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Abstract

The Chinese Remainder Theorem is one of the oldest theorems in mathe-
matics. It states that a system of linear congruences with pairwise relatively
prime moduli has a unique solution modulo the product of its pairwise rel-
atively prime moduli. In this talk, we will prove the Chinese Remainder
Theorem and illustrate with an example.
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1 Introduction

The Chinese Remainder Theorem first came from the Chinese mathematical trea-

tise, Sun Tze Suan Ching written by Sun Zi. Little is known about the author

except that he may have been a Buddist monk who lived in the third or fourth

century AD. From Volume 3 of his work, Master Sun’s Mathematical Manual, the

following is translated:

“We have a number of things, but we do not know exactly how many.

If we count them by threes we have two left over. If we count them by

five we have three left over. If we count them by sevens we have two

left over. How many things are there?” (Marshall, Odell, and Starbird,

2007)

The Chinese Remainder Theorem claims that if n1,n2,...nL are positive integers

that are pairwise relatively prime such that gcd(ni, nj) = 1 for i 6= j, 1 ≤ i, j ≤ L.

Then the system of L congruences:

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ aL (mod nL)
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has a unique solution modulo the product n1n2n3...nL.

We start with definitions in divisibility, congruence modulo n, and greatest

common divisors. We will prove results leading to the Chinese Remainder Theo-

rem.

1.1 Background

All definitions and statements of theorems in this paper are provided from [1]. The

proofs of the theorems were derived through the method of inquiry.

2 Divisibility and Greatest Common Divisor

Divisibility is an essential concept and foundation to many theorems in number

theory. We will start with the divisibility definition and work our way to the

Diophantine equation and to the Chinese Remainder Theorem.

Definition 2.1. (Divisibility) Let a and b ∈ Z. We say a divides b, denoted as

a|b, if there exists an integer k such that ak = b.

2.1 Divisibility

Example 2.1. Consider 3 | 6. Then there exists an integer k, namely k = 2, such

that 3k = 6.
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We can continue with this example to explore other properties. It is true that

if 3|6 and 3|9, then 3|(6 + 9). Also, if 3|6, then 3 divides any multiple of 6 such as

12, 18, and so on. These properities of divisibility are true for integers in general

and we therefore state them as theorems.

Theorem 2.1. Let a, b, and c ∈ Z. If a|b and a|c then a|(b + c).

Proof. Suppose a|b and a|c. Then there exist integers k and m such that ak = b

and am = c. Adding both equations together we obtain ak + am = b + c. Since

(k + m) ∈ Z, then this implies that a|(b + c) by Theorem 2.1.

By subtracting the second equation from the first in the proof of Theorem 2.1,

another theorem follows.

Theorem 2.2. Let a, b, and c ∈ Z. If a|b and a|c then a|(b - c).

Theorem 2.3. Let a, b, and c ∈ Z. If a|b then a|bc.

Proof. Suppose a|b, then there exists an integer k such that ka = b. We multiply

by integer c to obtain kac = bc. Since (kc) ∈ Z, then a|(bc).

Theorem 2.4. Let a, b and c ∈ Z. If a|b and b|c, then a|c.

Proof. Suppose a|b and b|c. By Definition 2.1, there exist integers k and m such

that ka = b and mb = c. We substitute for b to obtain (mk)a = c. Since (mk) ∈ Z,

then again by Definition 2.1, we have a|c.
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For any integers a and b where b > 0, there is a linear relationship between a

and b given by the Division Algorithm. We shall state and prove this algorithm

for positive integers.

Theorem 2.5. (Division Algorithm) Let m and n ∈ N. Then there exist unique

integers q, r such that m = qn + r, where 0 ≤ r ≤ n - 1.

Proof: (Existence) The Well-Ordering Axiom states every nonempty subset of

positive integers contains a smallest element. Without loss of generality, assume

m > n. If n|m, then there exists an integer q such that m = qn = qn + 0. Then

r = 0. If n does not divide m, then let’s construct a set S as followed:

S = {m - kn | k ∈ Z m - kn > 0 }. If k = 0, then m - kn = m. Since m is

greater than 0, then m must be an element in S. This proves that set S is non

empty. Then by the Well-Ordering Axiom, there is a smallest element r in set S

such that r = m - qn for some integers q, r > 0. We want to prove r ≤ n - 1, so

let’s assume r > n - 1. Since r > n - 1, then it is clear that r ≥ n. Then

r = m - nq ≥ n which implies m - n(q - 1) ≥ 0. If m - n(q - 1) = 0, then

m = n(q - 1) implies that n|m which is a contradiction. If m - n(q - 1) > 0, then

m - n(q - 1) is in S but m - n(q - 1) = m - nq - n < m - nq = r which

contradicts the fact that r is the smallest element in set S. Therefore r ≤ n - 1.

