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ABSTRACT 

It is suggested that exercisers engage in a process of teleoanticipation and create an exercise 

template based upon previous experience with the exercise task which guides their perceptions of 

the amount of effort required for task completion. The present study examined how altering 

workload intensity during a positive-pressure treadmill task may impact ratings of perceived 

exertion (RPE). In a counter-balanced design, 15 collegiate cross country runners (7 males, 8 

females) performed two 25-min runs at a constant velocity while bodyweight (BW) was either 

increased from 60% to 100% (INC) or decreased from 100% to 60% (DEC) in 5 min increments. 

Oxygen consumption (VO2), heart rate (HR), and respiratory exchange ratio (RER) were 

collected. RPE was recorded at the end of each stage, and energy expenditure (EE) was 

calculated with VO2 and RER data. There were no significant differences between direction of 

loading conditions for VO2, EE, HR, and RER (p > 0.05). Between-trial differences in RPE at 

100%, 90%, 80% BW were statistically significant (p < 0.001) with higher RPEs observed 

during the INC trial. Differences in RPE observed between conditions cannot be explained by 

physiological mechanisms. These findings suggest that RPE is a multifaceted construct which 

can be impacted by subjectively based anticipatory factors such as exercise intensity. 

 

Key Words: aerobic fitness, psychology, performance 
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INTRODUCTION 

Regulation of exercise intensity, both in practice and competition, is integral to reach peak 

performance within exercise and sport. Accordingly, concerted effort has been placed on 

investigating factors that influence exercise intensity selection; one factor that appears to be 

directly related to exercise intensity is effort perception (25). The most commonly used measure 

of effort perception is Borg’s Rating of Perceived Exertion (RPE) scale (11). This scale is a 

valid, subjective measure of effort, stress, or discomfort experienced while engaged in physical 

activity (4, 5, 11). Previous research suggests that an exerciser’s RPE is linearly related to 

exercise intensity (17) and is directly associated with various physiological variables (e.g., heart 

rate, ventilation, and oxygen consumption). 

 

While the relationship between RPE and such physiological variables is well supported, research 

has shown that RPE can be impacted by psychological, sociological, and situational variables 

(26). In support, the relationship between physiological factors and RPE is not always direct, and 

RPE can vary even when metabolic demand is held constant (12, 21, 22, 28). Such findings 

provide strong evidence that RPE is highly impacted by non-physiological factors. Thus, current 

conceptualizations of RPE suggest that it is guided by a number of factors including past 

expectations, current physiological demands (e.g., effort, strain, pain), and time to completion 

(1). The present study was designed to potentially provide evidence for non-physiological 

influences on RPE, and if such evidence exists, to provide practitioners strategies to manipulate 

exercise prescriptions to maximize time at higher exercise intensities within a fixed-duration 

workout. 
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Recent research has emphasized the relationship between RPE and duration of exercise or time 

to completion (20). In fact, Noakes (2011) suggested that RPE be explained primarily as a 

measure of relative exercise duration (20). It has been shown that RPE demonstrates a scalar 

linear relationship with duration of exercise (6, 8, 19). This relationship has been consistently 

demonstrated across a wide variety of modalities, intensities, environments, and lengths of 

exercise (29). The fact that RPE increases in a scalar linear manner suggests that an anticipated 

end point is taken into consideration when setting RPE at the initiation of exercise (8). Research 

has suggested that a process of teleoanticipation, which refers to the ability to anticipate the 

necessary requirements for the successful completion of a task (31) occurs when making 

determinations of RPE.  

 

In order to determine the intensity required to complete a task, Patterson and Marino (2004) have 

suggested that exercisers often create an “exertion template” (also referred to as template RPE) 

(23). The theoretical template is guided by the duration of the exercise as well as previous 

experience with similar exercise trials (8, 13). During exercise, physiological feedback and 

external performance cues are compared to the template RPE and the remaining task duration to 

produce a “conscious” RPE. For a typical exercise bout, template RPE is set in such a way that 

“conscious” RPE increases linearly at a constant rate throughout the task so that maximal RPE is 

reached just prior to the end of the task (30). A large number of the studies that have examined 

the influence of exercise duration on RPE have focused on a pattern of exercise in which the 

highest intensity stimuli are experienced in the latter portion of the task. However, at present 
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there is limited research on the impact of varied intensity patterns (i.e., low to high versus high to 

low) on RPE (14).  

