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Abstract

In this study, we examine state-level features and policies that are most important in achieving a threshold level vaccina-
tion rate to curve the effects of the COVID-19 pandemic. We employ CHAID, a decision tree algorithm, on three different
model specifications to answer this question based on a dataset that includes all the states in the United States. Workplace
travel emerges as the most important predictor; however, the governors’ political affiliation (PA) replaces it in a more conser-
vative feature set that includes economic features and the growth rate of COVID-19 cases. We also employ several alternative
algorithms as a robustness check. Results from these checks confirm our original findings regarding workplace travels and
political affiliation. The accuracy under different model specifications ranges from 80% - 88%, whereas the sensitivity is be-
tween 92.5% - 100%. Our findings provide actionable policy insights to increase vaccination rates and combat the COVID-19
pandemic.

Keywords: COVID-19, Vaccination, Vaccine Hesitancy, Machine Learning, Decision Tree, Health Policy
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1. Introduction

The COVID-19 (SARS-CoV-2) virus, first detected in
December 2019, quickly spread all over the world and took
the lives of almost six million people with approximately
436 million confirmed cases (Dong, Du, & Gardner, 2020).
The Centers for Disease Control and Prevention (CDC) re-
ported the first COVID-19 case in the United States on Jan-
uary 20, 2020 . Since then, over 78 million people got in-
fected and over 945,000 people died 2. COVID-19 disrupted
our everyday life and devastated economies across the world.
As a result, returning to "normal" primarily through mass
vaccination has become a priority in the U.S and across the
world. Several vaccines are now in use, developed in an un-
precedented effort to combat the pandemic. As the U.S is
pushing towards returning to "normal", getting more peo-
ple vaccinated has become a policy priority. In the second
week of December 2020, the Food and Drug Administration
(FDA) granted an emergency use authorization (EUA) for
the Pfizer-BioNTech vaccine. The Moderna vaccine and the
Johnson and Johnson vaccine got the same EUA on Decem-
ber 18, 2020, and February 22, 2021, respectively 3. After
that, the authorities started to rollout vaccines across the U.S
and took several aggressive policy measures to encourage
mass vaccination. To date, 64.9%  of the total population
in the U.S are fully vaccinated. While vaccination rates in
some states are impressive, there are twenty-one states where
fewer than 60% of the population has been completely im-
munized. States with low vaccination rates often experience
higher COVID-19 cases (Borchering et al., 2021), also sev-
eral reports show that the unvaccinated population is more
vulnerable against the other variants such as the highly con-
tagious delta variant (Dyer, 2021). In order to address the
low vaccination rates, 26 states announced different finan-
cial and non-financial incentives. However, studies, such as
Walkey, Law, and Bosch (2021), find that incentives are not
effective enough to encourage people to get vaccinated. For
example, Ohio stopped its lottery program, stating that the
program’s effect was "short-lived" (Huggins, 2021). Against
this backdrop, there is a renewed interest to know what fac-
tors most effectively predict the vaccination rates across the
states in the U.S. In other words, what are the unique features
of the high vaccination states that make them different than
the states with low vaccination rates. We attempt to answer
this question in this study.

One of the many ways to combat the COVID-19 pan-
demic is to achieve herd immunity through mass vaccina-
tion. According to several studies, (Randolph and Barreiro
(2020), Bartsch et al. (2020), Goldblatt et al. (2022)) at least
60 percent to 70 percent of the total population should be
vaccinated to obtain herd immunity. But most of the studies

ORCID(s):
lhttps://www.cdc.gov/media/releases/ZOZO/p@]Zl—novel—coronavirus
-travel-case.html
thtps://covidAcdc,gov/covid—data—tracker/#cases_totalcases
3https://www.cdc.gov/museum/timeline/covidl9.html
4https://covid.cdc.gov/covidfdataftracker/#vaccinations,vacc
-total-admin-rate-total

(Malik, McFadden, Elharake, and Omer (2020), Viswanath
et al. (2021)) estimate a lower vaccination rate in the U.S
than this estimated threshold. Data also shows that vaccina-
tion rate in 21 states are still under 60% threshold, whereas
the rates in 38 states are still under 70% °.

Vaccine hesitancy and its role in lower vaccine uptake
is not new and well documented in the literature. However,
given that we cannot reduce vaccine hesitancy overnight, it
is crucial to understand what other factors are instrumental
in achieving a higher vaccination rate. In this context, ex-
amining the state-level policies and other state-level features
that can play a critical role in vaccination uptakes is highly
relevant.

