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Abstract

Codes were invented to detect and correct transmission errors caused

by noise on a communication channel. In this paper, we will look at linear

codes as well as the dual code and the matrices that allow us to convert

between the two. For linear codes, the error correcting capabilities of a code

are determined by the weights, in particularly the minimum weight, of the

codewords. We will explore these weights and how to find their minimum

value as well as introduce the MacWilliams Theorem, which connects the

weights of a code to the weights of its dual.
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1 Introduction to Coding Theory

When information or messages are transmitted to some receiver, it is done so

through a communication channel. Ideally, at the end of this transmission, the

information obtained at the receiving end is the same information that was sent

into the channel. In reality, however, this is not always the case, since it is

likely that errors will occur during transmission. This is because our messages

are sent over a noisy channel, which simply means that some sort of distraction

of interruption happened in the channel that caused what was received to be

di↵erent than what was sent. As a result, codes were invented to detect and

correct transmission errors caused by noise on the channel.

2 Background

DEFINITION 2.1 A code C over an alphabet A is a subset of An := A⇥ ...⇥A

(n copies).

For the purpose of this paper, A will always be a finite field. In particular, we

will consider the binary field F2 := {0, 1}, where addition and multiplication are

done modulo 2.

DEFINITION 2.2 Elements of a code are called codewords, and the length of

the code is n. When A is a field, C ⇢ An is called a linear code if it is a vector
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subspace of An. The dimension k of C is defined to be the dimension of C as a

vector space over A. Together, n and k are called the parameters of C. We call

the code an [n, k] code.

Recall that a vector subspace is closed under linear operations. Thus, if x,y 2

C, then ax + by 2 C for all a, b 2 A. Also, recall that the dimension of a vector

space is, by definition, the number of vectors in a basis, or, equivalently, the

number of nonzero rows when in reduced row echelon form.

For a linear code C of length n and dimension k over F2, there are k basis

elements for C, each of which is a vector of length n.

DEFINITION 2.3 Let C be a linear [n, k] code. A generator matrix for C is a

k ⇥ n matrix such that the rows are the basis vectors for C.

For example, consider the 3⇥ 6 generator matrix

G =

2

6666664

1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1

3

7777775
. (2.1)

Since G is in reduced row echelon form, its rows are the basis vectors of some

linear code C. We see that there are 3 vectors in the basis, each of length 6,

meaning that we have a [6, 3] code with length n = 6 and dimension k = 3.

The code C is the set of all possible linear combinations of the rows of G. If
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G is a generator matrix for C, then C is exactly the set

{uG | u 2 Fk
2}, (2.2)

where u is all the possible 1⇥ k binary row message vectors and G is of the form

G = [Ik|P ]. (2.3)

In (2.3), Ik is the k ⇥ k identity matrix and P is a k ⇥ (n� k) matrix of 0’s and

1’s.

THEOREM 2.4 Let a linear code C be a vector space over F2. If dim(C) = k,

then C has 2k codewords.

Proof: Suppose dim(C) = k and let x1,x2, . . . ,xk be a basis for C. Then, C =

�1x1 + �2x2 + . . . + �kxk where �1,�2, . . . ,�k 2 F2. Since |F2| = 2, there are

exactly 2 choices for each �1,�2, . . .�k. Each choice gives a di↵erent word and so

C has exactly 2k codewords. 2

Continuing with our example, then, using the matrix in (2.1), C has 23 = 8

codewords and is the set as described in (2.2). Each codeword can therefore be

found by multiplying the generator matrix G on the left by a possible message

vector. For instance, using the message vector

u =


1 1 0

�
,
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we get that one codeword is


1 1 0

�

2

6666664

1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1

3

7777775
=


1 1 0 1 0 1

�
.

The other codewords would similarly be obtained by doing the multiplication with

the 7 other possible 1⇥3 message vectors. The code C then contains the following

codewords:

100110 010011 001101 111000 (2.4)

110101 101011 011110 000000.

