs the paper focuses and contributes
in the following directions:

• Selection of an interpretable feature set: We have per-
formed intensive feature selection to reduce the dataset
complexity and created an interpretable feature set con-
taining 12 features for game performance and 14 for
injury risk prediction.

• Game performance and injury prediction: We ap-
plied ensemble machine learning algorithms on a re-
duced data set based on feature importance to predict
game performance and injury with an F1 score of 0.94
and F2 score of 0.83 respectively.

• Impact of pandemic on injuries: We collected data
during the pandemic, where team schedules were very
different from previous seasons due to game date
changes, cancellations, and quarantine protocols.

II. METHODS
A. DATASET
The Division-1 Women’s Basketball team at Sacred Heart
University were the subjects of this study (Institutional Re-
view Board approval number 170720A on 9/14/2020). The
methodology of the data collection is outlined in Fig. 1.
Following data from 16 players were collected for 25 weeks:
(1) volume load, monotony, and strain from resistance and
metabolic conditioning training 3 times a week, i.e. 3/week.
(2) Daily (7/week) sleep schedule and heart rates of the ath-
letes via WHOOP strap [26]. (3) The perception of athletes’
recovery and stress levels were measured with subjective
surveys (twice a week, 2/week, Mondays and Thursdays).
The collected data were evaluated against game statistics and
injury reports for developing ML models to predict game
performance and injuries. Fig. 2 shows a snapshot of the
dataset. It contains a few features from sleep, recovery, train-
ing, perception (survey), game performance and injury[26].

B. QUANTIFICATION OF TRAINING LOAD
Training load was calculated as a weekly composite score
by summing the total work completed in sports training,
metabolic conditioning, resistance training, and gameplay.
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FIGURE 1. Methodology used in the study. Training (three times a week, 3/week), recovery (daily, 7/week), and perception (twice a week, 2/week) data were
utilized to gain insights on the game performance and injury of the athletes.

FIGURE 2. Dataset snapshot containing features from sleep, recovery, training, perception (survey), game performance and injury. The survey parameters - EB:
Emotional Balance, LA: Lack of Activation, NES: Negative Emotional State, OS: Overall Stress are covered in Section II-D. The training parameters are discussed in
Section II-B. The sleep and recovery parameters like RHR: Resting Heart Rate, HRV: Heart Rate Variability are discussed in Section II-C. Game performance
values were blacked out to de-identify the athlete as the game score data is publicly available.

Following each session, a session rating of perceived exertion
(sRPE)[27] was calculated by multiplying the time taken to
practice by the athletes’ subjective rating of perceived effort
(1-10 scale)[28, 29]. Total week load and weekly standard
deviation (SD) were calculated by summing sRPE for the
week and calculating the SD. Weekly resistance training load
was calculated by summing the total weight lifted during
the week. Monotony was calculated by taking the mean
daily load and normalizing it by the weekly SD of training
load. Finally, training strain was calculated by taking the
total weekly load and multiplying it by the monotony score.
Overall, 6 data features were collected weekly [30].

C. SLEEP MONITORING

WHOOP straps were given to each athlete, and their
sleep, heart, and overall recovery were monitored through
WHOOP’s research platform. The heart parameters include
- resting heart rate, heart rate variability, sleep parameters in-
cludes - Sleep Need, Wake Periods, Sleep Disturbance. Sleep
need is amount of sleep needed by athlete to recover. Wake
Periods is the duration for which the athlete remains awake
mid sleep. Sleep disturbances are number of times the athlete

wakes up mid sleep. A total of 22 features were collected
daily from the athletes using the WHOOP strap. WHOOP
was validated by researchers (i.e., third party validated) via
sleep clinic studies where WHOOP data was comparable
to polysomnography results. More specifically, agreement,
sensitivity, and specificity of WHOOP data was above 90%
for sleep while the precision error for heart rate was 1.5%
[31, 32, 33].

D. SURVEY DATA

Athletes completed the short recovery and stress question-
naire [34] via an online dashboard twice a week. This
short survey collects subjective data on physical, mental,
emotional, and overall recovery. The survey consists of 4
recovery- and 4 stress-related questions such as their Nega-
tive Emotional State (NES), Overall Recovery (OR), Overall
Stress (OS), Mental Performance game performance Capa-
bility (MPC), Muscular Stress (MS), Physical Performance
game performance Capability (PPC), Emotional Balance
(EB) and Lack of Activation (LA). The athletes had to rank
their values on a Likert scale from 0 to 6 [26] for each
of these. This survey is both valid and reliable for athletic

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3145368, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

populations [35].