By combining both cases, it follows that given natural numbers n and m, there

exist integers q and r such that m = qn + r, where 0 ≤ r ≤ n - 1.
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Proof: (Uniqueness) Suppose there exist integers q, q1 r, r1 such that

m = nq + r and m = nq1 + r1, where 0 ≤ r, r1 < n. We want to show

q1 = q and r1 = r to prove uniqueness. Without loss of generality, suppose

r1 ≥ r. Since m = nq + r and m = nq1 + r1, where 0 ≤ r, r1 < n, we have

nq - nq1 = r1 - r which implies that n|(r1 - r). But since 0 ≤ r1 - r < n, this

implies that r1 - r = 0. Thus r1 = r. Then we have nq - nq1 = 0 which implies

that nq = nq1. We divide by n to have q1 = q. Thus, q and r are unique.

Theorem 2.6. Let a, n, b, r and k ∈ Z. If a = nb + r and k|a and k|b, then k|r.

Proof. Since k|b, then k|nb by Theorem 2.3. Since k|a and k|nb, then k|(a - nb)

by Theorem 2.2. We know a - nb = r, therefore k also divides r.

2.2 Greatest Common Divisor

Definition 2.2. The Greatest Common Divisor (gcd) of two integers a and b, not

both 0, is the largest, positive integer that divides a and b. It is denoted as (a, b).

We will also note that (a, 0) = a, where a is an integer not 0, and (0, 0) does

not exist because there are infinitely many integers that divide 0.

Example 2.2. (-20, 5) = 5 and (12, 18) = 6.

Definition 2.3. Two integers a and b are relatively prime if (a, b) = 1.
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Theorem 2.7. Let a, n, b, and r ∈ Z, where a and b are not both 0. If a = nb +

r, then (a, b) = (b, r).

Proof. Assume (a,b) = d and (b,r) = d1. By definition of gcd, we have d|a and

d|b. Then by Theorem 2.6, d also divides r. Since d1 is the gcd of b and r, then

d ≤ d1. Conversely, we have d1|b. By Theorem 2.3, we have d|nb. Since d1|r and

d1|(nb + r) by Theorem 2.1, then d1|a. Since d1|a and d1|b, then d1 is a common

divisor of a and b. Since d is gcd of (a, b), then d1 ≤ d. Therefore d1 = d.

Theorem 2.7 allows us to devise a procedure for finding the gcd(a, b). This

procedure is called the Euclidean Algorithm.

Euclidean Algorithm. Let a and b be integers not both 0. Since (a, b) =

(|a|, |b|), assume a, b > 0 without loss of generality. Then by applying the

Division Algorithm to a and b, we obtain a = q1b + r1 with 0 ≤ r1 < b. Now by

Theorem 2.7, we continue to apply the Divison Algorithm to b and r1.

Continuing thus, we obtain the sequence r1 > r2 > r3 >... > rn. Since this

sequence is decreasing, it must terminate after say n steps with rn+1 = 0. This

idea is sequenced below for best illustration:

a = q1b + r1 with 0 ≤ r1 < b

b = q2r1 + r2 with 0 ≤ r2 < r1

r1 = q3r2 + r3 with 0 ≤ r3 < r2

...
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rn−3 = qn−1rn−2 + rn−1 with 0 ≤ rn−1 < rn−2

rn−2 = qnrn−1 + rn with 0 ≤ rn < rn−1

rn−1 = qn+1rn + 0

By Theorem 2.7, we have (a, b) = (b, r1) = (r1, r2) = ... (rn−1, rn) = rn, since

rn|rn−1.

Example 2.3. We will find the gcd (24, 36). By the Division Algorithm, 36 =

(24 · 1) + 12. Then 24 = (12 · 2) + 0. Then the gcd(24, 36) = 12.

