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A B S T R A C T   

Air quality is critical for public health. Residents rely chiefly on government agencies such as the 
Environmental Protection Agency (EPA) in the United States to establish standards for the 
measurement of harmful contaminants including ozone, sulfur dioxide, carbon monoxide, volatile 
organic chemicals (VOCs), and fine particulate matter at or below 2.5 μm. According to the 
California Air Resources Board [1], “short-term PM2.5 exposure (up to 24-h duration) has been 
associated with premature mortality, increased hospital admissions for heart or lung causes, acute 
and chronic bronchitis, asthma attacks, emergency room visits, respiratory symptoms, and 
restricted activity days”. While public agency resources may provide guidance, it is often inad
equate relative to the widespread need for effective local measurement and management of air 
quality risks. To that end, this paper explores the use of low-cost PM2.5 sensors for measuring air 
quality through micro-scale (local) analytical comparisons with reference grade monitors and 
identification of potential causal factors of elevated sensor readings. We find that a) there is high 
correlation between the PM2.5 measurements of low-cost sensors and reference grade monitors, 
assessed through calibration models, b) low-cost sensors are more prevalent and provide more 
frequent measurements, and c) low-cost sensor data enables exploratory and explanatory ana
lytics to identify potential causes of elevated PM2.5 readings. This understanding should 
encourage community scientists to place more low-cost sensors in their neighborhoods, which can 
empower communities to demand policy changes that are necessary to reduce particle pollution, 
and provide a basis for subsequent research.   

1. Introduction 

Connecticut has the dirtiest air in New England [1] and the consequences to human health are devastating. Globally, air pollution is 
responsible for nearly 9 million excess deaths annually [2]; in the United States, over 100,000 deaths are attributable to fine particulate 
matter air pollution [3]; and nearly 200 people die in Connecticut each year from dirty air [4]. On average, every global citizen loses 
approximately 2.2 years of life due to particulate pollution, comparable to 1.9 average years of life lost due to smoking [5]. PM2.5 air 
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pollution is the single greatest global environmental risk factor causing excess death, mostly by cardiovascular disease [6]. 
There is abundant literature demonstrating negative health impacts from particulate matter. For some time, we have known that 

exposure to PM2.5 increases the risk of death from five conditions: ischemic heart disease, lower respiratory infections, chronic 
obstructive pulmonary disease, stroke, and lung cancer [7]. More recent studies conclude that the disease burden from PM2.5 is higher 
than previously estimated and is linked to numerous additional illnesses including chronic kidney disease, dementia, type 2 diabetes, 
hypertension and pneumonia [8]. 

The burden of excess death attributable to PM2.5 exposure disproportionately afflicts Black individuals and low-income commu
nities, and this disparity is apparent in both urban and rural areas. Nearly all the excess deaths occur at levels below EPA safety 
standards [8–10]. 

In 2021, the World Health Organization [11] reduced the level of fine particulate pollution considered safe for humans to breathe 
from 10 μg/cubic meter to 5 μg/cubic meter. This guidance reflects overwhelming evidence showing harm from PM2.5 well below 
levels approved by federal and state agencies. Under the old standard, only 7% of US residents lived in areas considered hazardous; 
under the new guideline, 93% of us now live in areas where pollution exceeds safe standards [5]. 

Because of these health effects of air pollution, this study explores drivers of PM2.5 and the importance of locality on PM mea
surement, which should motivate more analysis and be brought to bear on public policy choices regarding management of PM 
pollution. 

Prior to launching this PM2.5 research, a recurring strong ammonia odor was observed in an area near the CPV Towantic Energy 
Center, an 805-MW fossil gas-fueled combined-cycle electric generating facility operating in the Woodruff Hill Industrial Park in 
Oxford, Connecticut. Adjacent to the Center is the Oxford “Algonquin” Compressor Station, comprised of 3 compressor units at 37,700 
total hp; two “Mars-100” turbine-compressors rated at 15,000 hp each and one “Solar Taurus” 60 turbine-compressor rated at 7700 hp; 
located about 1.4 km east of the Waterbury-Oxford Airport runway (https://www.industrynet.com/listing/3880818/enbridge-inc- 
algonquin-gas-pipeline-oxford-compressor-station). 

Community Scientists in the area deployed a low-cost sensor to measure PM2.5 and sought a fugitive methane study from air quality 
researchers in Connecticut. Using technology reported in an earlier study [12] the team performed a field investigation of the area in 
April 2022. 