 

A recent study by Kilpatrick and colleagues (2012) explored this relationship by investigating 

the impact of varying intensity patterns on RPE during an aerobic task (14). Specifically, the 

impact of an easy finish (increased intensity at beginning and gradually decreasing) or hard 

finish (low intensity at beginning and gradually inclining) on RPE was examined. The findings 

indicate that during the most intense portions of the exercise, RPEs were lower in the easy finish 

condition compared to the hard finish condition even though the overall workload (WL) was the 

same in both conditions. The authors contend that experiencing the highest intensity stimuli early 

within an exercise task, when the participant is “fresh”, allows for lower exertion ratings. These 

results provide evidence that the timing of exposure to high intensity stimuli during an exercise 

task can affect RPE.  

 

As noted, empirical support on the impact of the specific timing of exercise intensities on RPE 

during exercise is scarce. Thus, the present study sought to extend upon the research of 

Kilpatrick et al. (2012) by applying the use of a positive-pressure treadmill within an exercise 

task (14). Within recent years, research interest in lower body positive-pressure treadmills for 

rehabilitative purposes has increased dramatically (24). Positive-pressure treadmills have the 

capacity to unload variable proportions of bodyweight (BW) with less interference to gait 

patterns than harness-based unloading techniques (10, 24). The strategy of the present study was 

to examine the effect of varying intensity patterns on RPE by manipulating the direction of BW 

unloading. A previous investigation in our laboratory (unpublished work) suggests that RPE 
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determinations on positive-pressure treadmills differ for equivalent WL depending on the 

direction of unloading. Consequently, the primary hypothesis of the present study was that RPE 

would be affected by the direction of unloading (with higher RPEs observed as WL was 

progressively increasing as opposed to decreasing). Furthermore, it was hypothesized that these 

differences would be explained psychologically as opposed to via alterations in metabolic 

demand. The information gained from such an investigation could allow athletes to complete 

more metabolically demanding tasks with less perception of the physical exhaustion that 

typically accompany it. 

 

METHODS 

Experimental Approach to the Problem 

The current study implemented a repeated measures crossover experimental design. The sole 

independent variable for between-trial comparisons was the direction of unloading. The 

unloading either progressed incrementally from a low-to-high 60% BW condition up to 100% 

BW (INC), or progressed in a high-to-low 100% BW to 60% BW (DEC) fashion. Although 

subjects were not informed of study’s hypotheses, they were informed of the condition prior to 

exercise; thus, they had time to construct a template for anticipated exertion. The primary 

dependent variables consisted of RPE and running economy (RE). A counterbalance design was 

applied in order to minimize the potential for an order effect. After completing the initial 

condition, subjects were then exposed to the remaining condition on the following day.  
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Subjects 

Sixteen male (n = 8) and female (n = 8) subjects were recruited from a collegiate cross-country 

team; participant number required to achieve an acceptable degree of predicted power (i.e., ≥ 

0.8) was determined a priori from a previous unpublished investigation. Both male and female 

subjects were recruited as there is no effect of gender observed with RPE scale usage (4). Data 

collection occurred during the competition season (3 weeks prior to intended peak race 

performance), and the mean self-reported running mileage was 78.9 ± 25.7 km per wk. All 

subjects were provided informed consent and all procedures were approved by the primary 

author’s University’s Institutional Review Board. Subject characteristics can be seen in Table 1. 

**** Table 1 near here **** 

 

Measures 

Subjects’ RPE was assessed via Borg’s (1998) RPES while engaged in a treadmill task (2). The 

scale includes a 15-point ordinal ranking which ranges from 6 (No exertion at all) to 20 

(Maximal exertion). The RPES is a reliable and valid scale, which is commonly used to assess 

subjective perceptions of effort or exercise intensity (5), and has been demonstrated to be 

unaffected by such demographic variables as gender, age, or physical activity level (11).   