E. GAME PERFORMANCE
It is important to quantify performance of a player in a
game, therefore it was calculated through statistics developed
by John Hollinger[36]. The game score roughly measures
player’s productivity in a game [37]. As shown in Eq. 1,
points scored (+), steals (+), and turnovers (-) contribute
directly, whereas other game statistics are weighted.

GameScore = PointsScored+ (0.4 × FieldGoals)−
(0.7 × FieldGoalAttempts)−

(0.4 × (FreeThrowAttempts− FreeThrows))+

(0.7 × OffensiveRebounds)+

(0.3 × DefensiveRebounds)+

Steals × (0.7 × Assists)+

(0.7 × Blocks)− (0.4 × PersonalFouls)−
Turnover

(1)
Game score holistically looks at all parameters of a box score
like offensive play, defensive rebounding, steals, blocks and
turnovers to measure the player’s impact in that game. The
parameters benefiting the team contributes positively to it
while committing fouls or turnovers have negative impact. A
game score of 10 is average and 40 is considered exceptional.
The game score is simple to compute from easily available
parameters, can be explained well and it statistically quan-
tifies performance of a player. Therefore, we use it in the
present work to measure player’s performance.

F. INJURY DATA
Injury data were extracted from medical injury reports gener-
ated as injuries occurred. After the season, all original injury
reports were shared with the research team, subject numbers
replaced player names to ensure confidentiality, and data of
interest were extracted for data analysis. This data included
the date of injuries, occurrence of injuries (contact or non-
contact), types of injuries (e.g., leg, shoulders, strain, tear,
etc.), and how long the athlete was not available for practice
or games.

III. DATA IMPUTATION
Sleep data and questionnaire responses were not available
completely as reasoned below:

1) Incomplete WHOOP strap data due to improper attach-
ment to the wrist (hence no data collection), neglecting
to charge, loss of charger, and not keeping the WHOOP
app on the phone running in the background to allow
data to upload to the research server.

2) Incomplete surveys as the athletes did not always com-
plete the surveys, especially during COVID lockdown
and in-season (when games were played).

Even though the game performance and injury data were
only available when applicable, missing data from sleep and

surveys constituted a source of bias that could negatively
impact the ML algorithms. The choice of an appropriate
imputation technique could subsequently ease feature selec-
tion and classification analyses. In this work, we utilized
data imputation techniques to fill the missing data. Single
imputation techniques such as global mean, cluster mean,
conditional local mean, and K-Nearest Neighbor (KNN) fail
to reflect the uncertainty about imputed values [38]. There-
fore, a multiple imputation approach called Multivariate
Imputation by Chained Equation (MICE) was utilized [39].
This method imputes each feature in the dataset sequentially,
allowing the prior imputed data values to be used in the model
to predict the following features. MICE has effectiveness for
datasets with a high missingness rate (>50%). It has also
been observed that datasets related to breast cancer, heart
disease, 26 capital letters in English alphabets and spam
emails when imputed with MICE, resulted in best feature
selection when compared to a single imputation technique or
no imputation [40]. Each of the datasets had large number of
missing values and they include categorical and numerical
features and contain data from different fields. Imputation
power can be improved by increasing the number of impu-
tations for a small dataset[41]. A key finding suggests that
data missingness should not be used as a measure to use
multiple imputations. Correctly specified MICE can reduce
bias and improve analyses for any proportion of missingness
in MAR data [42]. It means using MICE is beneficial for all
proportions of missing data provided the imputation model
is correctly specified and it includes all variables related to
missingness. While a MICE imputer is proven to be effective,
we cannot conclude that MICE is effective in all situations.
Graham et al. [41] suggested that the number of imputations
depends on the dataset size, the models used to impute, the
missingness rate and computing resources.

Applying MICE reduces the bias during the subsequent
feature selection technique [40]. The effectiveness of the
MICE imputer is demonstrated in Table 1 which shows
statistical measures of the observed and imputed values. The
statistical measure of percentage bias (PB, ideal is <5%) of
Resting Heart Rate (RHR) is 1.2%, Wake Periods is 0.6% and
for Physical game Performance Capability (PPC) is 0.0004%,
indicating effective imputation.