Fig. 1 displays an area map and results of the field study in a data visualization. 
From the resulting methane readings, it was clear that the compressor station was producing spikes in methane as compared to 

ambient levels observed in the surrounding area. The CPV Towantic Energy Center was offline at the time of the fieldwork. Methane 
observations taken nearer the location of the low-cost sensor later deployed by the Community Scientists produced no noteworthy 
methane spikes. Subsequent attempts to use airbags to record methane at the sensor location also produced no significant methane 
readings. To aid in the measurement of air quality in the area surrounding the energy center and compressor station, three PurpleAir 
(PA) sensors were selected, based on publicly available data, to monitor PM2.5, and the present study was launched. 

The need for PA sensor calibration to reference grade monitor outputs is well documented in the literature [13–17]. Often deployed 
is a “one-size fits all” approach, meaning a single correction/calibration factor for daily measurements over a wide area, e.g., nation, 

Fig. 1. Field study route for measuring fugitive methane; inset: close-up of Energy Center Area (source: Google Earth).  
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region, state, etc. based on nearby PA sensors [13–15]. Many calibration studies of low-cost sensors including PA were performed on a 
colocation basis. That is, sensors were placed in close proximity to the reference grade monitor they were intended to mimic [15,18,19]. 
This was not possible in the micro-region chosen for our analysis over our chosen time-window. Alternatively, we assume the cor
rection/calibration factors determined for each of the three PurpleAir sites would be statistically different, which is supported by the 
work of Gupta et al. [16], and Self et al. [20]. 

Beyond determining Local (site-specific) Correction/Calibration Factors (LCFs) by site, we attempt to attribute PM2.5 variation to 
local drivers such as temperature, relative humidity, pressure, precipitation, wind speed, wind direction (a categorical variable of 
compass quadrants with reference or baseline direction being southeast), industrial activity, etc. In peer papers, main causes of PM2.5 
variation were often assumed a priori and defined the setting in which correction/calibration factors were estimated [15,21] while in 
this study, we are not assuming causality but rather evaluating potential meteorological and industrial correlates as potential driving 
influences on hourly PM2.5 variation on a micro-level. 

Studies have incorporated human, energy-related and/or meteorological factors into their research, but differ in material ways to 
the present work, chiefly regarding the spatiotemporal data grain or sensor colocation. Geng et al. [22] used macro-level exogenous 
data to quantify the relative influence of eight factors on PM2.5-related deaths, including energy policy, economic growth/structure, 
population growth, and health care. Lim et al. [23] proposed a macro/regional spatiotemporal approach to understand PM2.5 drivers: 
population, urban ratio, and vegetation. Brewer et al. [24] found significantly elevated levels of PM2.5 and ultrafine particulate 
concentrations attributed to fossil gas-fired turbines using sophisticated tests conducted on daily data at an energy facility in California, 
U.S.A. Gao et al. [25] quantified the province-specific human health impact of power generation emissions on annual mean PM2.5 in 
China. Requia et al. [26] further found annual regional PM concentrations vary with meteorological conditions using data available 
from the EPA and NOAA. Feenstra et al. [27] concluded a decisive influence of Relative Humidity on low-cost sensor bias compared to 
a collocated FEM monitor, and advocated for more refined monitoring on a community or neighborhood scale (a finer spatial grain). 
Malings et al. [18] created hourly correction equations for colocated PA sensors that include Temperature and Relative Humidity as 
covariates at sites separately impacted by urban activity, industrial activity, traffic emissions and rural activity near Pittsburgh, U.S.A. 

As for use of regression to identify potential drivers of PM2.5, Russell et al. [28], and Self et al. [20] developed spatiotemporal 
quantile regressions with meteorological factors on daily averaged data and demonstrated significant spatial variation. Our use of 
logistic regression to evaluate drivers of elevated PM2.5 levels among energy and meteorological measurements appears to be novel in 
the relevant literature. 

The present paper expands these efforts by incorporating hourly meteorological data, including wind speed, wind direction, and 
precipitation, while also including hourly energy production and daily shale (or fossil) gas distribution data in an attempt to evaluate 
the relative factor influence on elevated levels of locally calibrated PM2.5 measured with spatial variation by non-colocated sensors. 

The goal of this study is two-fold: 1) to evaluate the relationship between PM2.5 readings from a state-sponsored Reference Grade 
Federal Equivalent Method (FEM) Monitor located in Waterbury, CT and readings from low-cost PurpleAir sensors at three nearby 
locations, in order to investigate if macro-level correction/calibration factors are adequate to develop a localized view on PM2.5 
variability, and 2) to explore and evaluate, using regression methods, the relationship between calibrated hourly PM2.5 readings at 
each of the three sensor sites, and multivariate meteorological and energy production-related measurements, in order to provide 
insight into potential driving factors of elevated readings in our chosen micro-area and to provide a blueprint for analysis more broadly 
across the state, region and beyond. 