1.1. Problem definition and our approach

Our goal is to identify the most critical features that can
predict which states will meet the vaccination threshold. There-
fore, we choose CHAID, a decision tree algorithm, as our
primary modeling technique. CHAID is easier to under-
stand, faster to train, and interpretation is much more straight-
forward; in contrast, Random Forest (RF) and XGBOOST,
which combines multiple DTs, are challenging to interpret
and less prone to overfitting (Prajwala, 2015). Furthermore,
RF and Gradient Boosting, XGBOOST in our case, differ
in how the DTs are created. Instead of creating DTs inde-
pendently, XGBOOST algorithm creates them additively to
improve on the deficiencies of the previous trees (Sagi &
Rokach, 2021). In the robustness check section, we showed
that the results from our CHAID-based models are robust to
the results from both RF and XGBOOST algorithms; hence
we choose CHAID, which is much simpler. The follow-
ing three algorithms, ElasticNet (ECV), LASSO (LCV), and
RIDGE regression (RCV) can also tackle the overfitting prob-
lem (Ranstam & Cook, 2018); however, they are not very
useful in modeling non-linear relationships. Due to the branch-
ing structure of CHAID, a DT algorithm, it can model non-
linear relationships relatively easily (Klosterman, 2019). CHAID
also has superiority over Logistic Regression (LR) in terms
of interpretation. Additionally, the non-parametric approach
of CHAID does not force us to decide on the pre-assumed pa-
rameters like LR. To some extent, collinearity, missing val-
ues, and outliers in the data are easier to handle in CHAID
(Tomaschek, Hendrix, & Baayen, 2018), whereas it can po-
tentially affect LR coefficients. As with any regression model,
overfitting is an issue with LR (Dreiseitl & Ohno-Machado,
2002); however, if the classes are not well separated, then DT
algorithm can also potentially cause overfitting in the train-
ing data. This is why, apart from other algorithms, we also
compare results from LR with our original CHAID-based
models in the robustness section. Lastly, like CHAID, the
Support Vector Machine (SVM) algorithm can also model
non-linear relationships and handles outliers better (Chauhan,
Dahiya, & Sharma, 2019). However, SVM tackles non-linearity
using the “kernel trick” compared to hyperplanes in CHAID.
As a result, we wanted to check if our results from CHAID-

5https://covid,cdc.gov/covid—data—tracker/#vaccinations_vacc
-total-admin-rate-total

First Author et al.: Preprint submitted to Elsevier

Page 3 of 18



Predictors of COVID-19 Vaccination Rate

based models are comparable to those using the SVM algo-
rithm.

Our study includes all 50 states in the United States. We
used publicly available data from the Centers for Disease
Control and Prevention (CDC), Johns Hopkins University
COVID-19 data repository, Google Community Mobility Re-
port (CCMR), Kaiser Family Foundation (KFF), and the fed-
eral reserve bank of Philadelphia. Our primary modeling ap-
proach is a Decision Tree algorithm (CHAID) with three dif-
ferent model specifications. As a robustness check, we also
applied Random Forest and several other non-tree-based ML
algorithms such as Lasso (LCV), Ridge (RCV), EasticNet
(ECV), Logistic Regression (LR), Support Vector Machine
(SVM), and XGBoost (XGB).

Our study has several contributions to the existing liter-
ature. First, this is the first study that focuses on state-level
variables in the context of the COVID-19 pandemic to under-
stand the differential in vaccination rates across the states in
the United States. Second, using several ML algorithms, we
identify and rank the state-level aggregate factors that most
effectively predict the vaccination rates. It will work as a
benchmark for future research related to state-level factors.
Lastly, in the context of a pandemic as severe as COVID-19,
this study offers some actionable insights for policymakers
on how to increase vaccination rates to curb the pandemic’s
effects effectively.

2. Related Literature

The literature on vaccine hesitancy and the determinants
of vaccination rate are rich. There are two broad focuses
of this literature; first, to understand the socioeconomic fac-
tors that determine vaccine uptake. Second, to understand
vaccine hesitancy and how the individuals’ behavioral and
psychological aspects play a role in vaccination decisions.
Ruiz and Bell (2021) investigate intention to vaccinate us-
ing multiple regression analysis and show that race, gen-
der, age, socioeconomic status, marital status, political af-
filiation, and news sources significantly predict vaccination
intention. Khubchandani et al. (2021) used a representative
sample in the United States and employed Chi square tests
and Logistic Regression to find the significant predictors.
They found that number of children at home and the proba-
bility of getting infected with COVID-19 are significant pre-
dictors in addition to what Ruiz and Bell (2021) found.

Burch, Lee, Shackelford, Schmidt, and Bolin (2022) use
univariate logistic regression and find a more parsimonious
set of variables (education, age and gender) that have high
predictive power in making vaccination decision. They also
find, like Khubchandani et al. (2021), that the perceived risk
perception about COVID-19 is critical when individuals are
making deciding about vaccination. Cheong et al. (2021), on
the other hand, examine if sociodemographic factors play a
role in vaccination uptake. Using the XGBoost algorithm,
they find that ethnicity, location, education, and internet ac-
cess have the most predictive power.

Dror et al. (2020) explored a behavioral aspect by using

a multivariate logistic regression model in a study among
1941 Israeli population. They find that the medical profes-
sionals who are not taking care of SARS-CoV-2 positive
patients expressed a higher vaccine hesitancy. In another
study, Yan, Lai, Ng, and Lee (2022) surveyed 1003 individ-
uals in Hong Kong and used a hierarchical regression model
to show that vaccine uptake by known others and trust in au-
thorities, among others, are important predicting factors in
predicting vaccine uptake. Mewhirter, Sagir, and Sanders
(2022) used the Gradient boosting (GB) algorithm and also
found the lack of trust in the COVID-19 vaccine, risk per-
ception about the COVID-19 virus itself, along with age are
the main predictors of vaccination decision. Using a differ-
ent set of population and a estimation techniques, Lincoln et
al. (2022) confirms that the overall mistrust surrounding the
COVID-19 vaccine and the virus itself plays a critical role in
vaccine uptake. They surveyed 2510 individuals across five
high-income counties and used multifactorial logistic regres-
sion in addition to the Random Forest algorithm.