Table 2 shows the imputation percentages after MICE im-
plementation. A total of 2800 data entries (rows) is possible
from 16 athletes, 7 days a week of 25 weeks. It is important
to mention that injury and game performance data were not
imputed in order to avoid introducing bias. There were a total
of 165 games and 11 injury incidents during the 25-week
period. Moreover, training load data was not filled in either as
non-training days were entered as 0, except monotony, which
was a weekly measure and entered as the maximum value
considering a worst-case scenario. In the case of monotony,
defined as the differences from daily training activities and
calculated as a week, no training (which happened during
the pandemic-related shutdowns) weeks meant the worst-
case scenario. In these weeks, there were no training, so a 0
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TABLE 1. Statistics for observed and imputed features values. N - number of
samples, SD - Standard Deviation, Min. - Minimum value, Max. - Maximum
value.

Features
Observed
(Imputed)

N Mean SD Min Max

PPC 1280
(1520)

4.25
(4.05)

1.32
(0.81)

0.00
(0.00)

6.00
(6.00)

MPC 1280
(1520)

4.31
(3.80)

1.49
(0.94)

0.00
(0.00)

6.00
(6.00)

EB 1280
(1520)

4.03
(3.94)

1.6
(1.3)

0.00
(0.00)

6.00
(6.00)

OR 1280
(1520)

3.89
(3.99)

1.25
(0.90)

0.00
(0.00)

6.00
(6.00)

MS 1280
(1520)

2.65
(3.06)

1.43
(1.04)

0.00
(0.00)

6.00
(6.00)

LA 1280
(1520)

1.82
(2.03)

1.54
(1.04)

0.00
(0.00)

6.00
(6.00)

NES 1280
(1520)

1.68
(2.29)

1.43
(1.11)

0.00
(0.00)

6.00
(6.00)

OS 1280
(1520)

2.40
(2.88)

1.46
(1.03)

0.00
(0.00)

6.00
(6.00)

RHR 1802
(998)

58.69
(57.59)

8.38
(6.51)

43.00
(49.50)

89.00
(77.30)

HRV 1802
(998)

84.72
(88.43)

39.57
(31.57)

11.00
(11.00)

224.00
(224.00)

Recovery 1802
(998)

58.28
(60.89)

22.69
(19.15)

1.00
(1.00)

99.00
(99.00)

Sleep Score 1802
(998)

76.13
(75.71)

17.80
(13.87)

12.00
(12.00)

100.00
(100.00)

Hours in Bed 1802
(998)

7.56
(7.70)

1.74
(1.32)

1.26
(1.28)

20.64
(18.99)

Hours of Sleep 1802
(998)

6.80
(6.86)

1.53
(1.14)

1.07
(1.07)

19.27
(11.88)

Sleep Need 1802
(998)

8.90
(9.04)

1.07
(0.91)

3.35
(3.35)

11.79
(11.79)

Sleep Efficiency 1802
(998)

90.20
(89.46)

5.53
(4.12)

55.00
(58.00)

100.00
(100.00)

Wake Periods 1802
(998)

12.05
(12.08)

6.03
(4.41)

-1.58
(-0.39)

38.00
(38.00)

Sleep Disturbance 1802
(998)

9.73
(9.71)

5.06
(4.7)

0.00
(0.00)

31.00
(31.00)

Latency min. 1802
(998)

1.84
(1.64)

3.75
(3.55)

0.00
(0.00)

138.22
(138.22)

Cycles 1802
(998)

5.02
(5.27)

1.92
(1.46)

0.00
(0.00)

12.00
(12.00)

Light Sleep 1802
(998)

3.28
(3.22)

1.05
(0.75)

0.48
(0.48)

16.52
(16.52)

Awake hours 1802
(998)

0.76
(0.82)

0.52
(0.40)

0.00
(0.00)

5.53
(5.53)

Sleep Debt hours 1802
(998)

1.01
(1.07)

0.71
(0.61)

0.00
(0.00)

3.40
(3.40)

Sleep Consistency 1802
(998)

64.61
(65.70)

13.63
(10.43)

3.00
(3.32)

92.00
(92.00)

Respiratory Rate 1802
(998)

16.74
(16.98)

1.33
(1.41)

13.41
(13.41)

20.09
(19.95)

Total Cycle Nap 1802
(998)

0.29
(0.18)

0.81
(0.66)

0.00
(0.00)

8.01
(8.01)

Total Cycle Sleep 1802
(998)

7.09
(7.04)

1.66
(1.26)

1.07
(1.07)

19.27
(18.34)

REM Sleep 1802
(998)

28.49
(28.42)

8.97
(6.34)

0.00
(0.00)

56.10
(54.70)

Deep Sleep 1802
(998)

18.07
(18.28)

4.48
(3.61)

0.00
(0.00)

32.20
(28.50)

Restorative Sleep 1802
(998)

46.57
(46.72)

10.57
(9.47)

0.00
(0.00)

81.50
(79.20)

TABLE 2. Imputations ratios of each data subset to provide a general outline
of the data structure.