 

The TrueOne® 2400 (Sandy, UT) is a portable metabolic measurement system and is commonly 

used to administer cardiopulmonary stress testing, as well as to assess O2 consumption during 

various aerobically oriented tasks. Within the current study, the TrueOne® system was used to 

collect oxygen consumption (VO2), respiratory exchange ratio (RER), and heart rate (HR) data 

with the additional use of a Polar Wearlink® Heart Rate Transmitter (Kempele, Finland). 
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Recently, the accuracy of using oxygen consumption (VO2 expressed relatively as ml/kg/min) as  

the sole determinant of RE has been called into question (27); consequently energy expenditure 

(EE) was also calculated for RE analysis using the RER (16). Our laboratory’s mean coefficients 

of variation for running VO2 and EE measurements are 0.67% and 1.62%, respectively, which 

compare favorably to other laboratories (3). 

 

A MI/F32 model AlterG® anti-gravity lower body positive (Fremont, CA) pressure system was 

used. The AlterG® provides either a lifting or lowering force by enclosing an individual within a 

pressurized bag. The AlterG® is traditionally used by individuals during recovery and 

rehabilitation from injury as it minimizes the degree of stress on the individual’s body. Within 

the current study, it was used to either progressively increase or decrease subjects’ BW load 

during the treadmill task. It also provided a unique and less familiar style of exercise intensity 

alteration, as opposed to simply increasing speed or grade. 

 

Procedure 

Upon the initial visit to the laboratory and following a 10 min self-paced warm-up, subjects 

performed a continuous, graded exercise test to volitional exhaustion (18) on the AlterG® 

treadmill to determine VO2 peak.  

 

Following a minimum of 48 hr post-VO2 peak assessment, subjects returned to the laboratory for 

two consecutive days of experimental testing. For both testing days subjects ran at a pace 

corresponding to 70% VO2 peak for five continuous segments of unloading (60% BW, 70% BW, 

80% BW, 90% BW, 100% BW/no unload). Each of the five unloading segments was 5 min in 
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duration, the last two of which were used for RE analysis (i.e., continuous metabolic sampling 

averaged over the 2 min period). Given that the sample population was aerobically trained, it was 

presumed that steady state aerobic metabolism would be achieved within 3 min at the prescribed 

intensity, regardless of unloading condition. Within the last 15 sec of each stage, RPE and HR 

data were collected. Subjects were aware via informed consent document that their exertion level 

may be affected by unloading in either direction of unloading, however no indication of our 

hypothesis was provided. Subjects were informed of the loading condition immediately prior to 

the first stage of each exercise session. 

 

Subjects abstained from exercise for 48 hr prior to the first experimental trial. The following day, 

the alternative protocol was performed with identical measurements made within an hour of the 

previous days’ time. Subjects were not permitted to exercise or perform any strenuous activity 

between the two trials. Based on data from a comparable participant pool (7), it is unlikely that 

fatigue or muscular damage from the first trial would have any influence on variable (e.g., RE, 

RPE) response to the second trial performed 23.5 hr later. Subjects were required to fast for 4 

hours prior to all data collection in order to minimize any acute dietary effects on RER. General 

dietary data was not collected since a crossover design was utilized with data collection taking 

place on back-to-back days, greatly minimizing any influence that general macronutrient intake 

variance would have on results.  
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Statistical Analysis 

VO2, EE, HR, and RER were analyzed parametrically via repeated measures ANOVA, and a 

Tukey HSD test was used for post-hoc analysis. Partial eta squared values () were calculated 

for effect sizes as repeated measures were used. As RPE operates on an ordinal scale, a 

Friedman’s test with a Wilcoxon post-hoc analysis was used to compare those data.  Significance 

level was set at p < 0.05 a priori.  Data were processed using SPSS V23.0 (IBM; Armonk, NY). 

 

RESULTS 

Fifteen of the 16 subjects completed all testing procedures (7 M, 8 F) and were thus included in 

the final statistical analyses. Significant between-trial differences [Χ2 (9) = 78.94, p < 0.001] 

were present for RPE at 80%, 90%, and 100% BW conditions. These data, as well as within-trial 

differences, are presented in Figure 1. 