Some studies forecast the percent of the population will-
ing to get vaccinated. Malik et al. (2020) estimated that
around 67% of the U.S population is willing to accept a CODIV-
19 vaccine if it is recommended for them. However, they
also pointed out noticeable geographic and demographic dis-
parities in vaccine acceptance among the participants. In an-
other study, Viswanath et al. (2021) used multivariate Logis-
tic Regression and estimated that 65-68 percent of the pop-
ulation would accept the vaccine, which is significantly as-
sociated with risk perception about COVID-19. They also
found that, like other studies mentioned above, sources of
information, confidence in scientists, and political affiliation
significantly affect the decision to get vaccinated.

However, most vaccination and vaccine hesitancy stud-
ies primarily focus on individual-level factors and used sur-
vey data. While individual-level factors are important, un-
derstanding the state-level variables are also important for
effective policy making. Our study attempts to do this. Our
study also did not use survey data. Issues with survey data,
such as self-selection and over/understatement, are well doc-
umented (Starr, 2012) in the literature. As a result, our re-
sults are free from any such issue.

3. Data and Variables

3.1. Data Acquisition

We use data till July 01, 2021. We wanted to base our
analysis on the early performances of the states in order to
identify what state-level policies/features have the most pre-
dictive power in achieving the vaccination threshold. In the
later months, many states, federal, and even county-level
policies were formulated to accelerate the vaccination rates.
Therefore, we believe that data from the early few months of
vaccination would reveal more natural predictors that drive
vaccination.

We used publicly available data provided by CDC (CDC,
2022), Johns Hopkins University (Dong et al., 2020)°, Google

6JHU CSSE COVID-19 Data: https://github.com/CSSEGISandData/
COVID-19
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Figure 3: CHAID dendrogram for Model 1

As Figure 3 shows, the CHAID algorithm only kept the
two most dominant predictors in the Chi-squared test out of
all the predictors that passed. In the CHAID dendrogram
figure above, the algorithm has determined that dividing our
state-level data into 3 terminal nodes or buckets is the most
predictive way. Each node corresponds to a different set of
predictors. Node-2 and Node-5 predict states that will meet
the vaccination threshold, whereas Node-4 predicts states
that will not. With practically all gray, Node 4 appears to be
the most homogeneous bucket- almost all of the states in this
bucket failed to reach the vaccination threshold. There are
36 states in this group. We also get the ’error rate’ from the
executed algorithm, which is 2.8 percent for this node. This
indicates that we were only 2.8 percent off in our projection
that these 36 states would not meet the immunization thresh-
old. We have high confidence that this is a group of states
about which we are pretty concerned that they will be unable
to combat the epidemic properly, assuming that they are not
achieving herd immunity in other ways. The most impor-
tant takeaway from the result above is this group’s shared
traits, which are very relevant for policy purpose. When
travels/visits to "workplaces’ fall between 23.1 percent and
14 percent below the baseline and school personnel are not
required to vaccinate, a state will fall short of meeting the
threshold vaccination level. Most states have met the vac-
cine requirement in another terminal node, Node 2. The er-
ror rate for this node is 30%, which means we are 70% correct
in our prediction that the states in this group would reach the
vaccination threshold required to curtail the epidemic. The
criteria for this group of states are that travel/visits to "work-
places’ decreased by 28.7% to 23.1%, inclusive.

The key and possibly more qualitative message from this
CHAID dendogram is that travel/visits to workplaces and
vaccine mandates for school personnel are the best predictors

of passing the immunization threshold. The Chi-squared

(x?) values for workplace travels and school vaccination man-
date are 21.25 (p-value <0.001) and 7.82(p-value <0.005).

We can state that trips to workplaces were the most impor-

tant predictor and that vaccine mandates for school staff were

the second most important predictor.

6.2. Model-2

In this specification, we remove the following COVID-
19-related policy variables: Statewide emergency declara-
tion, statewide face mask requirement, any vaccine mandate,
face mask requirement in schools, and vaccine mandate for
school employees and retain the remaining variables from
model-1. We wanted to determine the effect of removing the
actions mandated by these policies on our model (model-2).
This enables us to identify more organic dominant drivers of
the likelihood of states meeting the threshold.

Figure 4: CHAID dendrogram for Model 2

In the CHAID dendrogram (Figure 4), node-2 predicts
states that will meet the vaccination threshold, whereas Node-
4 and Node-5 predict states that will not. Like model-1,
workplace travels (y2=21.25, p-value < 0.001) remain the
most significant predictor of states meeting the vaccine thresh-
old. Interestingly, another significant predictor is the gov-
ernors’ political affiliation (y2=6.85, p value=0.008). We
have workplace visits (WV) that divide the states into two
contrasting segments: decreases in travel relative to the base-
line of between [28.7% and 23.1 %] with 70% likely to meet
vaccination thresholds, and decreases in travel relative to the
baseline of between (23.1% and 14%]. The latter segment is
further subdivided by political affiliation (PA): states with
a Democratic party affiliation are 20% likely to meet the
threshold. In contrast, states with a republican party affil-
iation were 0% likely, which means they will never meet the
threshold.

