
Part of understanding the global 
dynamics of mathematical models 
is to investigate the end behaviors 
(i.e. limits at infinity) of these 
models. As shown in almost every 
precalculus course, values of both 
exponential functions of the form 
ekx , k > 0, and polynomials with 
positive leading coefficient grow as 
their input values gets “arbitrarily 
large”. Motivated by these facts, we 
investigate how the growth of 
exponential functions compares to 
the growth of polynomials. In 
particular,  we show that every 
function of the form ekx, for k > 0, 
eventually dominates every 
polynomial.

We shall show that every 
exponential function of the form 
ekx, for k > 0, eventually dominates 
every polynomial; that is , for all 
polynomials Pn(x) of degree n, we 
have

Definitions, 
Theorems and 
Known Proofs

1. Polynomials: a polynomial of degree n 
is a function of the form :

anxn+an-1xn-1+………+a1x+a0, where an ≠ 𝟎.

Dominant term analysis tells us that lim 
Pn(x) behaves like lim anxn as x approaches 
±∞. Hence, for polynomials with positive 
leading coefficient an, we have Pn(x) = an

for n = 0 and lim Pn= +∞, for n > 1, as x 
approaches +∞.

2. Eventually dominates: an exponential 
growth function goes to infinity at a faster 
rate compared to a polynomial.

3. End behaviour: the behaviour of a 
function as x approaches plus or minus 
infinity. For example, for k > 0, 
𝑙𝑖𝑚 𝑒𝑘𝑥 = +∞, 𝑎𝑠 𝑥 → +∞

4. L’Hospital Rule: at a given point if two 
functions have an infinite limit or zero as a 
limit and are both differentiable in a 
neighbourhood of this point then the limit 
of the quotient of the functions is equal to 
the limit of the quotient of their 
derivatives provided that this limit exists.

5. Power rule:
𝑑

𝑑𝑥
(𝑥n) = nxn-1

It follows by induction and linearity 
property of differentiation that all 
polynomials are differentiable 
everywhere [3].
6. Derivative of exponential functions:

𝑑

𝑑𝑥
(ekx) = kekx

It follows that all exponentials are 
differentiable everywhere [3].

Graphical 
representations

Proof

We prove that:

lim
𝑥→∞

Pn(x)

𝑒𝑘𝑥
= 0, for k > 0

We proceed with Induction,

• Case 1:  n = 0 implies Pn(x)=C , where C is a 
constant.

Thus, lim
𝑥→∞

𝐶

𝑒𝑘𝑥
= 0

• Case 2: n = 1 implies Pn(x)=mx+b, m≠ 0.

Thus, lim
𝑥→∞

Pn(x)
𝑒𝑘𝑥

= lim
𝑥→∞

𝑚𝑥+𝑏

𝑒𝑘𝑥

= lim
𝑥→∞

𝑚

𝑘𝑒𝑘𝑥
= 0  by 4.

Induction Hypothesis:  assume that

𝑙𝑖𝑚
𝑥→∞

Pn(x)
𝑒𝑘𝑥

= 0, for all 𝑛;

We shall show that it is also true for n+1.
From 4,5,6:

lim
𝑥→∞

Pn+1(x)
𝑒𝑘𝑥

= lim
𝑥→∞

Pn(x)
𝑘𝑒𝑘𝑥

= 1

𝑘
lim
𝑥→∞

Pn(x)
𝑒𝑘𝑥

= 
1

𝑘
∗0 = 0 by induction hypothesis.

Hence, our desired result. Q.E.D.

Abstract

Objective

lim
𝑥→∞

Pn(x)
𝑒𝑘𝑥

= 0, for k > 0.
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In the race towards infinity who wins:
Polynomials or exponentials?

Chelsea Thakkar

Conclusion

Our result can be extended to all 
exponential growth functions by 
combining 3, 4, and 6.
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