We can write rn = rn−2 - qnrn−1. By substituting for rn−1, rn−2, ... , r2, r1,

gathering like terms and simplifying, we can express gcd(a, b) as a linear

combination of a and b. We state this in the next theorem and illustrate with an

example.

Theorem 2.8. Let a and b ∈ Z not both 0. Then there exist x and y ∈ Z such

that ax + by= (a, b).

Example 2.4. gcd(124, 144).

144 = (124 · 1) + 20.

124 = (20 · 6) + 4.

20 = (4 · 5) + 0.

Then the gcd(124, 144) = 4.

Retracing our steps, we express the gcd as a linear combination of its terms 124

and 144:
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4 = 124 - (20 · 6)

4 = 124 - ((144 - 124) · 6)

4 = 124 - (6 · 144) + (6 · 124)

4 = (- 6) · 144 + (7) · 124

Thus 4 - 144 · x + 124 · y where x = - 6 and y = 7.

In the next theorem we characterize gcd(a, b) in the special case of (a, b) = 1.

Theorem 2.9. Let a, b ∈ Z. Then (a, b) = 1 if and only if there exist integers x

and y such that ax + by = 1.

Proof. Suppose (a, b) = 1. Then by Theorem 2.8, there exist integers x, y such

that ax + by = 1. Conversely, assume there exist integers x, y such that ax + by

= 1. Let d = (a, b) so that d|a and d|b. Then d|(ax + by) by Theorem 2.1 and

Theorem 2.3, which implies that d|1. Then d = 1 or d = -1. Since d is the gcd of

a and b, then d > 0 and therefore (a,b) = 1.

Theorem 2.10. Let a, b and c ∈ Z. If a|bc and (a,b) = 1, then a|c.

Proof. Let a, b, and c be integers. Suppose a|bc and (a, b) = 1. Since a and b

are relatively prime, then there exist integers x and y such that ax + by = 1 from

Theorem 2.9. We multiply by c to have cax + cby = c. Since a|cax and a|bc, then

a|(cax + cby) by Theorem 2.1. Therefore a|c.

Theorem 2.11. Let a, b be integers. Then ( a
(a,b)

, b
(a,b)

) = 1.

9

10

Academic Festival, Event 31 [2018]

https://digitalcommons.sacredheart.edu/acadfest/2018/all/31



Proof. Let (a, b) = d. Then there exist integers x and y such that ax + by = d

by Theorem 2.8. We divide by d to obtain a
d
x + b

d
y = 1. Then ( a

(a,b)
, b

(a,b)
) = 1

by Theorem 2.9.

3 A Linear Diophantine Equation

A linear Diophantine is a linear equation with integer solutions. We will define

the conditions for a linear Diophantine equation with two variables to have a

solution.

Theorem 3.1. Let a, b, and c ∈ Z with a and b not both 0. Then there exist

integers x and y that satisfy the equation ax + by = c if and only if (a, b)|c.

Proof. Suppose ax + by = c and (a,b) = d. Then d|a and d|b which implies that

d|c by Theorem 2.3 and Theorem 2.1. Conversely, assume d|c. Then there exists

an integer k such that kd = c. Since d = (a, b), by Theorem 2.3, there exist

integers x′ and y′ such that ax′ + by′ = d. By multiplying by k, we have

kd = k(ax′ + by′) = a(kx′) + b(ky′) = c. Let x = kx′ and y = ky′. Therefore

this satisfies the equation ax + by = c.

The next theorem tells us how to generate infinitely many solutions given one

solution (x0, y0) of the linear Diophantine equation ax + by = c.
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Theorem 3.2. Let a, b, c, x0 and y0 be integers with a and b, not both 0, such

that ax0 + by0 = c. Then the integers x = x0 + k b
(a,b)

and y = y0 - k a
(a,b)

for k ∈

Z are also solutions to ax + by = c.

Proof. Let k be an integer. By substituting x = x0 + k b
(a,b)

and y = y0 - k a
(a,b)

into the left hand side of the equation ax + by = c, then

a(x0 + k b
(a,b)

) + b(y0 - k a
(a,b)

) = ax0 + k ab
(a,b)

+ by0 - k ab
(a,b)

= c which implies that

ax0 + by0 = c. Then x0 = x and y0 = y is a solution to ax + by = c.