First Author et al.: Preprint submitted to Elsevier
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This specification provides policymakers with more action-
able group characteristics, as we can derive an entirely ho-
mogeneous group of states (Node-5). We have identified a
group of states that are unlikely ever to meet the threshold;
they are defined by a decrease in workplace travel of between
23.1 percent and 14 percent and a Republican political affil-
iation.

6.3. Model-3

In model-2, we find political affiliation as a significant
predictor of meeting the vaccination threshold. It was an ex-
tremely intriguing finding, and, In model-3, we investigate
it further. We want to see if political affiliation remains the
dominant predictor after removing mobility and/or travel-
related variables from our model in this specification (model-

3).
Democrat Republican

Node2(n=24) _ , Node3(n=26) _ ,
0.8 - 08
0.6 - 06
04 - 04
0.2 02

= [ B 0

[1] root

| [2] affiliation in Democrat: 0 (n = 24, err = 37.5%)
| [3] affiliation in Republican: 0 (n = 26, err = 3.8%)

Number of inner nodes: 1
Number of terminal nodes: 2

Figure 5: CHAID dendrogram for Model 3

In the CHAID dendrogram (Figure 5), both Node-2 and
Node-5 predict states that will not meet the vaccination thresh-
old. We find political affiliation to be the single most domi-
nant predictor (y2=6.25, p value=0.008). Additionally, the
prediction pattern remains consistent: states with a Republi-
can political affiliation are only 3.8 % likely (0 % previously)
to meet the vaccination threshold, making it more likely that
the pandemic will fail to be contained. In contrast, states
with a Democratic political affiliation are more likely to con-
tain the pandemic, 37.5%.

7. Model Performance

We have developed models that can segment 50 states
and provide a clear view of the major drivers affecting the
likelihood of attaining the vaccination threshold necessary
to contain the pandemic. Now, it seems plausible to un-
derstand how good our models’ predictions are. The target

Table 4
Models' Performances

In-sample Cross-Validated
Models | Accuracy | Sensitivity | Accuracy | Sensitivity
Model 1 0.88 0.925 0.88 0.92
Model 2 0.80 1.0 0.80 1.0
Model 3 0.80 1.0 0.80 1.0

variable (whether it meets the 70% threshold or not) is hid-
den from the already trained models (model 1, model 2, and
model 3) and only the features/predictor variables are fed to
the models. Then, depending on the attributes passed, we
let our models forecast the target/outcome variable. Finally,
we compare the forecasted outcomes to the actual target out-
comes that we did not disclose to our models and generate a
measure of model accuracy.

We first evaluate the decision tree algorithm’s accuracy
using the same data that was used to fit the algorithm (i.e.,
in-sample accuracy). Then we present the k-fold cross val-
idation (CV) results, which evaluate our model’s general-
ized performance. We chose 10-fold CV as studies on real
data show that it is a good benchmark for balancing the bias-
variance tradeoff (Ron, 1995) and addresses the overfitting
issue.

Our model’s accuracy informs us what proportion of sit-
uations it accurately predicts. Please note that we are at-
tempting to predict states that would not meet the threshold
(in our case, the ’positive class’ is 0). Here positive class
does not imply that failing to achieve the vaccination thresh-
old is a good thing; instead, it relates to what we wish to
forecast, in this case failing to meet the vaccination thresh-
old. In our instance, however, ’sensitivity’ is a more essential
parameter than ’accuracy’. We would like to have a small
number of cases when our model predicts that a state will
meet the threshold, but it will not. In other words, we want
as few ’False Negatives’ as possible. The sensitivity mea-
sure, defined as follows, can capture this phenomenon: Cor-
rectly predicted O instances / (Correctly predicted O cases +
Incorrectly predicted 1 cases).

The Table 7 summarizes the in-sample and out-of-sample
accuracy and sensitivity scores for various model configura-
tions. We observe that our models perform identically in and
out of sample. This offers us assurance that our algorithm
is not excessively overfitting the training data and that the
decision tree’s prediction performance on unseen data is ad-
equate. Again, we are more interested in the out-of-sample
sensitivity scores, and all models perform admirably in this
regard.

7.1. Model-1 Performance

Model-1 gives an accuracy rate of 88 percent. It means
Model-1 correctly predicted 44 out of 50 cases (88% of 50
states) in terms of whether or not they would reach the vac-
cination threshold. The sensitivity score is 92.5%. This im-
plies that 37 out of 40 states that did not meet the vacci-

First Author et al.: Preprint submitted to Elsevier
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nation threshold were correctly predicted by the algorithm.
The higher this value is, the fewer false negatives are likely
to occur. In this example, our model works admirably, with
a sensitivity of 92.5 percent.

7.2. Model-2 Performance

Model-2 performs better than model-1, with no false neg-
atives. As shown in Table 7, the model could predict all the
states that would not meet the vaccine threshold perfectly
(100%). Although the accuracy is 80%, as previously ex-
plained, this is a less desirable and/or useful metric on which
to evaluate our model.

7.3. Model-3 Performance

Please note that we tested Model-3 not as a candidate
model but to test the predictor of political affiliation’s ro-
bustness. We still report the performance of Model 3, which
is identical to Model 2 with an accuracy of 80% and a ’sen-
sitivity’ metric of 100%.

This section shows that three different CHAID-based mod-
els perform well. However, the ranking of the features some-
times changes in model-1, while ranking for model-2 and
model-3 was consistent over multiple runs of the CHAID
algorithm. This is another major reason we presented an ex-
tensive robustness check in the next two sections. Our main
goal is to explore if the features and their ranking remain
consistent across multiple machine learning algorithms.