Notice also that, in accordance with (2.3),

Ik =

2

6666664

1 0 0

0 1 0

0 0 1

3

7777775
and P =

2

6666664

1 1 0

0 1 1

1 0 1

3

7777775
. (2.5)

DEFINITION 2.5 If C is an [n, k] linear code over F2, its dual code C? is the

set of vectors which are orthogonal to all codewords of C:

C? = {v | u · v = 0 for all u 2 C}.

The dual code C? is an [n, n� k] code, which can be proven using the following

lemmas and the Rank-Nullity Theorem from Linear Algebra [5].
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LEMMA 2.6 C? is a linear code.

Proof: If y, y0 2 C?, then x ·y = x · y0 = 0 for all x 2 C. This implies that

x · (y+y0) = x ·y+x ·y0 = 0 for all x 2 C and that x · (�y) = �(x ·y) = �(0) = 0

for all x 2 C. Thus, C? is a linear code. 2

LEMMA 2.7 Let G be a generator matrix of the code C. The dual code C? =

Null G, or, equivalently, w 2 C? if and only if GwT = 0.

Proof: Let gi denote the rows of G for 1  i  k. Then, g1, . . . , gk are the

codewords that form a basis for C. We will show GwT = 0 if and only if gi · w

for all i.

(() Let w 2 C?. Then, u · w = 0 for all u 2 C. Since the rows of G are the

codewords of C, gi ·w = 0 for i = 1, . . . k. So, GwT = 0.

()) Assume that g1, . . . gk are the rows of G and that GwT = 0. Then, gi ·w = 0

for all i. Since the rows of G form a basis of C, if x is any codeword of C, then

x =
Pk

i=1 aigi for some scalers ai 2 F2. So,

w · x =
kX

i=1

ai(w · gi) =
kX

i=1

ai · 0 = 0.

So, w is orthogonal to every codeword in C, which implies that w 2 C?.

Thus, C? = Null G. 2
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THEOREM 2.8 If C is an [n, k] linear code over F2, then C? is an [n, n � k]

code over F2.

Proof: Suppose C is an [n, k] linear code over F2. Then, C is a subspace of Fn
2 and

the dimension of C is k. Let G be a generator matrix for C. By the Rank-Nullity

Theorem from Linear Algebra, Rank G + dim(Null G) = n. Since, by definition,

Rank G is equal to the number of nonzero rows when G is in row reduced form,

which is equal to dim C, then Rank G = k. So, k + dim(Null G) = n implies

that dim(Null G) = n� k.

By Lemma 2.6, C? is a linear code, so C? is a subspace of Fn
2 . Since C? is

the null space of G by Lemma 2.7 and dim(Null G) = n � k, then dim C? =

dim(Null G) = n� k. So, C? is an n� k dimensional subspace of Fn
2 . Thus, C

?

is an [n, n� k] code. 2

DEFINITION 2.9 A parity check matrix H for an [n, k] code is an (n� k)⇥ n

matrix which is a generator matrix of C?, given by

H = [P T | In�k]. (2.6)

THEOREM 2.10 If G is the generator matrix of C given by [Ik|P ], then H is

the generator matrix of C?, or, equivalently, the parity check matrix of C.
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Proof: Let G be the generator matrix of C given by [Ik|P ], where, as a reminder,

Ik is the k ⇥ k identity matrix and P is a k ⇥ (n � k) matrix. Assume that

H = [P T | In�k] and rank H = n� k. Then,

GHT = [Ik P ]


P

In�k

�
= IkP + PIn�k.

When in the binary case, though, P = �P as �1 = 1 and 0 = 0 in modulo 2. So,

GHT = Ik(�P ) + PIn�k = �P + P = 0.