Since we can find solutions of a particular form, it is imperative to consider if we

can find solutions that do not satisfy this form. There is no solution not of this

form because all solutions are of this form. We shall prove this in the next

theorem.

Theorem 3.3. Let a, b, c, x0 and y0 be integers with a and b not both 0 such

that ax0 + by0 = c. Then every solution is of the form x = x0 + kb
(a,b)

and y = y0

- ka
(a,b)

for k ∈ Z.

Proof. Suppose (x′, y′) is another solution such that ax′ + by′ = c. Since we are

given ax0 + by0 = c, we have a(x′ - x0) + b(y′ - y0) = 0. This implies that

a(x′- x0) = b(y0 - y′). Since d = (a, b), we have a
d
(x′ - x0) = b

d
(y0 - y′). Then

a
d
| b

d
(y0 - y′). Since (a

d
, b

d
) = 1, by Theorem 2.11, then a

d
|(y0 - y′). This means

that there exists an integer k such that ka
d

= y0 - y′. Thus y′ = y0 - ka
d
. By

substituting for y0 - y′ with ka
d
, we have b( ka

d
) = a(x′ - x0), giving us
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x′ = x0 + k b
d
. We were able to express any arbitrary x′ and y′ solution in this

form, therefore this is true for all solutions.

Example 3.1. Consider the linear Diophantine 3x + 6y = 3. Since (3 , 6) = 3

and 3|3, this equation has an integer solution (x0, y0). We start with any

solution, say (1, 0). Then all solutions are of the form x = 1 + 2k and y = - k

for some k ∈ Z. It is clear that each integer solution differs from each other by a

slope using the graph below.

4 Congruence Modulo n, Primes, and Building

Blocks

We discussed integer solutions of a linear Diophantine equation because of its

similarities with the Chinese Remainder Theorem. Since the Chinese Remainder
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Theorem is about solutions of linear congruences, we will first explore the

properties of congruence modulo n.

Definition 4.1. (Congruence mod n) Let a and b ∈ Z. We say a congruent b

modulo n, if n|(a - b). This is denoted as denoted as a ≡ b(mod n).

Theorem 4.1. Let a and n ∈ Z with n > 0, then a ≡ a (mod n).

Proof. Let a ∈ Z and n > 0. Since 0 is an integer and a - a = 0 = 0 · n, this

implies that n|(a - a). Thus by Definition 4.1, a ≡ a (mod n).

Theorem 4.2. Let a, b, and n ∈ Z with n > 0. If a ≡ b (mod n) then b ≡ a

(mod n).

Proof. Suppose a ≡ b (mod n). Then by Definition 4.1, we have n|(a - b) which

implies that there exists an integer k such that nk = a - b. We multiply the

equation by -1 to obtain n(-k) = b - a where (-k) ∈ Z. Therefore, again by

Definition 4.1, we have n|(b - a) which implies that b ≡ a(mod n).

Theorem 4.3. Let a, b, c and n ∈ Z with n > 0. If a ≡ b (mod n) and b ≡ c

(mod n), then a ≡ c(mod n).

Proof. Suppose a ≡ b (mod n) and b ≡ c (mod n). Then by Definition 4.1, it

follows that n|(a - b) and n|(b - c). By Theorem 2.1, this implies that

n|((a - b) + (b - c)) which can be reduced to n|(a - c). Therefore a ≡ c(mod n)

by Definition 4.1.
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We can also add, subtract, and multiply congruences with the same modulus

much like the divisibility properties we discussed.

Theorem 4.4. Let a, b, c, d and n ∈ Z with n > 0. If a ≡ b (mod n) and c ≡ d

(mod n), then a + c ≡ b + d (mod n).

Proof. Suppose a ≡ b (mod n) and c ≡ d (mod n). Then n|(a - b) and n|(c - d).

Then by Theorem 2.1, we have n|((a - b) + (c - d)). We rearrange the terms to

have n|((a + c) - (b + d)). Therefore, a + c ≡ b + d (mod n).

The proof of the next theorem is similiar to that of Theorem 4.4. Instead of

using Theorem 2.1, we can use Theorem 2.2 and rewrite the equation as

n|((a - c) - (b - d)). This implies that a - c ≡ b - d (mod n).