8. Robustness Check-1

In this section, we use another popular tree-based ma-
chine learning algorithm, Random Forest (RF), to test the
validity of our findings in model-1 and model-2. We ex-
tract the set of important variables and their ranking using
the RF algorithm. A critical characteristic of random forests
is that they produce measures of variable importance that
may be used to find the most important predictor variables
(Hapfelmeier, Hothorn, Ulm, and Strobl (2014), Breiman
(2001)). It also works well when we have a small sample
size, and highly correlated sample features (Strobl, Boulesteix,
Kneib, Augustin, & Zeileis, 2008). Random Forest ranks the
variables in terms of a 'mean decrease in accuracy’ (MDA).
The MDA score indicates the accuracy lost when each vari-
able is removed from the model. The more precision is lost,
the more critical the variable is for classification success.
The variables are listed in order of decreasing relevance.

As we mentioned earlier, we wanted to see if the CHAID
model’s generated dominating factors are resilient, meaning
that alternative tree-based machine learning approaches give
us the same collection of relevant variables since the main
focus of this paper is figuring out the major drivers for states
to attain the vaccination threshold. We are more concerned
with whether we acquire the same set of variables than with
the order in which these variables are important.

In case of model-1, we observe that RF provides the same
dominant variables (workplaces (MDA score = 0.28) and

vaccine school (MDA score =0.07)) as CHAID. It also main-
tains the same raking. In model-2, we continue to get work-
place travels and political affiliation as the primary predic-
tors, with MDA scores of 0.19 and 0.66, respectively.

9. Robustness Check-2

In this section, we provide further evidences in support
of our findings in model-1, model-2 and model-3. Specif-
ically, we test the validity of our findings that workplace
travel is the most important variable in achieving the vacci-
nation threshold. Also, we wanted to test if, after removing
the COVID-19-related policies and workplace travel vari-
ables, political affiliation remains the most important feature
in the model-3 specification.

To investigate this, we use non-tree-based ML algorithms
and rank the features by their absolute relevance score. We
apply Lasso (LCV), Ridge (RCV), EasticNet (ECV), Logis-
tic Regression (LR), Support Vector Machine (SVM), and
XGBoost (XGB). As our initial results come from a deci-
sion tree-based model, we wanted to test the validity of our
results with different class/type of ML algorithms. That said,
we still apply XGB and SVM for their widespread popular-
ity. Our results do not change even if we drop these algo-
rithms. All the algorithms mentioned above provide differ-
ent approaches to answer the question we are asking, that
is, finding the most important features in predicting which
states would achieve the vaccination threshold.

Least absolute shrinkage and selection operator, com-
monly known as LASSO (LCV), is effective in variable se-
lection and regularization. An extension of ordinary least
square (OLS), LASSO is efficient in increasing prediction
accuracy by adding a penalty to the sum of residual square
(RSS) (Tibshirani, 1996). Mathematically, it takes the fol-
lowing form:

P
min(RSS + A )" |8]) 2

i=1

Please note that the sum of the beta coefficients in the
above equation does not include the intercept. The penalty
depends on the value of A: a value less than one slows down
the penalty, whereas a value greater than one does the oppo-
site.

Compared to LASSO, RIDGE regression (RCV) uses
an L2 type of penalty, which keeps all the coefficients and
shrunk them by the same factor. This penalty is defined as
the square of the regression coefficients, which essentially
shrinks the coefficients of the input variables, which are less
important in predicting the output (the vaccine threshold in
our case) (McDonald, 2009). Mathematically, we minimize
the following equation:

min(RSS + 4 ) p?) (©)

)4

i=1
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ElasticNet (ECV) is an approach where we combine both
L1 and L2 types of penalty, that is, we linearly add penalties
from both LASSO (L1) and RIDGE (L2) regression to the
RSS. Mathematically, we minimize the following equation
(Hastie, Tibshirani, Friedman, & Friedman, 2009):

P P
min(RS'S + i(* = 2Bl +a Y 5 “
i=1 i=1

In the equation above, if a=0 it becomes RIDGE regres-
sion and when a=1 it becomes LASSO regression. Elastic-
Net allows a better balance between the two penalties, which
may improve model performance (Hastie et al., 2009).

Support vector machine (SVM) is a popular classifica-
tion technique that classify inputs in a high dimensional space
by building a hyperplane (Gove & Faytong, 2012). It also
uses regularization in order to avoid artifacts. Support vec-
tors are the values that are closest to the classification mar-
gin. The purpose of SVM algorithm is to maximize this mar-
gin between the support vectors and the hyperplane. Math-
ematically, we maximize the following equation (Raschka,
2015):

wT(xpos - xneg) _ 2 )
[lw]] [lw]]
subject to
Wwe+w'xP)>1  vi (6)

Logistic regression (LR) is useful in modeling the prob-
ability of a certain class or binary outcome (in our case,
whether a state is achieving the threshold or not). In such
cases, the assumption is that the given data is linearly sepa-
rable. The LR model is written as (Wooldridge, 2015):

P(y =11x) = G(By + x| + ... + b)) (7

where the value of the function G is strictly between 0 to 1.
As a result, the estimated probability is also between O to 1.