Before imputation After imputation

WHOOP 64.39% (1802 rows) 100% (2800 rows)

Perception 44.70% (1252 rows) 100% (2800 rows)

variety, resulting a monotony of 1, the maximum value. This
valuation makes the data imputation consistent and does not
introduce bias.

IV. FEATURE IMPORTANCE, INTERACTION EFFECT
ANALYSIS
A. FEATURE IMPORTANCE
Feature importance analysis was conducted to address our
RQ1. With this analysis, we not only intended to reduce the
dimensionality of the dataset but also aimed at understand-
ing how significantly the features contributed to the game
performance and injury respectively. The feature importance
techniques explain the contribution of an individual feature
of the dataset to a decision made by an ML algorithm to
ultimately gain insights from a model [43, 44]. Numeric
datasets such as ours primarily utilize regression models
for analysis where feature saliency or importance are used
[45]. Not only does feature importance help explain the
significance of each feature to the model, but it also reduces
the curse of dimensionality[46] by suggesting features that
the model may drop. The curse of dimensionality indicates
that in machine learning, number of training pairs needed
to estimate a function grows exponentially with respect to
dimensionality of the input features[46]. It is a problem when
dataset has too many input features and very few observa-
tions. It can lead to over fitting of the model as features
are more than observations. The problem can be solved by
reducing dimensionality of the input features by retaining
only the most important ones through mechanism like feature
importance.

Game performance and Injury were treated as two separate
target variables for feature importance analysis. With respect
to each target variable, we apply correlation-driven, Extreme
Gradient Boosting (XGBoost), and Random Forest (RF) [47]
techniques one by one to the data and obtain ranked impor-
tance of features. The suitability of these techniques is dis-
cussed as follows: (1) Correlation (CORR)-driven feature
importance - High correlation depicts linear dependency
between attributes, helping with the feature importance and
removing the redundancy and hence the bias in the dataset
[48]. (2) XGBoost - Boosted decision trees were constructed
within the model. The importance of features was given a
score calculated by how much an attribute contributed to
making critical decisions with the decision trees [49]. For
one decision tree, importance was calculated based on how
an attribute split improves the Gini Index, weighted by the
node’s records. In the end, the feature importance of all the
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trees was averaged [49]. (3) RF - This method is a bagging
technique that uses multiple decision trees as a base model
to arrive at a consensus using trees rather than relying on a
single tree for decision. RF provides interpretability as it is
easy to compute the contribution of features to the decision.
RF uses a change in accuracy or Gini index to find the feature
importance when excluded from the decision. While RF is
built in parallel with aggregated results, XGBoost is built
sequentially.

Fig. 3 is the correlation heat map of all sleep and recovery,
training load, perception, game performance, and injury-
related features. First 8 labels on the map refer to the survey
results, which were explained in Section II.D. Following 6
parameters are associated with the training (Section II.B),
while the next section are recovery parameters from the
WHOOP data. Last two parameters are the output param-
eters; game performance and injury. Areas demarcated by
black rectangles from left to right show the dataset groups
of survey, training, and sleep, respectively. Dark red or blue
colors represent high correlation (positive and negative, re-
spectively), and it can be seen that several correlations exist
between data groups, such as training load and the survey
data on stress and recovery.

For each target variable - game performance and injury,
top features from the sorted set were selected by taking a
weighted rank-sum (hard voting) CORR, XGB and RF for
each attribute. We further dropped features with high correla-
tion based on the correlation matrix to lower the bias. For in-
stance, sleep disturbances are dropped while retaining wake
periods as these two features are highly correlated (Fig. 3).
Game statistics to calculate the game score were not included
in the analysis to avoid introducing bias. In order to reduce
the feature set, we tried predicting the game performance and
injury using a RF regressor and classifier respectively with
different sizes of feature sets. By using forward addition of
features and backward elimination of features on the basis
of their significance in the prediction, we tried fitting an RF
regressor and classifier respectively over different sizes of
feature sets and kept track of the Mean Squared Error (MSE)
and R - squared (R2) for game performance and F2 score
for injuries. We found the least MSE (0.17) and highest R2

(0.89) values with 25 features for game prediction and the
highest F2 score was achieved with 29 features for injuries,
hence these features were selected for prediction analysis.
Table 3 shows the top 10 contributors to game performance
and injury. Strain and Rapid Eye Movement (REM) sleep are
the most significant contributors to game performance and
injury, respectively. Both strain and REM sleep were assessed
using daily collected values.