 

There were no significant between-trial differences [F(2, 32) = 0.86, p > 0.05,  = 0.06] for 

VO2 or for EE [F(2, 30) = 1.76, p > 0.05,  = 0.11]. Each stage of unloading showed a within-

trial difference [F(2, 20) = 125.98, p < 0.001,  = 0.90] from its preceding or following stage 

for both VO2 and EE data [F(1, 18) = 87.46, p < 0.001,  = 0.86]. There were significant 

between-trial differences [F(2, 34) = 15.77, p < 0.001,  = 0.53] in RER at the 60% BW 

condition as well as significant within-trial differences [F(2, 35) = 15.46, p < 0.001,  = 0.53] 

between 60% and 70% BW conditions in the INC trial and between 90% and 100% BW 

conditions in the DEC trial.  There were significant between-trial differences [F(2, 32) = 19.36, p 

< 0.001,  = 0.58] in HR at the 60% and 100% BW conditions. While there were significant 
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within-trial differences [F(2, 23) = 113.3, p < 0.001,  = 0.89] in HR for both conditions, none 

occurred in BW conditions within 10% of the other and are therefore not reported. All 

physiological data can be seen in Table 2; 95% confidence intervals for between-trial analyses 

can be seen in Table 3. 

 

**** Table 2 near here **** 

**** Table 3 near here **** 

**** Figure 1 near here **** 

 

DISCUSSION 

The purpose of the present study was to examine the effect of varying intensity patterns on RPE 

by manipulating the direction of unloading. The primary aim was to determine if the direction of 

unloading during a treadmill task would impact RPE; specifically it was hypothesized that RPE 

would be significantly higher at increased WL during the INC (low-to-high) condition, as 

compared to the DEC (high-to-low) condition. RPE was significantly lower at 80-100% BW 

when starting with a greater metabolic challenge as opposed to arriving there after lower 

workloads, supporting the hypothesis that direction of unloading affects RPE without an 

apparent physiological explanation. 

 

Our findings are supportive of previous research which suggests that RPE is a multifaceted 

construct that is influenced by both physiological and non-physiological factors (22). 

Additionally, they extend upon recent investigations into varied intensity patterns on RPE (14), 

as subjects in both conditions were under the same metabolic demand as indicated by VO2 and 
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EE although their RPE differed. These findings indicate that varying patterns of exercise 

intensity can influence perceptions of effort. Moreover, the use of a positive-pressure treadmill to 

manipulate WL was supported as a method of influencing RPE.   

 

Specifically, our study found that RPE was lower when exercisers experienced a WL that 

progressively decreased as opposed to progressively increased. This supports the work of 

Kilpatrick et al. (14); within their study, Kilpatrick and colleagues found that high intensity 

stimuli was perceived as less exertive in a high to low condition as compared to a low to high 

condition. Similar to Kilpatrick and colleagues, within the present study the higher intensity in 

the early stages of the task was not interpreted as such by the subjects’ reported RPE, even 

though their metabolic output reflected the imposed WL intensity. These findings suggest that 

when exercise is planned such that the most intense aspects are during the initial stages, 

perceptions of exertion are lower. Thus, it may be beneficial to create exercise regimens in which 

the most intense portions are structured within the early stages. 

 

A potential explanation for the lower RPE within the DEC condition may be related to subjects’ 

template RPE. Often, exercise bouts are designed so that the most intense aspects of the exercise 

occur towards the end. In such circumstances, RPE follows a scalar linear relationship with task 

duration. That is, RPE increases steadily until reaching its height at the end of the exercise. 