Lastly, XGBoost (XGB) is a well-known classification
and regression predictive modeling algorithm. It avoids over-
fitting problems by integrating regularization with k times
iteration. The objective function that is optimized (Liang,
Luo, Zhao, & Wu, 2020) is:

n k
00) = Y 1 5+ Y, M f) +e¢ ®)
i 1

Here, Y7 I(y;, ;) is the loss function, Z'l‘ A(f) is the
regularization term and c is the constant. The regularization
term can be written as follows:

T
1
Mf)=6H + v 211 w? ©)

where T stands for the number of leaves, 6 represents
the complexity, and y is the penalty parameter (Liang et al.,
2020).

In Table 5, we list the top three features in chronological
order for model 1 and 2, and only the top feature for model
3 because the purpose of this specification was to test if po-
litical affiliation is the top predictive feature amid economic
and retail sales feature. Figure 6, Figure 7 and Figure 8 de-
pict the feature importance for model-1. model-2 and model
3 specifications, respectively, across the alternative ML al-
gorithms.
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Figure 6: Model 1 (Full Model) Feature Importance Scores
(X-axis)across Algorithms
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Table 5
Robustness Check: Top Features (Chronologically ranked) by importance across ML algorithms
Algorithm  Model 1 Model 2 Model 3
LCV Workplace, Economic Index, Retail Sales Workplace, Economic Index, Retail Sales PA
RCV Workplace, Vaccine School, Growth Cases Workplace,Growth Cases, Residential PA
ECV Workplace, Retail Sales, Economic Index Workplace, Retail Sales, Economic Index  PA
LR Vaccination School, PA, Workplace PA, Growth Cases,Workplace PA
SVM Workplace, Vaccine Mandate, PA Workplace, Residential, PA PA
XGB Workplace, Vaccine Schools, Parks Workplace, Parks, Growth Cases PA
aen Table 6
U R Statistical Significance of Features across Models
s Features Model 1 Model 2 Model 3
o Growth Case 0.83 (6) 0.5(2) 1.0 (2)
Economic Index 0.67 (3) 0.67 (3) 1.0 (2)
Lasso Ridge Political Affiliation 0.67(3) 067(3) 0.0 (1)
en e Retail Recreation 1.0 (9) 1.0 (8) -
o o cse Grocery and Pharmacy 1.0 (9) 1.0 (8) -
. Parks 0.83 (6) 0.83 (7) -
Transit 1.0 (9) 1.0 (8) -
ot e Workplaces 0.0 (1)** 0.0 (1)**
oo Residential 1.0 (9) 067 (3) -
ElasticNet Logistic State Emergency 1.0 (9) - -
. e Mask Mandate 1.0 (9) - -
o s Vaccine Mandate 0.83 (6) - -
. e Mask School 1.0 (9) - -
‘ Vaccine School 0.5 (2) - -
o e Retail Sales 0.67 (3) 0.67 (3) 1.0 (2)
o ;VDI;/I e o mxuz;; s Note: *** denotes significance at the 1%, "-" indicates that these

Figure 8: Model 3 Feature Importance Scores (X-axis)across
Algorithms

9.1. Statistical significance
To summarize this robustness in a single number, we
compute a non-parametric exact p-value similar to those found

in Fisher (1935) and Abadie, Diamond, and Hainmueller (2010).

By utilizing machine learning methods that are not tree-
based, we can determine whether our discovery of the work-
place travels feature as the top predictive feature from the
CHAID decision tree algorithm is robust to algorithm het-
erogeneity. We order the features chronologically for each
algorithm applied for model 1 and model 2 and then count
the number of times workplace travel is not included in the
top three features. The non-parametric p-value is then cal-
culated as the proportion of times workplace travel does not
rank among the top three in all possible methods. If this p-
value is smaller than the customary 5%, we reject the asser-
tion that workplace travel is not the most essential attribute.
Similarly, for model 3, we calculate a non-parametric p-value
for the political affiliation feature. In Table 1, we provide the
p-values for all the features across different model specifica-
tions.

Table 1 shows that in both our comprehensive models

variables were not included in the respective models, and the
parenthesis associated to the p-values show the relative ranking of
the features in terms of the p-value.

(model-1 and model-2), workplace travels rank first with a
p-value of 0.0, which is significant not only at the 5% level
but also at the 1% level. This supports our initial claim that
workplace visits are the most important predictor of meet-
ing the vaccination threshold. The second-highest ranked
feature in model-1 is vaccination mandates in schools. This
confirms our original claim about this feature. In model-1,
political affiliation is now tied for third place with economic
index and retail sales. So, as previously stated, we combined
only these identical ranked features in model-3. We also in-
clude the growth rate of COVID-19 cases because it came in
second in model 2. With a p-value of 0.0, we find that politi-
cal affiliation is the most predictive of these features, proving
our original claim: In predicting vaccine threshold, political
affiliation outweighs other economic and growth case vari-
ables.