B. INTERACTION EFFECT
When multiple features have an impact or significantly con-
tribute to the prediction of a dependent feature, their joint
effect on the prediction is sometimes significantly greater
than the sum of the parts. This is called the interaction effect
[50]. Interaction modeling helps understand how two features

TABLE 3. Top 10 features ranked based on hard voting. Importance scores
for these 10 features for game performance and injury are also shown.

Rank Game Performance
(CORR, XGB, RFR)

Injury
(CORR, XGB, RFC)

1 Strain
(0.22, 9.6%, 7.6%)

REM Sleep hours
(0.11, 2.7%, 12.9%)

2 Daily Average
(0.21, 7.5%, 6.5%)

Respiratory rate
(0.06, 0.9%, 6.5%)

3 Heart Rate Variability
(HRV)
(0.16, 7.3%, 5.8%)

Monotony
(0.07, 2.7%, 9.4%)

4 Emotional Balance (EB)
(-0.15, 5.5%, 5.4%)

Game Score
(0.12, 3.4%, 7.1%)

5 Sleep Need
(0.13, 7.2%, 5.2%)

Week Trimp Total
0.12, 1.8%, 2.4%)

6 Lack of Activation (LA)
(0.14, 5.4%, 4.8%)

Strain
(0.12, 5.4%, 8%)

7 Overall Stress (OS)
(0.11, 5.3%, 4.7%)

Weekly SD
(0.06, 6%, 5.6%)

8 Sleep Debt Hours
(0.09, 6.7%, 4.6%)

Repetitive Training (RT)
volume load
(0.02, 5%, 4.3%)

9 Weekly SD
(0.18, 5.3%, 4.5%)

Awake hours
(0.06, 1.06%, 1.6%)

10 Monotony
(0.13, 4.2%, 4.1%)

Sleep need
(0.03, 1.6%, 5.02%)

work together to impact a dependent feature. It also repre-
sents the relationship between dependent and independent
features better [50]. In a complex study like in the proposed
paper, even the independent variables might interact with
each other. It is important to find how third variable influ-
ences the relationship between an independent and dependent
variable. If the real world behaves this way, it is critical to
incorporate interactions in the modeling. For example, the
relationship between game performance and RHR probably
depends on the respiratory rate in the present work and this
knowledge helps during dimensionality reduction.

Interaction modeling was performed over the dataset for
game performance prediction and injury prediction indi-
vidually. After removing multicollinearity from the dataset,
pair wise interaction effect was checked for all the features.
Forward adding and backward elimination of features was
used keeping a check upon the significance level of the
polynomial interaction terms on the dependent feature. Like
done previously, we tried fitting an RF regressor and classifier
respectively over datasets containing different combinations
of significant features and interaction terms and monitored
the MSE and R2 for game performance and F2 score for
injuries. We found the least MSE (0.09) and highest R2 (0.95)
value with 12 features for game prediction and the highest F2
score was achieved with 14 features for injuries. We thereby
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FIGURE 3. Correlation heat map for all the features.

concluded that the best feature set for game performance and
injuries consisted of 12 and 14 features, respectively. Table
4 shows features and interaction terms in the optimal dataset
for game performance and injury.

There were 38 features considered in all for this analysis:
22 features from sleep monitoring using the WHOOP strap,
8 features from survey data, 6 features from quantification of
training load, 1 feature from game performance and 1 feature
from injury data. After the feature importance and interaction
analysis, we selected 12 (5 features from sleep monitoring, 1
from survey data, 2 features from quantification of training

load, 3 interaction features from sleep monitoring and 1
interaction feature - a combination of sleep monitoring and
training load) and 14 (4 features from sleep monitoring, 1
from survey data, 4 features from quantification of training
load, 1 feature from game performance, 1 interaction feature
from sleep monitoring, 2 interaction features - a combination
of sleep monitoring and game performance and 1 interaction
feature - a combination of sleep monitoring and training load)
features for game performance and injury risk prediction
respectively.
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TABLE 4. Features and interaction terms (italics) in optimal dataset for game
performance and injury.