Theorem 4.5. Let a, b, c, d and n ∈ Z with n > 0. If a ≡ b (mod n) and c ≡ d

(mod n), then a - c ≡ b - d (mod n).

Theorem 4.6. Let a, b, c, d and n ∈ Z with n > 0. If a ≡ b (mod n) and c ≡ d

(mod n), then ac ≡ bd (mod n).

Proof. Suppose a ≡ b (mod n) and c ≡ d (mod n). By the definition of

congruence modulo n, this implies that n|(a - b) and n|(c - d). By Theorem 2.3,

we have n|(c(a - b)) and n|(b(c - d)). Then by Theorem 2.1,

n|((a - b)(c) + (b)(c - d)) which can be reduced to n|(ac - bd). This implies that

ac ≡ bd (mod n).
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Theorem 4.7. Given any integer a and any natural number n, there exists a

unique integer t in the set {0 , 1, 2, ..., n - 1} such that a ≡ t (mod n).

Proof. Given any integer a and natural number n, by the Division Algorithm,

there exist unique integers q and t such that a = nq + t, where 0 ≤ t ≤ n - 1.

By rearranging the equation, we obtain a - t = nq. Since n|(a - t), we have

a ≡ t (mod n) by the definition of congruence.

We introduce the definition of a prime number because the Chinese Remainder

Theorem requires a system of linear congruences with pairwise relatively prime

moduli.

Definition 4.2. A natural number p greater than 1 is prime if p is not a product

of natural numbers less than p.

Definition 4.3. A natural number n is composite if n is a product of natural

numbers less than n.

Theorem 4.8. Let n ∈ N. Then there exists a prime p such that p|n.

Proof. Induction basis: Let n = 2, then there exists a prime p that divides 2,

namely 2. Induction step: Suppose there exist a prime p such that p|n for some

natural number n. We shall prove there exists a prime q such that q|(n + 1). If

n + 1 is prime, then q = n + 1. If n + 1 is composite, then we will write

n + 1 = ab, where 1 < a, b < n + 1. Since a is less than n + 1, then there
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exists a prime p1 such that p1|a. By Theorem 2.4, then p1|(n + 1). We let p1 = q

such that q|(n + 1).

Theorem 4.9. (Euclid’s Lemma) Let p be a prime number. If p|a1a2, then p|a1

or p|a2.

Proof. Let p be a prime number. Suppose p|a1a2. If p|a1, then we are done. If

p6 |a1, then (a1, p) = 1. By Theorem 2.10, then p|a2.

Theorem 4.10. (Generalized) Let p be a prime number and n be a natural

number. If p|a1...an for integer n, then p|ai for some i, 1 ≤ i ≤ n.

Proof. Suppose p is a prime number and n is a natural number. Induction basis:

Let n = 2 and p|a1a2, then by Theorem 4.9, we have p|a1 or p|a2. Induction step:

Suppose p|a1...an, then p|ai for some i, 1 ≤ i ≤ n. Then we shall prove if

p|a1...an+1, then p|aj for some j, 1 ≤ j ≤ n + 1. Since p|a1...anan+1, by Theorem

4.9 we have p|a1....an or p|an+1. If p|an+1, then aj = an+1. If p|a1...an, then p|ai

for some i, 1 ≤ i ≤ n by the induction step. Thus this result holds for n + 1.

The next few theorems connect solutions of a linear congruence to solutions of its

linear Diophantine equation.

Theorem 4.11. Let a, b, and n be integers with n > 0. The congruence ax ≡ b

(mod n) has a solution if and only if there exist integers x and y such that ax +

ny = b.

16
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Proof. Assume ax ≡ b (mod n) has a solution, say x0. By definition of

congruence modulo n and Theorem 2.2, n|(ax0 - b) and n| -(ax0 - b). Then there

exists an integer y0 such that ny0 = b - ax0. By rearranging, we have

ax0 + ny0 = b. Conversely, assume there exist integers x0 and y0 such that

ax0 + ny0 = b. We rearrange the equation to obtain ax0 - b = n(-y0). Since

n|(ax0 - b), then ax0 ≡ b(mod n). Therefore x = x0 is a solution.

Theorem 4.12. Let a, b, and n be integers with n > 0. The equation ax ≡ b

(mod n) has a solution if and only if (a, n)| b.