2. Materials and methods 

2.1. Description of monitor, sensors, and ancillary sources 

2.1.1. Waterbury FEM monitor 
The Waterbury site uses an FEM Teledyne API T640 monitor for PM2.5 mass concentration. The Teledyne API Model T640 with 

T640X Option is a real-time, continuous PM mass monitor that uses scattered light spectrometry (using 90◦ white-light scattering with 
polychromatic LED) for measurement of PM2.5, and the T640X Option measures PM2.5, PM10, and coarse PM. The sample rate is 5 LPM 
(T640) or 16.67 LPM (T640X) [29]. 

According to CT DEEP [29], the monitor undergoes automated daily and weekly checks that do not disrupt data collection, but the 
monitor may be offline for an hour or longer for preventative maintenance or repairs. Full calibrations or audits are performed 2 to 3 
times annually and may cause the monitor to be offline for several hours. If unusual data appears during reviews e.g., if a monitor’s 
values are significantly higher or lower than others in the state, CT DEEP may carry out additional quality control checks which may 
also result in downtime. PM2.5 is highly localized so it is unclear why this metric is used as a reason to take a monitor offline for checks. 

Hourly PM2.5 data (μg m− 3) from the Waterbury FEM monitor was provided by CT DEEP for the period 1 January 2021 to 1 July 
2022. It should be noted that, according to CT DEEP, Eastern Standard Time (EST) is used as the recorded timestamp, and is not 
adjusted when Daylight Saving Time is used. To facilitate our study, the primary key for all data joins was Universal Time Coordinated 
(UTC) time (hour). The Waterbury monitor was available 97.5% of the time over the observational period. 

2.1.2. PurpleAir sensors (PurpleAir.com) 
PA–II–SD air quality sensors use 2 PMSX003 sensors, specifically the Plantower PMS-5003 sensor. These sensors operate using a 

class 1 laser and a detector plate to measure particulate matter. A fan draws air into the device and through the path of the laser beam, 
and any passing particles reflect light onto the detector which measures the reflected light pulse. The duration of the pulse indicates the 
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size of the particulate matter, and the number of pulses is used to determine PM concentration. The sensor can differentiate between 
and measure concentrations for PM1.0, PM2.5, and PM10 for standard indoor (CF = 1) and outdoor PM (CF = ATM). The 2 PMS-5003 
sensors measure PM in real time, with each one alternating 5-s readings averaged over 120 s. Hourly PM2.5 data (μg m− 3) were ob
tained from the PurpleAir website map by location for the Gunntown, Long Meadow, and Lake Zoar sensors. 

2.1.3. Ancillary data sources 
Table 1 is a summary of data evaluated in this study. As noted, this paper’s aim is to explore micro-level calibrations of low-cost 

sensors to a nearby reference grade monitor, and to further attempt to explain variability in PM2.5 by attribution to and determination 
of the relative importance of potential causal factors both natural and man-made, namely: temperature (temp), relative humidity (RH), 
time of day, day of week, precipitation, visibility, wind speed, wind direction, energy production, energy distribution, and road/air 
traffic activity. Insufficient data limited useful analysis for some sources, while other sources were determined to be statistically 
irrelevant. 

2.2. Analysis methods 

2.2.1. Analysis strategy 
The Waterbury micro-area was chosen for this study owing to proximity to the CPV Towantic Energy Center, the Oxford 

“Algonquin” Compressor Station, the Waterbury-Oxford Airport, and available low-cost sensor data from PurpleAir’s real-time map 
(https://map.purpleair.com). Hourly data were gathered from all potentially relevant sources over the period January 1, 2021–July 1, 
2022. The 3 PurpleAir sensors included in this study (Gunntown, Long Meadow and Lake Zoar) produced output data at various times 
during this period, with the Lake Zoar sensor available for the greatest length of time (see charts in supplemental materials). The goal 
of the first part of this study is to estimate LCFs at each sensor using linear regression analyses to adjust PurpleAir PM2.5 output to be 
more aligned (calibrated) to that of the nearby CT DEEP Waterbury FEM Monitor, which required joining data by hourly timestamp. 
Given there was no low-cost sensor colocated with the reference grade monitor over the duration of this study, 3 PurpleAir locations 
nearby (8–16 km), and generally in the westerly direction from Waterbury, were chosen with the realization that there could be in
fluence from intervening factors such as the ones to be explored in the study’s second part (note that the Lake Zoar sensor is located to 
the southwest of the airport and energy enterprises). Once LCFs were determined, adjusted (calibrated) PurpleAir PM2.5 measurements 
were then joined by hourly timestamp to environmental (chiefly weather) and non-environmental (chiefly energy) data for logistic 
regression analyses. Joining hourly data from sources distributed over a micro-region implies a contemporaneous influence of factors 
on PM2.5 despite geo-spatial separation. Suggestions for incorporating time lags in more advanced time-series regression analyses are 
made toward the end of the paper. 