Figure 9 is really supplementing Table 5. Figure 9 de-
picts the distribution of feature p-values across different model
settings. We demonstrate that workplace travel is distinct
from all other features in that it has the lowest non-parametric
p-value of 0.0 across models 1 and 2. As a result, it is the
most important predictor of the vaccination threshold. It fur-
ther confirms our point: the workplace remains the most im-
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Table 7

Algorithm Performance Comparison
Algorithm MAE RMSE EV R? MSE
LCV 0.26 0.33 0.46 0.44 0.12
RCV 0.25 0.32 0.57 0.55 0.12
ECV 0.26 0.33 0.46 0.45 0.12
LR 0.18 0.35 0.50 0.72 0.18
SVM 0.18 0.37 0.35 0.52 0.18
XGB 0.20 0.36 0.70 0.84 0.20

Figure 9: Distribution of p-values for features across model 1.
model 2 and model 3

portant predictor across multiple ML algorithms.

10. Algorithm Performance Comparison

The performance of alternative algorithms are compared
in this section. As we are comparing the feature importance
scores of these algorithms, we wanted to determine whether
their performances are comparable or not too dissimilar. We
employ mean absolute error (MAE), and root mean squared
error (RMSE) to analyze the performances following Brown-
lee (2021) and Friedman (2001). MAE denotes the mean of
the absolute discrepancies between the actual and predicted
targets. RMSE is the mean of the root-squared discrepancies
between the true and predicted targets. These metrics can be
represented by following formulae:

gy =1 VoG- 10
T T VarT) (10)
N (T, - T))?
R2:1_2'=1(—’_’) (11)
T (T - T
N A
MSE =(1/N) Y(T, - T (12)
i=1
N
MAE =(1/N) Y |T, - T (13)
i=1
N A
RMSE = (1/N)Z(T,—T,)2 (14)

i=1

Here, T, and 7} are the true value and the predicted value of
the target variable respectively for example i in the data. N

is the total number of examples/observations in the data. A
large portion of our alternative class of algorithms is based
on regression, which conducts prediction by forecasting a
numerical value. As with our original decision tree-based
algorithms, we are unable to quantify the performance of
these algorithms using accuracy. Having stated that, we re-
quired a single performance metric to determine whether the
performance of all alternative algorithms falls within a rea-
sonable range. We employ the k-fold cross validation tech-
nique to determine our algorithms’ generalization error (per-
formance on unknown data) credibly. This provides an ac-
ceptable trade-off between bias and variance when evaluat-
ing our models (Raschka & Mirjalili, 2017). As mentioned
earlier, our goal in this paper is to identify the most impor-
tant predictors of vaccination threshold at the state level so
that policymakers and/or stakeholders can use them as policy
tools. Deep Neural Networks and other Deep Learning algo-
rithms are extremely complicated, and the parameterization
in the hidden layers is nearly impossible to decipher. Even
specialists are unable to explain the data-generating process
modeled by these algorithms and extract single scores for
feature relevance, which is why they are referred to as "black-
box" algorithms (Lantz, 2019). Our work aims to equip pol-
icymakers and stakeholders with tools to help them design
policies. We need better explainable ML techniques like De-
cision Tree, rather than black-box methods, so stakeholders
have more visibility into the algorithm.

We present the MAE, RMSE, EV, R2 and MSE for all al-
ternative approaches in Table 7. We may note that the perfor-
mances of the most widely used and well-established perfor-
mance metrics for regression algorithms (Brownlee (2021)
and Friedman (2001)) - MAE and RMSE - are comparable.
MSE, simply the RMSE squared, is an additional often em-
ployed metric. MAEs range from 0.18 to 0.26, whereas RM-
SEs range from 0.33 to 0.36.EVs and R?s range from 0.35 to
0.46 and 0.44 to 0.52, respectively, with the minor exception
of XGB, where EVs are 0.70 and R?s are 0.84. Again, we
observe a small range between 0.12 and 0.20 for MSE. The
non-parametric p-value we determined earlier embeds algo-
rithm heterogeneity when ranking the features. We would
like to see our top predictor be robust across algorithms and
algorithms that perform similarly on unseen data. We eval-
uate the data modeling ability and/or generalization perfor-
mance of these algorithms in Table 7 by employing perfor-
mance measures. This really supports and strengthens our
p-value-based claim regarding the most important feature.
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Not only are our top predictors of workplace travel (model-1
and model-2) and political affiliation (model-3) robust across
algorithms, but they are also resilient across algorithms with
identical generalization errors. In other words, a feature that
ranks first across all algorithms with similar prediction per-
formance lends that feature additional credibility.

11. Discussion

TTaking a vaccine is primarily a personal decision. There
is rich literature investigating factors affecting individual vac-
cination decisions. Most of these studies focus on socioeco-
nomic and demographic factors, individuals® religious and
political beliefs, attitudes toward science, source of infor-
mation, and media framing. As an individual’s attitude and
beliefs cannot be changed overnight, it is important to under-
stand the state and federal level policy measures that could
play an important role in increasing the vaccination rate. To
examine this, we use three different model specifications and
several ML algorithms. The first model (model-1) includes
all the state-level aggregate features mentioned in Data and
Variables, model-2 keeps all the features of model-1 except
COVID-19-related policy variables (statewide emergency dec-
laration, statewide face mask requirement, any vaccine man-
date, face mask requirement in schools, and vaccine mandate
for school employees), and lastly, model-3 includes features
of model-2 excluding mobility and/or travel related variables.
The uniqueness of model-1 is that it helps us to understand
what state-level features are most important in achieving the
vaccination threshold in the presence of all the features. Com-
pared to model-1, model-2 reveals what features are impor-
tant in the absence of any COVID-19-related policy mea-
sures. Lastly, model-3 shows which feature is the most im-