Thus, GHT = 0 implies that the rows of H are orthogonal to the rows of G. Since

the rows of G represent the codewords of C, this indicates that the rows of H

are in C?. We also know that the dim C? = n � k by Theorem 2.8 and that

the dimension of a code equals the rank of its generator matrix. Thus, since rank

H = n� k and dim C? = n� k, H is the generator matrix for C?. 2

If we have the generator matrix of C, (2.6) allows us to quickly find the parity

check matrix of C. For example, using (2.3) and (2.5), we obtain

P T =

2

6666664

1 0 1

1 1 0

0 1 1

3

7777775
and I6�3 = I3 =

2

6666664

1 0 0

0 1 0

0 0 1

3

7777775
, (2.7)
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which by (2.6) indicates that

H =

2

6666664

1 0 1 1 0 0

1 1 0 0 1 0

0 1 1 0 0 1

3

7777775
. (2.8)

Since the parity check matrix H is the generator matrix of C?, the dual code is

the set of all linear combinations of the rows of H. We can then find the codewords

of C? by similarly multiplying all the possible 1⇥ (n� k) binary row vectors and

H. Thus, finishing our example, the dual code C? then contains the following

codewords:

101100 110010 011001 000111 (2.9)

011110 110110 101011 000000.

Additionally, the code C can also be described by its parity check matrix H.

In this scenario,

C = {x 2 Fn
2 | HxT = 0}. (2.10)

As such, the parity check matrix H allows us to check whether a received word is

in the code C. If the vector is a valid codeword, we assume that the message was

transmitted correctly. In other words, if HxT = 0, then x is a codeword of C and

we conclude it is the same codeword originally sent through the channel. On the

other hand, if HxT 6= 0, then x is not a codeword of C and so we know that an

error occurred in transmission.
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3 Weights of Linear Codes and Some Results

DEFINITION 3.1 Let x and y be codewords of length n over F2. The (Ham-

ming)distance from x to y, denoted by d(x,y), is defined to be the number of

coordinate places in which x and y di↵er. If x = x1 . . . xn and y = yi . . . yn, then

d(x,y) = d(x1, y1) + . . .+ d(xn, yn),

where xi and yi are regarded as words of length 1, and

d(xi, yi) =

⇢
1 if xi 6= yi
0 if xi = yi.

For example, using two codewords from the code C in (2.4),

d(100110, 010011) = 1 + 1 + 0 + 1 + 0 + 1 = 4.

DEFINITION 3.2 The weight of a vector x 2 Fn
2 , denoted by wt(x), is the

number of nonzero coordinates in x; i.e.,

wt(x) = d(x,0),

where 0 is the zero word.

LEMMA 3.3 If x, y 2 Fn
2 , then d(x,y) = wt(x� y).

Proof: Let x, y 2 Fn
2 . By definition, d(x,y) is the number of places where x

and y di↵er. Then, the vector x � y will have a 1 precisely in the places where
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x and y di↵er and a 0 in the places where they are the same. In other words,

d(x,y) is equal to the number of places where there is a 1 in the vector x � y.

But, the number of places with a 1 is, by definition, the weight of that vector. So,

d(x,y) = wt(x� y). 2

DEFINITION 3.4 The minimum distance of a code C, denoted by d or d(C),

is

d = d(C) = min{d(x,y) | x,y 2 C,x 6= y}.

DEFINITION 3.5 The minimum weight of a code C, denoted wt(C), is

wt(C) = min{wt(x) | x 2 C,x 6= 0}

THEOREM 3.6 If C is a linear code in Fn
2 , then the minimum distance is the

minimum weight of any nonzero codeword. In other words, d(C) = wt(C).

