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Abstract—Competitive sports require rapid and intense move-
ments, such as jump landings, making athletes susceptible to
injuries due to altered neuromuscular control and joint me-
chanics. Biomechanical features during landings are associated
with injury risk, emphasizing proper movement and postural
stability. Computer vision techniques offer a time-efficient, non-
invasive, and unbiased method to assess jump-landings and
identify injury risks. This study proposes a video analysis
framework to evaluate jump landing biomechanics in athletes
to determine irregular movements and incorrect postures. It
provides advice and recommendations to coaches for injury
prediction and training improvements. The proposed framework
is tested using countermovement jump videos of 17 NCAA
Division I female basketball athletes. The results indicated a
low Mean Absolute Error (0.97), high correlation (0.89), high
average accuracy (98.31%) and F1 score (0.98), signifying the
framework’s reliability in identifying injury risk.

Index Terms—Basketball, biomechanical assessment, collegiate
athletes, computer vision, jumps, injury

I. INTRODUCTION

In sports, prolonged high-intensity repetitive movements
and asymmetric postures increase the risk of athlete injuries
[1]. This increased risk is attributed to altered or reduced
neuromuscular control during sports movements, leading to
lower limb joint mechanics changes, including motions and
loads [2]. Jump landing is one such frequent movement in a
sport like basketball. In a game or practice session, an athlete
performs 70 jumps per hour on average, and they experience
severe ground reaction forces increasing injury risk [3], [4].
Consequently, assessing and evaluating their movements for
timely intervention is essential.

Knee kinematics, such as knee flexion, internal/external
rotation, and knee valgus position, are primary predictors of
anterior cruciate ligament (ACL) injury risk [5]. Less knee
flexion, greater knee internal rotation and abduction, and poor
trunk stability are associated with a higher risk of knee injury
[6], [7]. In basketball, stance width is the distance between
the player’s feet and impacts injury risk [8]. A wide stance
prevents agility, while a narrow stance compromises stability
and control. Foot rotation positions during landings influence
knee-joint loading. Both toe-in (internal) and toe-out (external)

rotation leads to a higher knee valgus moment, which is
associated with an increased risk of injury [9].

Jump landing tests assess injury risk by evaluating neuro-
muscular control, stability, and movement patterns. Tests like
Drop Jump (DJ), Single-Leg Drop Jump, and Vertical Jump fo-
cus on management and mechanics [10]. Tuck Jump examines
form and control in consecutive jumps, while Landing Error
Scoring System (LESS) evaluates landing mechanics for ACL
injury risk prediction [11]. The hop test measures lower limb
strength and symmetry, and isokinetic strength testing focuses
on the quadriceps and hamstring muscles.

The conventional approach poses challenges due to the
high amount of labor, lack of efficiency, and inter-expert
variability [14]. Computer vision (CV) and machine learning
(ML) [15] provide time-efficient, low labor, non-invasive,
and unbiased techniques for assessing jump-landings [16].
N. Blanchard et al. [17] presented a video dataset with DJ
and countermovement-jump (CMJ) landings to evaluate ACL
injury risk. C. Roygaga et al. [18] analyzed DJ and CMJ videos
to identify 14 errors automatically. Hébert-Losier K et al. [19]
used CV for LESS measurement using jumps videos. We note
that the existing injury risk assessment techniques are either
(i) specific to the type of jump evaluation test performed; (ii)
specific to the type of injury to be identified, or (iii) specific
to the scoring system used as a screening tool for injury risk.

Using videos, the proposed generic framework looks at
overall movement quality and patterns, assessing symmetry,
coordination, and fluidity during jump-landing and other func-
tional movements. By allowing for consistent data collection
and interpretation, it provides a standardized approach to
evaluate athletes’ movement patterns and injury risk across
various tests and screening tools. As an outcome, it identifies
common movement and posture deficiencies. The main con-
tributions are the following aspects of this proposed generic
framework: 1. Reproducible, high-risk lower extremity joint
biomechanical assessment identifying incorrect positioning
and dynamic stability-related errors at initial contact and max-
imal displacement during jump landings, using a two-camera
setup in frontal and sagittal planes. 2. Field implementation



and validation of the proposed framework over 17 NCAA
Division I female basketball ’athletes’ using CMJ jump videos.
3. ’Athletes’ lower-limb progression analysis over the season
provides theoretical guidance to coaches for decision-making.