Previous exposure to such exercise bouts could potentially cause hesitation in giving maximal 

ratings at the beginning of exercise when the majority of task duration has not been completed, 

and metabolic reserves are plentiful (8). In other words, prior experience with exercise in general 

and information about the duration of the specific task may be the primary factors in guiding 
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RPE, not information about the intensity. This is in line with the work of Noakes (20) which 

intimates the importance of relative task duration on RPE determinations. Specifically, 

knowledge regarding the duration of the task allows the exerciser to anticipate the probable 

metabolic demands and create an effort-based strategy; doing so can provide the exerciser with a 

pacing template to utilize in order to maximize performance. This explanation fits with the 

reported lower RPE in the beginning stages of the DEC condition as compared to similar 

intensities in the INC condition. These results are consistent with previous research which 

suggests that one’s RPE strategy is impacted by previous experience and the degree of certainty 

of the task’s endpoint, as well as its duration (8). 

 

There are two potential explanations for the significant between-trial differences in HR at 60% 

and 100% BW conditions, as well as in RER at 60% BW. It is possible that 4 min and 45 sec was 

an inadequate duration for subjects to reach a steady-state HR during the first stage of either trial. 

However, given the high VO2 peaks of our subjects, it is unlikely they would not have reached 

steady-state conditions at 70% VO2 peak within this time frame, regardless of loading condition. 

The differences in RER also suggest that steady-state conditions were reached, with lower 

within-trial RERs suggestive of greater reliance on fat metabolism observed during the first 

stages of both trials. Alternatively, we propose that the comparatively higher HRs observed in 

the last stage of exercise and higher RER in the last stage of the DEC trial at 60% BW is 

reflective of increased sympathetic drive due to subject anticipation of exercise cessation. This 

contention is indirectly supported by the work of Eston and colleagues (9) which used an 

exercise intensity similar to that used in the present study and reported higher HRs during 
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exercise when subjects knew the duration of the task versus an unknown duration. Interestingly, 

they too observed an elevated HR with no significant change in VO2. 

 

Study Limitations 

The use of both genders, while unimportant to RPE results (4), creates a larger variance in VO2 

and EE data, consequently making significant differences more difficult to find. However, given 

the moderately low effect sizes reported by partial eta squared, it is unlikely a type II error 

occurred in regard to these variables. Additionally, the use of a participant pool with such a high 

aerobic capacity and weekly training mileage may reduce the generalizability of our results.  

 

The theoretical nature of template RPE also poses a limitation for the present study. As it cannot 

be directly measured, inferences must be made in explaining the mechanisms behind our 

findings. However, there is a line of research which could provide a concretized measurement for 

template RPE. Recent research (14, 15) has investigated the utility of a measure of predictive 

RPE. While the construct of predictive RPE has promising implications, investigations into the 

construct have been limited. Further, while the predictive RPE appears to assess a similar 

construct to that of template RPE, it is unclear whether predictive RPE could be a valid indirect 

assessment of template RPE. Future research should examine the utility of predictive RPE as a 

measure of template RPE. 

 

Also, future investigations should explore the specific mechanisms that underlie the differing 

RPEs associated with varying intensity patterns found within this study. We contend that 

predictive RPE may yield some insight. Accordingly, continued research examining predictive 
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RPE and momentary RPE is due. Future studies should also consider investigating how varying 

intensity patterns may impact exercise performance within an applied setting and within a 

sample of subjects with a lower aerobic capacity. 

 

In conclusion, this study provides additional evidence for the existence of template RPE, an 

emerging concept in exercise psychology.  The results suggest that RPE can be impacted by non-

physiological factors, and that varying the intensity of an exercise can alter an exerciser’s 

template RPE. These results not only expand the current conceptualization of RPE but also 

provide an opportunity for coaches, trainers, and athletes themselves to manipulate RPE to 

potentially maximize training effects.  

 

PRACTICAL APPLICATIONS 

Coaches, athletes, and exercisers can all benefit from the knowledge that RPE can be influenced 

by simple changes to the structure of workload during physical exertion. By altering the timing 

of intensity stimuli during an exercise task, athletes may be able to work at higher intensities 

without actually perceiving the increased WL or effort that the body is producing. Such 

manipulations may allow athletes to complete more physically challenging tasks without 

experiencing the mental fatigue and physical exhaustion that typically accompany it. This same 

rationale may aid a non-elite exerciser to complete high intensity workloads by scheduling the 

most challenging aspects of a workout near the commencement of the exercise. This could help 

increase exercise adherence, especially for individuals who are resistant to highly strenuous 

tasks. 
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FIGURE LEGENDS 

FIGURE 1. Participant mean ratings of perceived exertion (RPE) ± SD. Note. INC = low-to-high 
progression trial; DEC = high-to-low progression trial. *Significant within-trial difference 
compared to 10% lower condition (p < 0.001). ^ Significant between-trial difference (p < 0.001). 
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Table 1. Mean ± SD of Subject Characteristics*  
 