Logistic Regression Modeling is a supervised learning approach used in statistical analysis when a dichotomous response variable is 
of interest, providing a linear relationship between log-odds and explanatory variables. As we are primarily concerned with elevated 
levels of calibrated PM2.5 as previously mentioned, the analysis incorporated an indicator outcome variable (0/1) for calibrated PM2.5 
≥ 12 μg m− 3 measured from hourly data; that is, hourly calibrated PM2.5 was coded with a “1” if PM2.5 ≥ 12 μg m− 3. The threshold of 
12 μg m− 3 is higher than the previously cited guidance by the World Health Organization (2021) and therefore values exceeding this 

Table 1 
Key variables used in analysis.  

Data Description Data Link Grain Key Variables/Primary Key Commentary 

CT DEEP PM2.5 Sourced directly 
from CT DEEP 

Hourly (1 Jan ’21–30 
Jun ’22) 

PM2.5, EST timestamp 97.5% of hours available 

PurpleAir – Gunntown PurpleAir - 
Gunntown 

Hourly, at site (16 
Apr ’21–30 Jun ‘22) 

PM25_CF1_ug/m3, PM25_ATM_ug/m3, Temp_F, 
Humidity_%, Local timestamp 

Operational periods, using CF 
= ATM, 
Missing initial observations 

PurpleAir – Long Meadow PurpleAir - Long 
Meadow 

Hourly, at site (23 
Mar ’21–30 Jun ‘22) 

Same as Gunntown Operational periods, using CF 
= ATM, 
Missing initial observations 

PurpleAir – Lake Zoar 
(“woti”) 

PurpleAir - Lake 
Zoar 

Hourly, at site (1 Jan 
’21–30 Jun ‘22) 

Same as Gunntown Operational periods, using CF 
= ATM 

Oxford Weather Data NOAA LCD Hourly (1 Jan ’21–30 
Jun ‘22) 

Precipitation, Temp, RH, Pressure, Visibility, 
Wind Speed/Direction 

Time stamp in local time, 
converted 

EPA CAMPD – CPV 
Towantic 

EPA Clean Air 
Mkts Prog Data 

Hourly, at site (1 Jan 
’21–30 Jun ’22) 

Operating Level, Gross Load (MW), Heat Input 
(MM BTU), SO2 Mass (lbs), CO2 Mass (short 
tons), NOx Mass (lbs), by date 

Variables highly correlated, 
Gross Load (MW) chosen 

Oxford Compressor Data Enbridge 
Infopost 

Daily, at site (1 Jan 
’21–29 Jun ’22) 

First Cycle, Operationally Available Meter 
Capacity and Nominal throughput 

MDTH/day (000’s 
decathermals/day) 

Road Traffic Profile Data Gunntown- 
Chestnut Tree Rd 
Station ID =
NAUG-164 

3-day monitoring, 
(16–19 Mar ‘21) 
tested 

Weekday profile of traffic count/% by class Survey data over ~3-day 
period, extrapolated to study 
timeframe 

Waterbury-Oxford Airport 
Take-off & Landing 
Data (TOLD) 

Flight Radar 24 Daily data, ~Dec 
2022 tested 

Daily scheduled and tracked flights 1-month of data evaluated 
(Dec, ’22)  
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threshold can be considered elevated. The threshold also provides a sufficient number of cases for feasibility of regression. Our hy
pothesis is that while the three PA sites are in the same micro-region, different estimated log-odds equations will be produced which 
may be suggestive of varying relative importance of the exogenous variables that prove to be the most explanatory or predictive of 
elevated PM2.5 periods (hours). Heteroskedastic-robust standard error estimation for parameters was deployed. 