II. PROPOSED FRAMEWORK

Two cost-effective standard video cameras are utilized to
record the jump-landing task. These cameras are placed 345.40
cm in front of and to the side of the jump spot [11]. MediaPipe
Pose (MPP) processes the recorded video and extracts kine-
matic features. It is an open-source, cross-platform framework
by Google, integrated with OpenCV [20]. Fig. 1 outlines
various stages of the proposed framework.

Fig. 1. Proposed framework.

The video is first segmented into individual frames, and each
frame is converted from BGR to RGB format for maintaining
compatibility with MPP. It utilizes ML, and BlazePose [20] to
estimate 2D coordinates of movements and posture, defining
body landmarks (body joints) in each frame. From the 33 body
landmarks identified, as shown in Fig. 2, we utilize 13 (0, 11,
12, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32) for kinematic feature
estimation.

Fig. 2. Definition of body landmarks in MPP [20]. The highlighted landmarks
are used in the proposed work.

These coordinates acquired through MPP are first normal-
ized by multiplying the y-axis pixel values by the inverse
ratio. In the next step, we compute kinematic features for
each frame – a mixture of angles between body landmark
key points and ratios between distances using the Euclidean
distance and Cosine angle. It includes angles for knee flexion,
hip flexion, ankle plantar flexion, knee valgus position, trunk
flexion, lateral trunk flexion, foot rotation, feet stance width,
and shoulder distance in each frame. Now, we use the method
described in Fig. 3 to identify the frames of interest from the
video. The primary method is to track the ankles across frames
to detect the frame when landing occurs as initial contact
(IC) frame. We additionally track the hip, knee, and ankles

to calculate the knee flexion angle over frames to determine
the frame with maximum knee flexion (KFmax) after landing.

Fig. 3. Method for keyframe identification.

In the next processing stage, we identify irregular move-
ments and incorrect postures quantified in terms of 12 jump-
landing errors using the extracted kinematic features from both
frontal and lateral videos. They are discussed as follows.

A. Knee Flexion at IC

We compute the left (23, 25, 27) and right (24, 26, 28)
knee flexion angles using the cosine of the known three-point
coordinates (hip, knee, ankle) as shown in Fig. 4i. If either of
the knee flexion angles is less than 30°, it is an error.

B. Knee valgus position at IC

We assume two straight lines: one connecting the hip and
center of knee key points and the other connecting the centers
of knee and ankle key points. The angle between these lines
provides information about knee valgus aberrations (Fig. 4ii).
If the angle measures approximately 0° or 180°, it indicates
no error in the knee alignment.

Fig. 4. Jump-landing errors :– i. knee flexion, ii. knee valgus position, iii.
trunk flexion

C. Trunk flexion at IC

We calculate the left (11, 23, 25) and right (12, 24, 26)
trunk flexion angles using the cosine of the known three-point
coordinates (shoulder, hip, knee). Following this calculation,
if either of the trunk flexion angles measures approximately
0° or 180°, it is considered an error.



D. Lateral trunk flexion at IC

We assume two straight lines: one from the hip midpoint to
the top of the frame and the other connecting the hip midpoint
to the shoulder midpoint. It is an error if the angle between
these two lines does not equal 0° or 180° (Fig. 5i).

Fig. 5. Jump-landing errors:– i. lateral trunk flexion, ii. ankle plantar flexion,
iii. hip flexion.

E. Ankle plantar flexion at IC

We acquire the coordinates of the left and right heels (29,
30) and the footindex (31, 32). If the y-coordinate of the heel
is smaller than the footindex for one foot or both feet, it
indicates a heel-to-toe landing, which signifies an error (Fig.
5ii).