Proof. The congruence ax ≡ b (mod n) has a solution if and only if ax + ny = b

has a solution by Theorem 4.11. The equation ax + ny = b has a solution if and

only if (a, n)|b by Theorem 2.8. Thus ax ≡ b (mod n) has a solution if and only

if (a, n)|b.

Theorem 4.13. Let a, b, and n be integers with n > 0. Let x0 be a solution of

ax ≡ b (mod n). Then all solutions for ax ≡ b (mod n) are of the form x0 +

(m n
(a,n)

) (mod n), m = 0, 1, 2, .... (a, n) - 1.

Proof. Assume x′ is any solution to ax ≡ b (mod n). Then we have

ax′ ≡ b (mod n) and ax0 ≡ b (mod n). Then by setting the equations together,

we obtain ax′ ≡ ax0 (mod n). By definition of congruence modulo n, then

n|(ax′ - ax0). Let d = (a, n) so that n
d
|a
d
(x′ - x0). Since (a

d
, n

d
) = 1, then

n
d
|(x′ - x0) by Theorem 2.11. Assume x′ > x0 so that x′ - x0 > 0. By the
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definition of divisibility, there exists a positive integer k such that kn
d

= x′ - x0.

We rewrite the equation so that x′ ≡ x0 + kn
d

(mod n). Let’s assume k ≥ d.

Then by the Division Algorithm, there exist integers q and r such that k =

q · d + r, where 0 ≤ r ≤ d - 1. Then k · n
d
≡ q · d · n

d
+ r · n

d
≡ rn

d
, where

0 ≤ r ≤ d - 1. This implies that x′ ≡ x0 + mn
d
(mod n) for some integer

m, 0 ≤ m ≤ d - 1. By direct substitution we can verify that

x0 + (m n
(a,n)

) (mod n), m = 0, 1, 2, ...., (a, n) - 1 are solutions to

ax ≡ b (mod n). Therefore all solutions for ax ≡ b (mod n) are of the form

x0 + (m n
(a,n)

) (mod n), m = 0, 1, 2, ...., (a, n) - 1.

5 The Chinese Remainder Theorem

The goal of this section is to prove the Chinese Remainder Theorem and

illustrate it with an example.

Theorem 5.1. Let a, b, m and n be integers with m > 0 and n > 0. Then the

system x ≡ a (mod n), x ≡ b (mod m) has a solution if and only if (n, m)|(a - b).

Proof. Let a, b, m and n be integers with m > 0 and n > 0 and suppose there is

a solution to the system x ≡ a (mod n) and x ≡ b (mod m). We know n|(x - a)

and m|(x - b). Let d = (n, m). Since d|n and d|m, then by Theorem 2.4, we have

d|(x - a) and d|(x - b). By Theorem 2.2, then d|((x - b) - (x - a)) which is

reduced to d|(a - b). Conversely, suppose (n, m)|(a - b). By Theorem 4.12, there
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exists integer x0 such that mx0 ≡ (a - b)(mod n). By rewriting the equation, we

obtain mx0 + b ≡ a (mod n). It is also clear that mx0 + b ≡ b (mod m), thus

x = mx0 + b is a solution to the system.

Theorem 5.2. Let a, b, m and n be integers with m > 0, n > 0 and (n, m) =

1. Then the system x ≡ a (mod n), x ≡ b (mod m) has a unique solution modulo

mn.

Proof. Since (n, m) = 1 and (n , m)|(a - b), by Theorem 5.1, the system x ≡

a (mod n) and x ≡ b (mod m) has a solution say x0. Let x′ ≡ a (mod n) and

x′ ≡ b (mod m) be another solution to the system. Then we obtain x0 - x′ ≡ 0

(mod n) and x0 - x′ ≡ 0 (mod m). Since m and n both divide x0 - x′ and

(m, n) = 1, we have mn|(x0 - x′) by Theorem 2.10. Therefore x0 ≡ x′ (mod mn)

is the unique solution.

Lemma 5.3. Suppose (n1, n2, ..., nk) are pairwise relatively prime, that is where

(ni, nj) = 1 for all 1 ≤ i ≤ k. Then (n1n2...nk−1, nk) = 1.