Proof: Let x and y be two codewords in C such that d(x,y) = d(C). Then, by

Lemma 3.3, d(C) = d(x,y) = wt(x � y) � wt(C), since x � y 2 C. Conversely,

there is a codeword z 2 C \ {0} such that wt(C) = wt(z). So, wt(C) = wt(z) =

d(z,0) � d(C), since 0 2 C. Thus, d(C) = wt(C). 2

As a result of Theorem 3.6, the minimum distance and minimum weight of a linear

code C can be used interchangeably.
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In addition to the length and dimension of a code C, the minimum distance

d, or, equivalently, the minimum weight d, is another important parameter of a

linear code as it determines the code’s error-correcting capabilities. A linear code

with minimum weight d can correct bd�1
2 c errors, where bxc denotes the greatest

integer less than or equal to x. If d is even, the code can simultaneously correct

bd�2
2 c errors and detect d

2 errors. From the formulas, it is clear that to correct a

single error d needs to be at least 3. The number of errors that a code can correct

is a measure of how good a code is. As such, determining the minimum weight

of a code, as well as learning about the weights in general, is crucial to knowing

more about a code.

One way to find the minimum weight d of a linear code C is to examine the

weights of all the nonzero codewords. Looking at the codewords of the code C as

in (2.4), for example, we determine the weights of each codeword:

wt(100110) = 3 wt(010011) = 3 wt(001101) = 3 wt(111000) = 3 (3.1)

wt(110101) = 4 wt(101011) = 4 wt(011110) = 4 wt(000000) = 0.

By examining each of the possible nonzero weights, it is clear that d = wt(C) = 3.

For the sake of completeness, we can similarly determine the minimum weight

of the dual code C?, now denoted by d?. The weights of the dual code codewords
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from (2.9) are as follows:

wt(101100) = 3 wt(110010) = 3 wt(011001) = 3 wt(000111) = 3 (3.2)

wt(011110) = 4 wt(110110) = 4 wt(101011) = 4 wt(000000) = 0.

Again, the minimum weight of the nonzero codewords in C? is 3.

Notice, interestingly enough, that the weights of all the codewords in both (3.1)

and (3.2) are split exactly in half in terms of even verses odd weights. However,

consider, briefly, the [3, 2] code C with generator matrix and parity check matrix

given by

G =

2

664
1 0 1

0 1 1

3

775 and H =


1 1 1

�
, (3.3)

The codewords of C with their respective weights are then

wt(101) = 2 wt(011) = 2 wt(110) = 2 wt(000) = 0 (3.4)

In (3.4), the minimum weight of the nonzero codewords is 2.

REMARK 3.7 The dual code of this [3, 2] code has only the codewords 000 and

111, which have weights 0 and 3, respectively.

Notice, though, that in (3.4) all of the four codewords have even weight. We have

the following result.

THEOREM 3.8 In a binary linear code, either all the codewords have even

weight, or exactly half have even weight and half have odd weight.
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To prove this theorem, we first need the following three lemmas.

LEMMA 3.9 If x, y 2 Fn
2 , then wt(x+ y) = wt(x) +wt(y)� 2wt(x\ y) where

x\y is the vector (x1y1, x2y2, . . . , xnyn), which has 1’s only in the positions where

both x and y have 1’s.

Proof: Note that wt(x)�wt(x\ y) is the number of positions i such that xi = 1

but yi = 0. Similary, wt(y) � wt(x \ y) is the number of positions i such that

yi = 1 but xi = 0. Then,

wt(x)� wt(x \ y) + wt(y)� wt(x \ y) = wt(x) + wt(y)� 2wt(x \ y)

is the number of places where x and y di↵er. By definition, the number of

places where x and y di↵er is the distance between ]bfx and y. So, d(x,y) =

wt(x)+wt(y)�2wt(x\y). But, by Lemma 3.3, d(x,y) = wt(x�y) = wt(x+y)

since �y = y in F2. So, wt(x+ y) = wt(x) + wt(y)� 2wt(x capy). 2

LEMMA 3.10 Let x, y 2 Fn
2 . If x and y both have odd weights, then x+ y has

even weight.