In addition, models were developed with and without an Auto-Regressive (AR) component (e.g., using the previous day’s PM2.5 
average), since an AR term may overwhelm the influence of other factors in terms of model fit and parameter estimation, and therefore 
developing models with and without this component is a prudent step. In the spirit of model validation, a reduced sample size (90%) 
was provided to the regressions to determine model/coefficient estimate stability (lower sample sizes were also evaluated). 

Exogenous variables supplied to the logistic regression algorithm were identically defined at each site and are provided in the 
supplemental material. The selection of variables was based on literature review, availability of suitable data, and judgment/intuitive 
reasoning. Clearly other exogenous factors may play a role in determination of unacceptable PM2.5 periods, but associated data were 
unavailable or scant (e.g., air and roadway traffic data, mold spore counts, etc.). It should also be noted that many of these variables 
were measured contemporaneously with the PA PM2.5 outputs (aside from the L3H = “Last 3 Hours” and Yday = “Yesterday” vari
ables). A model whose primary purpose is forecasting would naturally be endowed with a longer forecast horizon using time series 
analysis (e.g., an Auto-regressive Distributed Lag or “ARDL” model); this work is left for future research. 

Univariate statistical analysis and data visualization informed variable transformations prior to building regression models for 
knowledge discovery. Namely, it was deemed that Temperature and Relative Humidity likely have non-linear relationships with levels 
of calibrated PM2.5 at each site. The following heuristically derived transformations were developed for use in logistic regression: 

TempcF =

{
1 if Temp c ≤ 32F

(Temp c − 60F)2 otherwise (1)  

RH cF =(RH c − 60%)
2 (2)  

in equations (1) and (2), Temp_c and RH_c represent the Temperature and Relative Humidity, respectively, based on PA sensors 
primarily but imputed from Waterbury-Oxford airport data if missing (only at Gunntown for ~ 5% of the observations). 

2.2.2. Data management  

- Date formatting: given the CT DEEP Waterbury monitor records hourly data in Local Standard Time (Eastern Standard Time, or 
EST, in our case) format, it and the timestamps of other data sources used in this study required transformation to UTC for proper 
data joining (PurpleAir sensors record data in UTC format). Using Local Standard Time recorded by the CT DEEP Waterbury 
monitor is not recommended, as it does not follow Daylight Saving Time transitions, while other data sources do. This is evidently 
the case for all state monitors that follow Clean Air Act guidelines (per discussion with CT DEEP representatives).  

- Data joins: for the purposes of analytics, data sources were joined using an outer join with the CT DEEP Waterbury monitor’s 
calculated hourly UTC timestamp as the primary key. Missing data from other sources was handled in subsequent regression 
analyses (i.e., removed). A User Guide, all input data tables, supporting SQL code, resulting modeling input tables and associated 
Python code are provided in the supplemental materials. In addition, a Microsoft Access database, “Waterbury Calibration Data 
v2.accdb” which employs data management logic is provided for those who have a license. 

3. Results 

3.1. Exploratory data analysis (EDA) for calibration regressions 

Prior to attempting no-intercept linear calibration regressions between the CT DEEP Waterbury monitor and each of the 3 PurpleAir 
sensors, data visualizations were employed. As noted earlier, the CT DEEP Waterbury monitor and PurpleAir sensors are based on 
different measurement technology, motivating the need for calibration of PurpleAir measurements to be in line with reference grade 
monitors. Moreover, anomalous PurpleAir measurements of PM2.5 above a value of 100 μg m− 3 were considered outliers and removed 
from further analysis. PurpleAir sensors provide two output types: CF = 1 and CF = ATM, the former being an internal correction factor 
suggested for indoor use and the latter for outdoor use. While this study evaluated each, only results of the CF = ATM outputs are 
reported given this study is focused outdoors. It should also be noted that PM2.5 data do not generally follow a normal (Gaussian) 
distribution, and inferences based on such a distribution may not be valid. 

Several observations emerge. First, there is a strong relationship – seemingly linear – between the CT DEEP Waterbury (WB) 
monitor’s PM2.5 output and each PurpleAir (PA) sensor’s (CF = ATM) PM2.5 output. Second, the intercept (expected value of WB PM2.5 
when PA PM2.5 = 0) appears to be zero in each case – justifying a “no-intercept” calibration regression. Third, the slope of the rela
tionship between WB measurements and each PA measurement set appears to be different – justifying separate (local) calibration 
regressions rather than a “one-size-fits-all” approach. Last, and perhaps most interestingly, a similar profile is evident in the plots of 
average PA PM2.5 measurements by Month of Year (MoY); a considerable spike is seen in the month of July and a lesser spike at the turn 
of the year. This phenomenon is also observed from WB data as well as PA sensors across the globe, with the exception of a few mostly 
arid locations (see Zhao et al. [30], for similar findings). A potential cause may be fungal spores [31]. Detailed study of this phe
nomenon is left for future research. Explanatory models derived from this study are assessed conventionally but also on the basis of 
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their ability to reproduce the empirical monthly profile. 

