Methods

1. To quantify meiofaunal abundances on live and dead stems of *Spartina alterniflora*, samples of live and dead stems with and without epiphytes were collected from each location and analyzed (Fig. 3).

2. Distribution of meiofauna was measured within 25-cm x 25-cm quadrats placed every two meters along 10-m transects in the low and high marsh zones. Samples of live and dead stems with and without epiphytes were collected from each location and analyzed (Fig. 3).

3. The length of each stem from which epiphytic algae was collected was measured, and the amount and type of algae present on each stem was recorded (Fig. 3).

4. Epiphyte communities were measured by collecting samples from transects in the low and high intertidal zones of four sites along the Connecticut coast, and four sites in Georgia. (ANOSIM bare vs. with algae Global R=0.516, p=0.001).

5. There was a significant difference in the presence of epiphytic algae on dead stems (ANOSIM stem type Global R=-0.061, p=0.915).

6. The presence of epiphytic algae on live stems varied from site to site, but the animal communities differed significantly among sites (ANOSIM sites Global R=0.15, p=0.001) but not on live vs. dead stems (Fig. 6). More animals were present on stems with algae than on bare stems (Fig. 7).

7. The Georgia locations had more animals overall than the Connecticut sites. Animal communities were more similar at sites in Connecticut than at sites in Georgia (Fig. 6). More animals were present on stems with algae than on bare stems (Fig. 7).

8. Sandy Point (CT). The Georgia locations had more animals overall than the Connecticut sites. Animal communities were more similar at sites in Connecticut than at sites in Georgia (Fig. 6). More animals were present on stems with algae than on bare stems (Fig. 7).

9. Distribution of meiofauna was measured within 25-cm x 25-cm quadrats placed every two meters along 10-m transects in the low and high marsh zones. Samples of live and dead stems with and without epiphytes were collected from each location and analyzed (Fig. 3).

10. Sandy Point, West Haven (Sandy Point) was the remaining Georgia site. Our results highlight the importance of even dead marsh plant tissue to the overall marsh food web.