Optimal Dataset
No. Game Performance Injury
1 Strain REM Sleep
2 RHR Respiratory Rate
3 Respiratory Rate Monotony
4 Daily Average Strain
5 Weekly SD & REM Sleep Points
6 RHR & Respiratory Rate Points & REM Sleep
7 Hours of Sleep Points & Respiratory Rate
8 REM Sleep & Deep Sleep Weekly Trimp Total
9 Sleep Disturbances Sleep Disturbances
10 Hours of Sleep and Deep Sleep Emotional Balance
11 Emotional Balance RT Volume Load
12 Sleep Need Sleep Need
13 - RT Volume Load & Respiratory

Rate
14 - REM Sleep & Deep Sleep

C. FEATURE INTERPRETABILITY
It is vital to interpret the impact of individual features on
target variables for game performance and injury. We used
Partial Dependence Plots (PDP) to show the marginal effect
on the target variables and analyze each target’s two most
dominant features based on hard voting. As shown in Fig. 4,
training strain and daily training load average are positively
correlated with game performance. The PDP of strain de-
picts that if an athlete trains more, she is likely to perform
better. Daily average too is a training feature and its high
value (>200) improves the game performance. Therefore, the
weekly training strain and daily training load average are
associated with improvements in performance.

FIGURE 4. PDP for the training strain (left) and daily training load average
(right) features on game performance.

Similarly, we analyzed the impact of the two most domi-
nant features for injuries (based on hard voting): REM sleep
percentage (REM%) and Respiratory Rate (RR). REM sleep
is a restorative sleep stage and one of the human body’s four
sleep cycle. In this stage human brain converts short term
memories to long term ones. It is significant for a player as
REM sleep helps them to retain the technical skills learnt
on that day. With 22% - 28% sleep time in the REM stage
i.e., 90 Minutes in approximately 7 to 8 hours of REM sleep
can help athlete to gain benefit from the day’s practice.[32].

FIGURE 5. PDP for the REM% (left) and RR (right) on injury.

The PDP shown in Fig. 5 indicates that low (<20%) and
high (>30%) REM% increases the chances of injury. The
RR is a reasonably stable metric and 12 - 18 respirations
per minute (RPM) in a state of rest is considered normal,
while any deviation indicates an unusual pattern [32]. The
PDP shows that outside the typical range, sleep disturbances
increase, which increases the chances of injury.

V. PREDICTION OF GAME PERFORMANCE & INJURIES
RQ2 aims at predicting the players’ game performance via
the game score and calculating a risk assessment analysis
through injury prediction. These two features in the optimal
data sets (game performance - 12 and injury 14) were set as
the target variables, and ML models were applied to them
individually. Data balancing techniques were used due to the
small number of game performances and injury observations.
The proportion of the missing data is directly related to
quality of the inference and statistical analysis. However,
there is no established norm on an acceptable missingness
rate of the data [51]. In this work the MICE imputer has been
able to neutralize the impact high data missingness during
training of the ML model. Due to the limited number of
games and injuries compared to the entire dataset, the data
is scarce and prediction can have a significant bias, as is the
case in health sciences [52]. A problem with imbalanced clas-
sification is that there are too few examples of the minority
class for a model to effectively learn the decision boundary.
Therefore, there is a need to increase their numbers. The
best approach to overcome this problem is to synthesize
new examples from the minority class using balancing tech-
niques. These balancing techniques perform undersampling
and oversampling of data which improves the performance of
the decision tree based algorithms applied for prediction [53].
Preprocessing using Synthetic Minority Over Sampling with
Gaussian Noise (SMOGN) was performed for data balancing
on the game performance data [54]. SMOGN was not applied
to injury as injury labels are binary. Pre-processed game per-
formance data and original injury data were then evaluated on
Synthetic Minority Oversampling Technique (SMOTE) [55].
Since SMOTE may introduce noise as it increases probability
of class overlap, game performance data was evaluated with a
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combination of SMOTE and Edited Nearest Neighbor (ENN)
to remove any newly generated sample that differs from two
of their three nearest neighbors [56]. Borderline SMOTE
creates synthetic samples along the boundary of the majority
and the minority classes in the dataset [57], which is more
suitable for injury prediction models.

The k-means clustering algorithm was applied over the
game score to create clusters with bad, average, and good
game performance labels. Similarly, the injury records were
clustered to have two labels, injury, and no-injury. We used
the XGBoost classifier for both predictions due to its gradient
boosting framework and generalization capabilities [58].