3.2. Local correction/calibration factors (LCFs; modeling WB reference grade monitor vs PA sensor outputs from 3 nearby, not colocated, 
locations) 

There are 8 continuous FEM monitors in the state of Connecticut that measure PM2.5, one of which is in Waterbury [29]. CT DEEP 
has more recently deployed a colocated PurpleAir sensor at this site. Moreover, as previously mentioned, studies have aimed to 
produce a one-size-fits-all, broad-based, or nationwide correction factor (e.g., for woodsmoke as in Ref. [15]), which we have found to 
be unsupportable given the empirical analysis, and our secondary goal of finding local drivers of PM2.5 variation. 

LCFs have been computed to adjust for the bias in raw data output from PurpleAir sensors, for reasons previously noted. The 
approach used in this study was to estimate a linear regression equation relating the CT DEEP Waterbury PM2.5 data paired with each 
PurpleAir sensor’s PM2.5 data, assuming there is no intercept in the linear model. This is tantamount to assuming the CT DEEP monitor 
and PurpleAir sensors should record a measurement of zero PM2.5 when there is no ambient particulate matter measured by PA sensors, 
which is justified conceptually and empirically. Table 2 displays regression results and LCFs for each site. 

The following observations are made from this analysis. First, all regressions produce healthy adjusted R2, with 76%–86% of the 
variation in the CT DEEP Waterbury PM2.5 explained by regressing on site-specific PurpleAir PM2.5 measurements. Sensitivity checks 
produced similar estimated LCF values as shown in Table 2. These results are in alignment with research reviewed in the literature [32, 
19]. Second, site-specific LCF’s vary significantly from site to site, with Lake Zoar’s being the smallest at 0.6203, Gunntown’s at 
0.7148, and Long Meadow’s the largest at 0.8309, supporting general findings made by other researchers [32,28], and which would be 
expected based on the empirical plots. Finally, although the data do not follow a normal distribution, the 95% confidence intervals 
(whose accuracy depends on the normality assumption) do not overlap, suggesting that the LCFs are statistically different – a conclusion 
that motivates the remainder of the paper. Finally, diagnostic statistics (MAE, RSME) are also consistent with earlier studies [32]. 

As this is not a controlled study, and not all potential contributing factors have been measured (e.g., fungal spores), care will be 
taken to avoid concluding causality when perhaps only suggestive correlations have been discovered and omitted variable bias may be 
a risk. 

The grain of data used in estimation of LCFs matters, i.e., daily or hourly averages. As it is an objective to evaluate potential sources 
of variability using hourly data where practicable, we move forward with the LCF estimates based on hourly data. Based on the an
alyses in Table 2, we conclude that deployment of LCFs remains a prudent practice when sources of local variation are to be explored, 
as we do in the forthcoming evaluation of Local Explanatory Regressions. Regression analyses are based on PurpleAir output calibrated 
using LCFs from Table 2, e.g., for Gunntown analysis, PA PM2.5 values were multiplied by its unique LCF beforehand, etc. 

3.3. Local explanatory regression (PA sensor calibrated PM2.5 vs explanatory variables) 

Once each PurpleAir sensor has been calibrated to be consistent with (in terms of magnitude) the CT DEEP Waterbury reference 
grade monitor, we endeavored to understand potential drivers of elevated PM2.5 variation at each site, using candidate factors derived 
from Table 1. Our analysis paired data from each PA sensor with candidate explanatory factors by UTC hour. Time-based influence 
from key factors was evaluated by creating variables based on recent hours and also the average of the previous day. Regression 
analysis outside of a randomized controlled trial (RCT) will not confirm causality but rather indicate association (correlation in the 
case of linear models), and conclusions based on regressions not employing RCT are subject to confounding and omitted variable bias. 
To mitigate this risk, we explore customary validation methods. 

Guidance from experts in the field (per discussion with CT DEEP) suggested attributing levels of or variation in PM2.5 by time of day 
and season of year, given the sun’s influence during the day and through the year. In addition, as humans go about their typical work- 
week, a build-up of particulate matter arising from automobile exhaust, salt spray, dust, etc. may be influential. Accordingly, in 
addition to the factors in Table 1, the analysis included variables for Morning, Weekday, and Season/Month of Year. It was anticipated 
that inclusion of Temperature and Relative Humidity as correlates may account for the influence of quotidian or seasonal variation 
arising from these time factors and would render them superfluous. 