F. Hip flexion at IC

We calculate the left (11, 23, 25) and right (12, 24, 26) trunk
flexion angles (Fig. 3iii) using the cosine of the known three-
point coordinates (shoulder, hip, knee). Following this calcu-
lation, if either trunk flexion angle measures approximately 0°
or 180°, it is considered an error (Fig. 5iii).

G. Foot externally / internally rotated at IC

We assume a straight line from the heel point to the bottom
of the frame to establish a reference and another straight line
connecting the heel and footindex key points. It indicates an
error if the angle between these two lines is greater than 30°
externally or internally (Fig. 6i).

H. Stance width at IC (wide/narrow)

We first calculate the Euclidean distance between the left
and right shoulder key points (11, 12). Next, we calculate the
Euclidean distance between the left and right ankle key points
(27, 28). If the ratio of shoulder to feet distance is greater than
1, it indicates a narrow stance error. On the other hand, if the
ratio of shoulder to feet distance is less than 1, it signifies a
wide stance error (Fig. 6ii).

Fig. 6. Jump-landing errors:– i. foot rotation, ii. stance width, iii. feet landing
symmetricity.

I. Feet landing symmetricity at IC

In optimal jump-landing, the feet should land toe-to-heel. To
assess this, we examine the y-coordinate of the left and right
footindex (toe) from the IC frame. Suppose the y-coordinates
of the two feet are not equal; in that case, it indicates that
they did not land simultaneously, which is considered an error
(Fig. 6iii).

J. Knee, Trunk and Hip flexion displacement from IC to
KFmax

It is an error if the knee flexion angle displaces less than
45° between IC and KFmax. If the trunk is more flexed at
KFmax, then IC results in an error. Also, it is an error if the
hip is more flexed at KFmax than IC.

III. EXPERIMENTAL SETUP

A. Participants

17 NCAA Division I female basketball athletes (mean
[standard deviation]: n = 17, age = 21.00 [±3.00] years,
height = 174.21 [±19.27] cm, body mass = 73.98 [±11.52]
kg) participated in this study. All the athletes were Sacred
Heart University, USA’s women’s basketball team members.
The Institutional Review Board (IRB) approved the research,
and all the subjects were informed and consented before
participating (IRB approval number 170720A on 09/14/2020).

B. Study Design

We used two Panasonic LUMIX FZ80 - 4K digital cameras
offering a high resolution and stabilization for recording the
videos from frontal and lateral planes as the athletes performed
CMJ over force plates as a part of their regular training
routine. As instructed, they placed their hands on their sides,
conducted a deep squat, and executed a maximal jump height
to optimize their training results. Each CMJ session was
consistently scheduled on the same day of the week, usually
on Monday or the first training day. The recorded videos were
analyzed using our framework to identify lower extremity
movement and postural errors and quantify them using the
landing error scoring system (LESS). The framework can
compute any score based on lower extremity measurement, and
we use LESS to demonstrate its performance. We simultane-
ously made an expert (blinded to framework generated score)
annotate these videos with LESS by replaying them over
the software Kinovea [21] (version 0.8.25, www.kinovea.org).
The framework-generated score was compared to the expert
annotated score to validate the efficacy of the proposed generic
framework.

C. LESS mapped to the proposed framework

LESS is a reliable movement and posture screening tool for
jump-landing tasks that help identify errors associated with
ACL and other lower-extremity injury mechanisms [11]. It
comprises 17 evaluation parameters that are potential errors,
and a score (range 0 to 17) greater than 5 indicates poor
landing biomechanics and a higher relative risk of sustaining