Shigeoka, Chen, and Pamplona (2021); Guy Jr et al. (2021);
Joo et al. (2021); Reiss and Caplan (2020); Guzzetta et al.
(2020)) show that all these policies are instrumental to curve
the spread of the virus, reduce COVID-19 related deaths and
hospitalization. Our results show that the political affiliation
of the governors also plays a critical role in the vaccination
rate in their respective states. Apart from the major poli-
cies mentioned above, the governor’s role is also important
in resource mobilization. As far as we know, this is a crit-
ical aspect absent from the existing studies. For example,
the Alabama governor recently announced that she is allo-
cating $400 million dollars from the coronavirus relief re-
sources for the construction of new prisons(Duster and Va-
lencia, 2021) even though Alabama ranked among the slow-
est states in administering doses per 100,000 people and the
overall vaccination rate. On the other hand, even though
New York is among the states with higher vaccination rates (
75% of the total population as of today), additional efforts by
the governor’s office include a $15 million grant (New York
State, 2021) to encourage immunization in neighborhoods
excessively impacted by the COVID-19 outbreak.

One of the critical factors from our results is the vaccine
mandate in schools. According to the Kaiser Family Foun-
dation data, eleven states introduced school vaccine man-
dates. All these states are run by Democratic governors with
vaccination rates above the national average. The policy of
school vaccine mandate could also be a proxy variable to
measure the overall seriousness of the states in combating
the pandemic. However, this claim is subject to further em-
pirical investigation.

Lastly, our results show that the variable with the most
predictive power is workplace travels. A drop in workplace
travel can happen for primarily two reasons: people are now

portant among the economic features, the growth rate of COVID- traveling to and from workplaces lower than the baseline

19 cases, and the governor’s political affiliation. Each of
these three models offers different perspectives for the pol-
icymakers in terms of understanding the important features
given the particular context of a state. All three models per-
form very well: in-sample accuracy ranges from 80%-88%
and sensitivity is between 92.5%-100%. Please note that, in
our study, ’sensitivity’ is a more essential parameter than ’ac-
curacy’ because we are predicting states that would not meet
the vaccination threshold ("positive class’ is 0). The Model
Performance section includes a detailed discussion on both
these models’ in-sample and out-of-sample performances.
In this study, we find that workplace travel has the most
predictive power in classifying which states would meet the

vaccination threshold required to achieve herd immunity among

all the state-level features and policies. The following two
critical variables are the vaccine mandate for school employ-
ees and the governor’s political affiliation of each state. Po-
litical affiliation (PA) becomes important for many reasons.
Governors hold the executive power in their respective states,
which plays a critical role in COVID-19-related policies. They
have the authority to formulate and enforce lockdown poli-
cies, state emergencies, vaccine mandates, face mask man-
dates, and many other policies. Studies (Karaivanov, Lu,

numbers, and the impact of social distance measures taken
by the states and local governments. This drop in workplace
travel could be viewed as a proxy variable of the effective-
ness of the state and local administration’s policies and in-
creased awareness among the employers and employees who
make necessary arrangements for remote work and decen-
tralized office-oriented work style to follow public health
measures. Obviously, one can expect that these population
groups are more sensitive to COVID-19, which, coupled with
their policy environment, plays an instrumental role in get-
ting vaccinated at an increasing rate.

12. Conclusion

Achieving herd immunity through mass vaccination is
one of the policy priorities to combat the COVID-19 pan-
demic. We use three different model specifications and ap-
plied Chi-squared Automatic Interaction Detection (CHAID),
a Decision Tree machine learning algorithm, to identify the
state-level features that predict which states would achieve
the vaccination threshold necessary to develop herd immu-
nity. We discovered that workplace travel is the most impor-
tant feature to achieving the vaccination threshold and that

First Author et al.: Preprint submitted to Elsevier

Page 15 of 18



Predictors of COVID-19 Vaccination Rate

political affiliation is the most important feature when com-
pared to economic predictors and the growth rate of COVID-
19 cases in a more conservative feature set. This is signifi-
cant since economic, business (sales), and infection growth
rates are the most often discussed topics in the media and
public arena. The fact that political affiliation outperforms
them demonstrates how politics may be a powerful predic-
tor in these scenarios. As a robustness check, we also use
several machine learning algorithms such as Random Forest
(RF), Lasso (LCV), Ridge (RCV), XGBoost (XGB), East-
icNet (ECV), Logistic Regression (LR), and Support Vec-
tor Machine (SVM). Our results hold across all these algo-
rithms; that is, workplace travels, political affiliation of the
governor, and the vaccine mandate in schools remain the top
three features.

One limitation of our study is that we could not capture
the real-time changes in the job market movement related to
workplace travels. Due to the pandemic, the U.S job market
went through structural changes and experienced some un-
usual movements in job loss and job creation. On the other
hand, even though our data includes COVID-19-related pol-
icy variables that are directly related to the governor’s polit-
ical affiliation, we were unable to empirically pin down all
the possible channels of the effect of the governor’s politi-
cal affiliation. For example, data on how the governor’s of-
fice mobilizes resources to deal with the pandemic and how
efficiently the states enforce the COVID-19-related policies
is not observable. Future studies may address these issues
along with undertaking a study that would be able to pro-
vide a causal interpretation of the results.
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