Univariate analysis, exploring each variable’s relationship with each PurpleAir sensor’s calibrated PM2.5, was performed, using 
decile means plots associated with each sensor site. Decile means are particularly useful when scatterplots fail to reveal useful patterns 

Table 2 
LCF Regression Results for PA sensors near Waterbury reference grade monitor; *data are not normally distributed.  

Site Gunntown Long Meadow Lake Zoar 

Observations 8496 7394 11,920 
PA Coefficient 0.7148 0.8309 0.6203 
Est. Equation WB_PM2.5 = 0.7148 × PA_PM2.5 WB_PM2.5 = 0.8309 × PA_PM2.5 WB_PM2.5 = 0.6203 × PA_PM2.5 

95% Conf Int.* (0.709, 0.721) (0.820, 0.842) (0.615, 0.625) 
90% Sample Est. 0.7134 0.8302 0.6200 
R2 0.863 0.761 0.838 
MAE 3.00 3.80 3.13 
MSE 17.11 23.09 17.72 
RMSE 4.14 4.81 4.21  
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in the data; deciles are calculated for the explanatory variable and the mean values of PM2.5 (calibrated) are plotted against the mean 
values of the explanatory variable within each decile. These values are connected for visual interpretation and a linear trend is 
overlayed but not implied. The purpose of this analysis, found in the supplemental material, is to inform subsequent regression 
modeling in terms of variable transformation and model formulation. 

Several observations are made:  

1. Temperature (degrees Fahrenheit) displays a somewhat similar non-linear relationship with calibrated PM2.5 at each site. The 
linear trendline at Gunntown displays a positive slope. The pattern suggests a different relationship at the freezing point (32F) than 
for higher values. Moreover, a parabolic relationship with a vertex at ~60F is exhibited at values above freezing.  

2. Relative Humidity (% saturation) also has displays a non-linear relationship at each site, with a general positive trend as values 
increase, although there is a concave, perhaps parabolic, relationship with a vertex near 60%.  

3. Wind Speed (mph, measured at the Waterbury-Oxford Airport) displays a dramatic negative relationship at each site; conceptually 
this is reasonable given that wind would tend to scatter/mix particulate matter.  

4. Gross Load at the CPV Towantic Energy Center (MW, measured at the center) displays a similar relationship at each site that is 
generally positive but potentially non-linear. There is a high concentration of values in the 400 MW neighborhood.  

5. Throughput of the Oxford “Algonquin” Compressor Station (MDTH/day, measured at the station) displays slightly different 
trends by site that are also potentially non-linear. Interestingly, there appears to be a local minimum of average PM2.5 at a 
throughput of 1200 MDTH/day at each site. The Gunntown PA site is approximately 1.4 km away from the compressor station in 
the easterly direction (see Fig. 2). 

Precipitation (inches, measured hourly at the Waterbury-Oxford Airport) generally has a negative relationship at each site, also 
conceptually sensible as precipitation tends to mitigate PM [33]. Data were not amenable to decile means analysis given the relatively 
low amounts of rainfall and snowfall during the study period at any given time. Instead, boxplots were used for graphical display and 
evaluation. 

Roadway and Airway Traffic data were also explored; it was hypothesized (as is suggested in the literature by Kim et al., [21]) that 
there is a positive relationship between vehicle traffic and PM2.5 levels. However, owing to the limited nature of the available data 
(3-day and 1-month periods for road and air traffic, respectively), relative traffic influences were left for future research. 

In summary of our univariate analyses, there appear to be factors with useful value in terms of explaining variation in calibrated 
PurpleAir PM2.5 observations at each site. Some factors exhibit non-linear relationships based on data visualizations. Given our pri
mary interest is in understanding what drives higher values of PM2.5 and if different relationships exist between PM2.5 measured at 

Fig. 2. Region of PM2.5 Study, with Measurement Locations and Noteworthy Features (inset – “Algonquin” Fossil Gas Pipeline; source: Enbridge  
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Table 3 
Logistic regression results.   