Proof: Let x and y have odd weight. Then wt(x) = 2i + 1 and wt(y) = 2j + 1

for some i, j 2 Z. Let k be the number of positions where both x and y have 1’s,
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or wt(x \ y) as in Lemma 3.9. Then,

wt(x+ y) = wt(x) + wt(y)� 2k

= (2i+ 1) + (2j + 1)� 2k

= 2i+ 2j � 2k + 2

= 2(i+ j � k + 1).

So, wt(x+ y) is even. 2

LEMMA 3.11 Let x, y 2 Fn
2 . If one has odd weight and the other has even

weight, then x+ y has odd weight.

Proof: Without loss of generality, let x have odd weight and y have even weight.

Then wt(x) = 2i + 1 and wt(y) = 2j for some i, j 2 Z. Let k be the number of

positions where both x and y have 1’s, or wt(x \ y) as in Lemma 3.9. Then,

wt(x+ y) = wt(x) + wt(y)� 2k

= (2i+ 1) + (2j)� 2k

= 2i+ 2j � 2k + 1

= 2(i+ j � k) + 1.

Thus, wt(x+ y) has odd weight. 2

Using the preceding lemmas, we can now prove Theorem 3.8.
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Proof: (of Theorem 3.8) We will consider the following cases.

Case 1: Assume all the codewords have even weight. Then, the proof is complete.

Case 2: Assume that not all of the codewords have even weight. Then at least

one codeword has odd weight. Let x 2 C be a codeword with odd weight.

Let n be the number of even weight codewords in C and let m be the number

of odd weight codewords in C. We want to show that n = m.

Recall that since C is linear, adding x to any other codeword results in another

codeword of C. By Lemma 3.11, then, adding x to each of the n codewords with

even weights gives n codewords with odd weights. So, the number of odd weight

codewords is at least n, ie. n  m. By Lemma 3.10, adding x to each of the m

codewords with odd weights gives m codewords with even weights. So, there are

at least as many codewords with even weight as there are codewords with odd

weights, ie. n � m.

Since n  m and n � m, it must be the case that n = m. Thus, between the

two cases, either all the codewords have even weight, or half the codewords have

even weight and half the codewords have odd weight. 2

Thus, in terms of the minimum weight, a code with all words of even weight

will always have an even minimum weight. On the other hand, if half are even

weights and half are odd weights, then the minimum weight can be either even or

odd, depending on which value is smaller.
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Alternatively, we can also determine the minimum distance, or weight, d of a

code C using the parity check matrix H.

THEOREM 3.12 Let H be the parity check matrix of a linear code C. A linear

code has minimum weight d if and only if any d � 1 columns of H are linearly

independent and there exists some d columns that are linearly dependent.

Proof: Let C be a linear code. Then, wt(C) = d(C) = d. So, there must exist

some codeword in C with weight d. Suppose that the vector u is a codeword in

C such that wt(u) = d. Since u 2 C implies that HuT = 0 and u has d nonzero

components, then there are some d columns of H that are linearly dependent.

For the other side, suppose that there are d � 1 linearly dependent columns

in H. Then, there must exist a nonzero vector v 2 C such that wt(v) = d � 1.

This, however, contradicts the fact that the minimum weight of C is d. So, any

d� 1 columns of H are linearly independent. 2

As a consequence of Theorem 3.12, we have the following special cases. For

one, the minimum weight of a code C is 1 if H has a column of all zeros. But,

now suppose that H does not have a zero column. Then, the minimum weight of

C is at least 2. By our theorem, the minimum weight is equal to 2 if H has two

columns that are linearly dependent. When working in binary, H has two linearly

dependent columns only when two columns are identical. For example, consider
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again the [3, 2] code C in (3.3) with parity check matrix

H =


1 1 1

�
.

We see that H has two identical columns and so the two columns are linearly

dependent since 1 + 1 = 0 modulo 2. So, the minimum weight d is 2, which is

what we found earlier by looking at all the weights of the nonzero codewords of

C.