 Male (N=7)  Female (N=8) 

 Mean SD  Mean SD 

Age (years) 20 1  20 1 

Height (cm)  183.7 5.6  167.8 3.7 

Body Mass (kg) 68.2 4.8  54.9 3.7 

Body Fat (%) 7.6 1.9  20.6 3.5 

VO2 peak (ml/kg/min) 70.2 4.0  52.8 3.6 

*subject characteristics provided for subjects who completed all testing procedures;  
VO2 = oxygen consumption 
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Table 2. Mean ± SD for Physiological Variables (N = 15) 

 60% BW 70% BW 80% BW 90% BW 100% BW 

 Mean SD Mean SD Mean SD Mean SD Mean SD 

    Oxygen Consumption (ml/kg/min)    

INC 29.0 5.4 31.5* 5.5 34.0* 5.6 36.6* 6.1 39.6* 6.5 

DEC 30.1 5.3 31.7* 5.4 34.2* 5.3 36.9* 5.5 39.1* 5.5 

    Energy Expenditure (kcals/min)    

INC 8.6 2.8 9.3* 2.9 10.3* 2.8 11.1* 3.1 12.0* 3.3 

DEC 9.1 2.5 9.6* 2.7 10.4* 2.8 11.2* 2.9 11.7* 3.0 

    Respiratory Exchange Ratio    

INC 0.83^ 0.05 0.86* 0.03 0.86 0.04 0.87 0.04 0.87 0.04 

DEC 0.87 0.04 0.88 0.00 0.88 0.04 0.88 0.04 0.85* 0.05 

    Heart Rate (beats/min)    

INC 128.1^^ 14.0 135.7 13.1 143.3 11.4 152.9 12.2 161.3^^ 10.4 

DEC 136.3 13.0 139.5 12.2 144.1 10.5 147.5 10.2 151.2 13.7 

INC = low-to-high progression trial; DEC = high-to-low progression trial; BW = bodyweight 
* Significant within-trial difference compared to 10% lower condition (p < 0.001) 
^ Significantly different compared to DEC condition (p < 0.001) 
^^ Significantly different compared to DEC condition (p < 0.05) 
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Table 3. Between-trial 95% Confidence Intervals for Physiological Variables (N = 15) 

 60% BW 70% BW 80% BW 90% BW 100% BW 

 Oxygen Consumption (ml/kg/min) 

INC [26.4, 32.4] [28.5, 34.5] [30.9, 37.1] [33.3, 43.2] [36.0, 43.2] 

DEC [27.2, 33.0] [28.8, 34.7] [31.2, 37.1] [33.9, 40.0] [36.0, 42.1] 

 Energy Expenditure (kcals/min) 

INC [7.4, 10.2] [8.1, 10.9] [8.7, 11.8] [9.4, 12.8] [10.2, 13.9] 

DEC [7.7, 10.5] [8.1, 11.1] [8.8, 11.9] [9.6, 12.8] [10.1, 13.4] 

 Respiratory Exchange Ratio 

INC [0.80, 0.85] [0.84, 0.88] [0.85, 0.89] [0.85, 0.89] [0.85, 0.89] 

DEC [0.85, 0.89] [0.86, 0.90] [0.86, 0.90] [0.86, 0.90] [0.82, 0.87] 

 Heart Rate (beats/min) 

INC [120.4, 135.9] [128.4, 142.9] [136.9, 149.6] [146.2, 159.7] [155.6, 167.1] 

DEC [129.1, 143.6] [132.8, 146.3] [138.3, 149.9] [141.8, 153.1] [143.6, 158.8] 

INC = low-to-high progression trial; DEC = high-to-low progression trial; BW = bodyweight 
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