Proof. Suppose (n1n2....nk−1, nk) = d. If d > 1, then there exists a prime p such

that p|d. Then p|nk and p|n1....nk−1. By Theorem 4.9 , we have p|nj for some

j, 1 ≤ j ≤ k - 1. This implies that (ni, nk) ≥ p > 1 which is a contradiction

since ni and nk are relatively prime. Therefore (n1...nk−1, nk) = 1.

Theorem 5.4. The Chinese Remainder Theorem. Suppose n1, n2 .... nL are

positive integers that are pairwise relatively prime, that is where (ni, nj) = 1 for i
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6= j, 1 ≤ i, j ≤ L. Then the system of L congruences x ≡ a1 (mod n1), x ≡ a2

(mod n2), ...., x ≡ aL (mod nL) has a unique solution modulo the product

n1n2n3....nL.

Proof. Suppose n1, n2, ...., nL are positive integers that are pairwise relatively

prime. We shall prove by induction. Induction basis: Let L = 2. Since

(n1, n2) = 1, the system x ≡ a1 (mod n1) and x ≡ a2 (mod n2) has a unique

solution modulo the product n1n2 by Theorem 5.2. Induction step: Suppose the

system of L - 1 congruences x ≡ a1 (mod n1), x ≡ a2 (mod n2), ..., x ≡ aL−1

(mod nL−1) has a unique solution modulo the product n1....nL−1 say x0. Then we

have x ≡ x0 (mod n1n2....nL−1). We shall prove the result is true for L

congruences x ≡ a1 (mod n1), x ≡ a2 (mod n2), ..., x ≡ aL−1 (mod nL−1),

x ≡ aL (mod nL), where (ni, nj) = 1 for all i, j such that 1 ≤ i, i ≤ L. Since

n1, n2,..., nL−1, nL are pairwise relatively prime, it follows that the product

n1n2...nL−1 is relatively prime to nL by Lemma 5.3. By applying Theorem 5.2 to

the pairs of congruences x ≡ x0 (mod n1n2....nL−1) and x ≡ aL (mod nL), it

follows that this system has a unique solution modulo n1n2....nL−1nL, say x′.

Then x′ is the unique solution modulo the product n1n2...nL to the system:

x ≡ a1(mod n1), x ≡ a2 (mod n2), ..., x ≡ aL (mod nL).

Let’s illustrate the Chinese Remainder Theorem with an example.

Example 5.1. Suppose it is Easter morning and the Easter Bunny has left
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behind eggs. By noon, all eggs are brought together by Sally, Billy, and Ann.

Sally notices that all eggs can be sorted into groups of 13 with a remainder of 5.

Billy observes that all eggs can be divided into groups of 12 with a remainder of

7. Then Ann sees that all eggs can be evenly distributed into groups of 11 with no

remainder. What is the least amount of eggs? We see that 13, 12, and 11 are

pairwise relatively prime so by the Chinese Remainder Theorem, the system x ≡

5 (mod 13), x ≡ 7 (mod 12) and x ≡ 0 (mod 11) has a solution modulo the

product of (13)(12)(11), or 1716.

We know x ≡ 5 (mod 13) implies that 13|(x - 5). Using the definition of

divisibility, there exists an integer k such that 13k = x - 5, or if we rewrite it, x =

13k + 5. Now we can replace x so that 13k + 5 ≡ 7 (mod 12). We reduce to have

k ≡ 2 (mod 12) or k = 12m + 2. We substitute for k in the original equation x =

13k + 5 to obtain x = 13(12m + 2) + 5 which is reduced to x = 156m + 31. We

substitute this equation into the last congruence to have 156m + 31 ≡ 0 (mod 11)

which is reduced to m ≡ 1 (mod 11). This implies that m = 1 + 11j for some

integer j. We substitute m into x = 156m + 31 to obtain x = 156(1 + 11j) + 31

or x = 1716j + 187.

Any solution of the form x = 1716j + 187, is a solution to the system of

congruences. However the least solution is 187 (mod 1716). Therefore, Sally,

Billy and Ann must have at least 187 eggs!
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6 Applications and Further Research

For applications of the Chinese Remainder Theorem, we can simultaneously

compute unique solutions to multiple systems of pairwise relatively prime

congruences with pairwise relatively moduli. Any parallel process that use

systems of linear congruences where all moduli are pairwise relatively prime can

map data to each unique solution without data interception.
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