non-contact lower-extremity injuries. Among the 17 parame-
ters, the first 15 indicate individual errors, while the final 2
are subjective and derive scores from the initial 15’s errors.
The initial 15 LESS parameters correspond to the proposed
framework’s identified errors – 1-Knee flexion IC (A), 2-hip
flexion IC (D), 3-trunk flexion IC (C), 4-ankle plantar flexion
IC (F), 5-knee valgus IC (B), 6-lateral trunk flexion IC (E),
7-stance width (wide) IC (H), 8-stance width (narrow) IC (H),
9-foot (toe-in) (F), 10-foot (toe-out) (F), 11-symmetric foot
contact IC (I), 12-knee flexion displacement (J), 13-hip flexion
at KFmax (L), 14-trunk flexion at KFmax (K), 15-knee valgus
displacement (B). For 16-joint displacement, we assigned a
score of 0 if no errors (I, J, K) were present. A score of 1
is given for one error and a score of 2 for two or all three
errors. Similarly, for the 17-overall impression, if parameters
1 to 16 have no errors (0), a score of 0 is given. A score of 1
indicates two or fewer errors, while a score of 2 reflects more
than two errors in parameter 17.

Fig. 7. Detection accuracy for LESS errors in IC and KFmax frames.

D. Results and Discussion

Eighty-four videos (42 frontal; 42 lateral) were analyzed.
The mean LESS score, as rated by the expert, was 4.78 +
1.24, and that generated by the proposed framework was 4.80
+ 1.15. A low mean absolute error (MAE) of 0.97 and a high
correlation (r) of 0.89 were observed between the framework-
generated and expert-annotated LESS scores. Fig. 7 shows the
accuracy percentage and F1 score for each type of error. The
framework successfully detects errors (1, 2, 3, 4, 7, 8, 9, 10,
12, 13, 14) with 100% accuracy and an F1 score of 1.00.
However, accuracy and F1 scores for errors 5, 6, 11, and 15
are lower due to strict thresholding in the framework than
expert annotations. Errors 16 and 17 are subjective and rely
on errors 1-15, contributing to the disparity between expert
annotations and framework-detected errors.

Knee flexion angle is a crucial biomechanical factor in
predicting injury risk in sports involving jumping and landing,
such as basketball [3]. While inadequate knee flexion increases
stress on the knee joint, making it more susceptible to injury,
proper knee flexion landing helps distribute forces evenly
across the lower extremity, reducing the risk of overloading.

In rehabilitation, monitoring and improving knee flexion angle
is crucial for minimizing re-injury risk and promoting a safe
return to play [22]. Therefore, we tracked athletes’ KFmax

angle over weeks to assess their alignment progression over
the season.

Fig. 8. Athlete’s KFmax angle progression over the season.

A KFmax angle of 87 to 110 helps athletes achieve maximal
vertical jump height [23]. Fig. 7 shows an athlete’s KFmax

angle over a season. It can be observed that KFmax is in an
optimal range at the beginning of the season. As the season
ends, we see the KFmax value above the optimal threshold,
reflecting fatigue caused due to undertraining or overtraining.
These weeks are game weeks when athletes travel more, play
games and exercise less.

IV. CONCLUSION

Lower extremity injuries have severe consequences on
athletes’ performance and their careers. Hence, coaches aim
to prevent these injuries through neuromuscular monitoring
and guided training programs. The proposed framework helps
coaches to identify risky movements and incorrect postures. It
balances the expensive, time-constrained 3D motion analysis
technique and the intra- and inter-rater variability-constrained
clinician-driven screening. It achieves a low MAE of 0.97, a
high correlation of 0.89, and a high average accuracy (98.31%)
and F1 score (0.98) with expert annotations, making it a reli-
able assessment tool. On average, the proposed framework can
process a single video and generate injury-risk score within a
span of 102 seconds (can reduce further on better configuration
machines). Jump tests are common in several sports, such as
basketball, volleyball, and soccer, to evaluate athlete readiness.
The two-camera set-up can easily be deployed in athletic
training facilities to broaden the use of the framework. This
generic framework will promote collaboration among sports
professionals, leading to the development of evidence-based
injury prevention strategies applicable across multiple sports
and populations. In the future, we aim to use the framework
for tracking ’athletes’ lower limb progression over a season for
injury-risk assessment, monitoring recovery, and a safe return
to play.
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