Due to the low number of available target records in game
performance and injury, accuracy percentage cannot solely
evaluate the model performance. Therefore, we used F1 and
F2 scores to evaluate the classifier’s effectiveness (Fig. 6).
The choice of F1 score for predicting game score labels
stems from the fact that both False Positive (FP) and False
Negative (FN) are equally costly for game performance and
F1 balances them during evaluation. On the other hand,
F2 focuses more on minimizing FN. Also, it is crucial to
predict as many injuries as possible before the game, which
is captured well by F2. F measure, i.e., F(β), is given as
follows:

F (β) =
(1 + β2)× P ×R

β2 × P +R
(2)

where, β = 1 or 2 represents F1 or F2, P stands for preci-
sion, and R stands for recall. The effectiveness of a model
increases as an F1 or F2 score approaches 1.

Stratified 10-fold cross validation was used during model
training. It ensured that the fold had approximately equal
number of observations for each class. This generalized the
model well as estimates would have a low bias. The final
dataset, which was balanced using the SMOGN followed by
SMOTE with ENN, contained 72 records for game perfor-
mance prediction after the oversampling and undersampling.
By using the traditional 70 : 30 training : prediction ratio,
51 records were used for training while 21 (totaling to 72
with 70 : 30 ratio) were used for testing. While there were
72 records for the game performance, there were only 11
injury recordings, which was only balanced with Borderline
SMOTE without oversampling. The entire dataset of 352
records was divided into 289 and 63 where 9 and 2 injuries
were present in the data, respectively. The XGB classifier
predictions resulted in an F1 score of 0.94 for the game
performance and F2 score of 0.83 for injury. Values on the
diagonal of each matrix in Fig. 6 represent the correct predic-
tion while the cells labeled with red (1 for game performance
and 2 for injury) are false negatives (errors in prediction).

While stratified 10-fold cross validation partitions the
dataset into training and testing sets randomly, to take the
subject-to-subject variations and the tendency of autocorrela-
tions in the time series data belonging to a single subject into
account, a leave-one-subject-out analysis was also performed
[59]. In this approach, for each athlete, the data belonging
to the rest of the athletes was used for training and that

FIGURE 6. Confusion matrix on test set for game performance (left) and
injury (right).

belonging to her was used for testing. Repeating the exercise
for all athletes, an average F1 score of 0.94 was achieved
using the XGB classifier for prediction of game performance
and average F2 score of 0.80 for injury.

VI. DISCUSSION
A. GAME PERFORMANCE
A multifaceted approach was taken to the monitoring of game
performance to quantify various pressures placed on the ath-
letes. Several features were highlighted for importance (Table
3) including training strain, daily training load average, and
HRV. In our study the athletes averaged lower (6.8 hours
per day) than the recommended sleep hours which likely
increased the sleep need and sleep debt during the data col-
lection period. Sleep, both in amount and quality, is important
for recovery and subsequent adaptations from training. This
fact is also corroborated as sleep need and sleep debt hours
appear in the top 10 features for game performance. Team
average Resting Heart Rates (RHR) (58.70 bpm) and HRV
fluctuations (11-224) during this period may be reflective
of the overall stress placed on the athletes from training,
competition, and academic stress.

The second game performance monitoring approach was
the measurement of subjective stress as reported by the
athletes. While overall higher scores for recovery and lower
scores for stress are desired, our analysis revealed that emo-
tional balance (recovery metric) and lack of activation (stress
metric) reflected game performance as they both are highly
ranked at 4th and 6th place in feature importance, respec-
tively. As the student athletes in this study were training and
competing during times that overlapped with academic pres-
sures, emotional stress may have reflected overall pressure
placed on them by sports-related and academic domains. The
observations are valid as EB, and overall stress features also
appear in the top 10 features impacting game performance.

The final approach was the monitoring of the entire train-
ing and competition workload experienced by the athletes.
The primary stresses placed on the athletes are both phys-
iological and biomechanical. From the feature selection,
the most predictive features were training strain and daily
average training load. These measures reflect total work
completed through the week and the variability of that work.
Athletes should attempt to avoid large spikes in training
volume and periods of no or little training. During this study,
two periods of reduced or absent training were present due
to COVID-19-related protocols. The lack of training for
7 to 14 days (potential reduction in physical capabilities)
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followed by training or competition resulted in decrease in
LA, increased monotony, and decreased weekly SD, which
all showed up in the feature importance analysis. Based on
these results, it can be suggested that through consistent
monitoring of workload, return to play protocols should
be developed to reintegrate athletes back into training and
competition slowly.