As a result, if H has no columns of all zeros and all columns are distinct, the

the minimum weight of a binary code C is at least 3. This was the case for the

[6, 3] code C in (2.4) with parity check matrix

H =

2

6666664

1 0 1 1 0 0

1 1 0 0 1 0

0 1 1 0 0 1

3

7777775
.

We see by inspection that there is no zero column and no two identical columns, so

any two columns of H are linearly independent. However, columns 1, 2 and 3 sum

to 0, and thus are linearly dependent. Since any two columns of H are linearly

independent and some three columns of H are linearly dependent, d = 3, which

is again what was found using our first method for finding minimum weights.

In the above cases, only when d was equal to 3 was the code able to correct an

error. It becomes clear then that a code C can correct more errors as d increases.

19

Bolcar: Weights of Linear Codes and their Dual

Published by DigitalCommons@SHU, 2020



18

So, to be able to maximize the amount of errors C can correct, d needs to be as

large as possible with respect to n and k.

THEOREM 3.13 If C is an [n, k] code with wt(C) = d, then d  n� k + 1.

Proof: Let C be an [n, k] code with minimum weight d. Let H be a parity check

matrix of C. By definition, H is an (n � k) ⇥ n matrix of rank n � k. So, at

most n � k + 1 columns of H are linearly dependent. By Theorem 3.12, since

the minimum weight is d, there are d columns of H that are linearly dependent.

Thus, d  n� k + 1. 2

4 MacWilliams Theorem

In Section 3, our main focus was on determining the minimum weight of a code.

However, looking solely at the minimum weight reveals nothing about the weights

of the other codewords in the code. When we want to know about the other

codewords of a code, we instead look at the weight distribution of the entire code.

DEFINITION 4.1 The weight distribution of a code of length n lists the number

of codewords of each possible weight i for 0  i  n.

The most convenient way to express the weight distribution of a code is through

its weight enumerator.

20
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DEFINITION 4.2 The weight enumerator of C is defined to be

WC(x, y) =
X

u2C

xn�wt(u)ywt(u) =
nX

i=0

Aix
n�iyi, (4.1)

where Ai denotes the number of codewords of weight i in C.

DEFINITION 4.3 The weight enumerator of C? is defined to be

WC?(x, y) =
X

u2C?

xn�wt(u)ywt(u) =
nX

i=0

A?
i x

n�iyi, (4.2)

where A?
i denotes the number of codewords of weight i in C?.

In both Definition 4.2 and 4.3, x and y are indeterminates while WC(x, y) and

WC?(x, y) are homogeneous polynomials of degree n in x and y. The coe�cients

of the terms of the polynomials determine the number of words of each weight

from zero to n.

Using the weights found for the code C and its dual code in (3.4) and (3.7),

respectively, we can find their weight enumerators. The code C has the weight

distribution A1 = A3 = 0, A0 = 1, and A2 = 3 so the weight enumerator of C is

WC(x, y) = 1x3y0 + 0x2y1 + 3x1y2 + 0x0y3 (4.3)

= x3 + 3xy2. (4.4)

The weight enumerator indicates that the code C has one word of weight 0 and

three words of weight 2, which matches the weight distribution of the code.
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Similarly, the dual code C? has the weight distribution A?
1 = A?

2 = 0, A?
0 = 1,

and A?
3 = 1. The weight enumerator of C? is then

WC?(x, y) = 1x3y0 + 0x2y1 + 0x1y2 + 1x0y3 (4.5)

= x3 + y3. (4.6)

Again, as the weight distribution also indicated, the weight enumerator reveals

that there is one codeword of weight 0 and one codeword of weight 3.

Florence Jessie MacWilliams, however, discovered that the distribution of a

code C uniquely determines the distribution of its dual code. In fact, she found

that WC?(x, y) is given by a linear transformation of WC(x, y). Her result has

since become known as the MacWilliams Theorem for binary linear codes.