B. INJURY
Consistent, varied, and structured training is essential in the
physical development of athletes. In this study, a total of 11
injuries occurred during or immediately following four sepa-
rate shutdown periods, ranging from 10-16 days in length,
in which no games were played. These frequent periods
of unexpected shutdowns resulted in the athlete’s acute (1-
week) training load far exceeding that which they had done
over a several week (chronic) period, similar to [60]. The
majority of injuries in the present study were chronic/overuse
injuries such as tendonitis, which aligned with the findings of
a study on youth basketball players [61].

In addition to erratic and unstructured training, another
factor that has been shown to increase injury prevalence is
sleep dysfunction, which was also correlated to the respira-
tory rate through recovery. Consistent with previous research,
we found that our athletes were sleeping too little (Mean:
6.8 hours, Standard deviation: 1.5 hours). As observed, sleep
indeed impacts injury, and it was validated as REM, awake
hours, and sleep need appearing in the top 10 features.

C. PREDICTION
Accuracies of the XGBoost classifier for game performance
and injury prediction were found at 95.3% and 96.8%, re-
spectively. However, these could be misleading due to the
very low number of records for game score (165) and injuries
(11) compared to the size of the sleep and training load data.
Therefore, F measures were used to evaluate the performance
of the prediction models. With F1 of 0.94 and F2 of 0.83, we
believe our models can correctly predict the game score and
injury with reasonable confidence. The proportion of imputed
data may impact the prediction and the bias introduced due
to imputation. In the present case, we assumed that the data is
Missing at Random (MAR), which ensured the production of
unbiased data after imputation and was evident from the low
PB values. However, due to the large proportions of missing
data (Table 2), the predictions must be considered as insights
or hypothesis-generating results rather than final decisions
for coaches.

The 3 x 3 confusion matrix on the test set for game
performance has only one FN in a three cluster classifica-
tion. The Hollinger game score[36] used to predict game
performance is only a rough measure of player’s productivity.
Thus the predicted game performance provides only partial
information to the coaches, and other parameters such as
game contribution and practice efforts can be considered to
have a more complete assessment of the true impact of a
player during the season.

As seen in the 2 x 2 confusion matrix, the binary injury
model predicted four injuries (2 True Negative (TN) and 2
FN) and 59 no-injury (all True Positive (TP), 0 FP). In the
injury case, FN is better than FP (injured player predicted
as not injured). The coaches prefer over prediction because
unknowingly making an injured player play (FP) can prove
far more costly to the team compared to a non-injured player
predicted as injured (FN).

VII. CONCLUSION
Due to the inherently chaotic nature of sports, coaches and
scientists are constantly searching for insights related to an
athlete’s game performance and injury potential. This study
attempted to quantify both; the game performance aspects as-
sociated with basketball while simultaneously understanding
potential injury risks. Through a multi-disciplinary approach,
the authors tried to quantify inputs (training, stressors, and
perceptions) and outputs (game performance and injury) in a
collegiate basketball setting. The game performance analysis
revealed (RQ1 a): 1) questionnaire data, training load, HRV,
sleep need, and debt are associated with game performance;
2) Collectively, a combination of questionnaire data, training
load metrics, and whoop band metrics can provide insights
into game performance.

Similarly, the analysis revealed that significant outcomes
associated with injury are (RQ1 b): 1) Restorative sleep,
respiratory rate, training monotony, training strain, and total
minutes played; 2) A compressed competition schedule and
training irregularities likely increased injury risk; 3) The ath-
letes measured in this study slept less than the recommended
amount for athletes.

Given the high injury rates previously reported in basket-
ball, specifically collegiate basketball, it is imperative to fur-
ther explore this relationship within the context of collegiate
basketball to quantify training loads and allow clinicians to
quantify the risk of subsequent injury. Collectively, this data
highlights the need for gradual reintroduction to activities for
the athletes’ following layoffs and a consistent return to play
protocol.

Our prediction models were reliable with high F1/F2
scores that are very encouraging to be used during a bas-
ketball season by working with the coaches to close the
loop on insightful decisions (RQ2). Regardless of whether
or not we will face another pandemic in the near future, our
results will pave the way for understanding the impact of
lengthy breaks in a season or unforeseen player absences. As
collegiate athletes struggle with lack of sleep and meeting
academic, athletic, and social responsibilities, we believe
our data collection methodology with a validated machine
learning framework will help improve the performance of
athletes while reducing the risk of injuries.
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