THEOREM 4.4 (MacWilliams Theorem) If C is an [n,k] binary linear code

with dual code C? then

WC?(x, y) =
1

|C|WC(x+ y, x� y), (4.7)

where |C| = 2k is the number of codewords in C. Equivalently,

nX

j=0

A?
j x

n�jyj =
1

|C|

nX

i=0

Ai(x+ y)n�i(x� y)i, (4.8)

or

X

v2C?

xn�wt(v)ywt(v) =
1

|C|
X

u2C

(x+ y)n�wt(u)(x� y)wt(u). (4.9)
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The proof of Theorem 4.4 is attributed to MacWilliams [1] and relies on the

following lemma.

LEMMA 4.5 Let f : Fn
2 ! A be any mapping from Fn

2 into a vector space A

over the complex numbers. Define the Hadamard transform f̂ of f by

f̂(u) =
X

v2Fn
2

(�1)u·vf(v), u 2 Fn
2 . (4.10)

Then for a [n, k] binary linear code C,

X

v2C?

f(v) =
1

|C|
X

u2C

f̂(u). (4.11)

Proof: Let C be a binary linear code. Then,

X

u2C

f̂(u) =
X

u2C

X

v2Fn
2

(�1)u·vf(v)

=
X

v2Fn
2

f(v)
X

u2C

(�1)u·v

after substituting in the definition of f̂(u) and reorganizing the terms.

Now, if v 2 C?. then u · v is always zero by definition of the dual code, and

the inner sum, or
P

u2C(�1)u·v is |C|. This is because (�1)0 = 1 and so, when

summed across every codeword of C, the result is the number of codewords in

total, or |C|. But if v 6= C?, then u · v = 0 and 1 equally often and so (�1)u·v

equals 1 and �1 equally often, making the inner sum zero when all the results are

added together. Therefore,

X

u2C

f̂(u) = |C|
X

v2C?

f(v).
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2

With the lemma, we can now prove the MacWilliams Theorem for binary linear

codes.

Proof: (of Theorem 4.4) In Lemma 4.11, let A be the set of polynomials in

x, y with complex coe�cients, and let

f(v) = xn�wt(v)ywt(v). (4.12)

Then, substituting (4.12) into (4.10),

f̂(u) =
X

v2Fn
2

(�1)u·vxn�wt(v)ywt(v). (4.13)

Now, let u = (u1 . . . un) and v = (v1 . . . vn). Then (4.13) becomes

f̂(u) =
X

v2Fn
2

(�1)u1v1+...unvn

nY

i=1

x1�viyvi

=
1X

v1=0

1X

v2=0

. . .
1X

vn=0

nY

i=1

(�1)uivix1�viyvi

=
nY

i=1

1X

v=0

(�1)uivx1�vyv.

If ui = 0, the inner sum is x+ y. If ui = 1, the inner sum is x� y. Thus,

f̂(u) = (x+ y)n�wt(u)(x� y)wt(u). (4.14)

Therefore, by Lemma 4.11, using (4.12) and (4.14),

X

v2C?

xn�wt(v)ywt(v) =
1

|C|
X

u2C

(x+ y)n�wt(u)(x� y)wt(u),
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which equals (4.9) and thus the theorem is proved. 2

The MacWilliams Theorem gives us an alternative to finding the weight dis-

tribution and enumerator of the dual code using only information about C. So,

for example, using the weight distribution of the [3, 2] code found in (4.3), and

assuming that all information about the dual code is unknown, the MacWilliams

Theorem allows us to calculate that the weight enumerator of the dual code is

WC?(x, y) =
1

22
[(x+ y)3 + 3(x+ y)(x� y)2]

=
1

4
[(x3 + 3x2y + 3xy2 + y3) + 3(x+ y)(x2 � 2xy + y2)]

=
1

4
[x3 + 3x2y + 3xy2 + y3 + 3x3 � 6x2y + 3xy2 + 3x2y � 6xy2 + 3y3]

=
1

4
[4x3 + 4y3]

= x3 + y3.

As discussed, the above weight enumerator for C? was found without using any

information of the dual code, indicating that WC?(x, y) is uniquely determined by

WC(x, y) as the MacWilliams Theorem stated. We can also note that the weight

enumerator of the dual code found through the MacWilliams Theorem is exactly

equal to the one found using the dual code weight enumerator definition in (4.5).

In addition to its polynomial form, the MacWilliams Theorem can also be

expressed in many di↵erent ways. We will only consider one other form here,
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which relies on the Binomial Theorem, and is as follows:

A?
j =

1

|C|

nX

i=0

Ai

jX

l=0

(�1)l
✓
i

l

◆✓
n� i

j � l

◆
for 0  j  n. (4.15)

As a reminder, Ai is the number of codewords in C with weight i and A?
j is the

number of codewords in C? with weight j.

THEOREM 4.6 Equations (4.7) and (4.15) are equivalent.

Proof: From (4.7), we have that

WC?(x, y) =
1

|C|WC(x+ y, x� y) (4.16)

=
1

|C|

nX

i=0

Ai(x+ y)n�i(x� y)i. (4.17)

Recall that the Binomial Theorem is

(x+ y)t =
tX

k=0

✓
t

k

◆
xt�kyk.

Then, expanding (4.17) using the Binomial Theorem, we obtain

WC?(x, y) =
1

|C|

nX

i=0

Ai

n�iX

l=0

✓
n� i

l

◆
xn�i�lyl

iX

l=0

✓
i

l

◆
xi�l(�y)l (4.18)

=
1

|C|

nX

i=0

Ai

n�iX

l=0

✓
n� i

l

◆
xn�i�lyl

iX

l=0

✓
i

l

◆
xi�l(�1)lyl. (4.19)

By definition, WC?(x, y) gives the number of codewords in C? for each possible

weight from 0 to n. However, in (4.15), A?
j gives only the number of codewords

in C? with weight j. Thus, we want to look only at the jth term of (4.19).
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As in the definitions of the weight enumerators, the power of the y term in-

dicates the weight. So, if we want to consider only the jth term, we need to get

yj in (4.19). In order to do this, we want our latter yl term, located in the third

summation, to be yj�l where l in this portion is now j� l. Then, when the y terms

are multiplied together we would obtain ylyj�l = yj. Equating the coe�cients of

the jth term of (4.19), we get that

A?
j =

1

|C|

nX

i=0

Ai

jX

l=0

(�1)l
✓
i

l

◆✓
n� i

j � l

◆

as desired. 2

In contrast to the polynomial form of the MacWilliams Theorem, (4.15) gives

the number of words in the dual code for one specific weight. For example, if we

wanted to find the number of words of weight 1 for the dual code given in (3.7),

we calculate A?
1 using (4.15) and our weight distribution for the associated [3, 2]

code C in (4.3). Then,

A?
3 =

1

4

"
A0

3X

l=0

(�1)l
✓
0

l

◆✓
3� 0

3� l

◆
+ A2

3X

l=0

(�1)l
✓
2

l

◆✓
3� 2

3� l

◆#

=
1

4

"
3X

l=0

(�1)l
✓
0

l

◆✓
3

3� l

◆
+ 3

3X

l=0

(�1)l
✓
2

l

◆✓
1

3� l

◆#

=
1

4
[(1 + 0 + 0 + 0) + 3(0 + 0 + 1 + 0)]

=
1

4
[4]

= 1.
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So, there is one codeword of weight 1 in the dual code, which is exactly what

we found using the polynomial form of the MacWilliams Theorem. Thus, we can

conclude that each individual weight of the dual code is also uniquely determined

by the weight distribution of the code C.
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