Explanatory Variable 
Gunntown Long Meadow Lake Zoar 

no AR AR 90% Sample no AR AR 90% Sample no AR AR 90% Sample 

Intercept 55.9111 47.7051 46.0071 54.7171 49.3009 46.5489 11.9694 5.4351* 5.0246* 
CPV_nom 0.0013 0.0011 0.0010 0.0007 0.0007 0.0005* 0.0010 0.0010 0.0011 
OA_nom 0.0018 0.0014 0.0013 0.0037 0.0032 0.0033 0.0034 0.0024 0.0025 
CPV_change 0.0045 0.0039 0.0041 0.0046 0.0040 0.0038 0.0029 0.0019 0.0020 
Temp_cF 0.0026 0.0024 0.0024 0.0016 0.0015 0.0016 0.0018 0.0017 0.0017 
RH_cF − 0.0020 − 0.0021 − 0.0022 − 0.0017 − 0.0016 − 0.0017 − 0.0023 − 0.0024 − 0.0023 
HrlyViz − 0.0940 − 0.0933 − 0.0969 − 0.1018 − 0.0860 − 0.0867 − 0.0710 − 0.0710 − 0.0689 
HrlyWindSpd − 0.0675 − 0.0702 − 0.0744 − 0.0403 − 0.0491 − 0.0522 − 0.0908 − 0.1001 − 0.1013 
HrlyPress − 1.8858 − 1.5876 − 1.5294 − 1.9628 − 1.7553 − 1.6601 − 0.4453 − 0.2110* − 0.2034* 
WindNW − 0.8918 − 1.1247 − 1.1893 − 1.0877 − 1.1964 − 1.1228 − 0.9250 − 1.0315 − 1.0746 
WindSW − 0.2465 − 0.2607 − 0.3452 N/A N/A N/A N/A N/A N/A 
WindNE − 0.6745 − 0.7466 − 0.8022 − 0.7295 − 0.8063 − 0.8033 − 0.5613 − 0.5861 − 0.5983 
L3H_precip − 7.3076 − 6.5557 − 6.7752 − 8.7541 − 7.6337 − 7.3393 − 11.9997 − 11.9143 − 11.3318 
L3H_Temp N/A N/A N/A 0.0274 0.0287 0.0314 N/A N/A N/A 
L3H_RH N/A N/A N/A 0.0138 0.0177 0.0180 N/A N/A N/A 
L3H_WindSpd − 0.1099 − 0.1377 − 0.1347 − 0.1165 − 0.1360 − 0.1387 − 0.1280 − 0.1511 − 0.1524 
Yday_RH − 0.0270 − 0.0451 − 0.0449 − 0.0494 − 0.0723 − 0.0769 − 0.0292 − 0.0429 − 0.0418 
Yday_WindSpd − 0.2640 − 0.1712 − 0.1569 − 0.3369 − 0.2699 − 0.2726 − 0.2308 − 0.0823 − 0.0805 
Yday_Precip − 1.0979 − 0.8936 − 0.8632 0.4887 0.7250 0.7242 − 0.9358 − 0.7307 − 0.7046 
Yday_PM2.5 N/A 0.0799 0.0828 N/A 0.0782 0.0796 N/A 0.0821 0.0822 
KS, ROC 0.5429,0.8512 0.5961,0.8786 0.6000,0.8792 0.5980,0.8766 0.6544,0.8886 0.6514,0.8909 0.5874,0.8752 0.6462,0.8949 0.6402,0.8943  
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each site, a reasonable next step is to employ regression techniques by site that allow for non-linear relationship exploration and 
reliably explain higher instances of calibrated PM2.5 observations. To that end, we next model these higher values (established at ≥ 12 
μg m− 3 at each site) using Logistic Regression Modeling. 

3.4. Logistic regression results 

Table 3 displays the results of 3 regression trials for each site: a) no auto-regressive (“no AR”) component, b) AR (with AR 
component), and c) 90% sample (with AR component). 

Models are evaluated using various standard techniques including Kolmogorov-Smirnov (KS), Receiver Operating Characteristic 
(ROC) and Variance Inflation Factors (VIFs). The modeling process was essentially backward elimination, with each site’s “no AR” 
model presented with the full complement of exogenous factors, and variables subsequently eliminated if statistically insignificant (p- 
value = 0.05), or their VIF was greater than 5. Once the “no AR” model was derived, the AR component was added and coefficient 
magnitudes and signs reviewed. Finally, the model was redeveloped with the AR component with a reduced sample size, and again 
coefficient magnitudes and signs reviewed. 

Red font in Table 3 signifies a positive association with log-odds of elevated PM2.5, while green signifies a negative association. An 
asterisk (*) indicates that the variable was not significant at the 0.05 level. 

Some take-aways from Table 3:  

1. Goodness of fit metrics are good – all models produce acceptable levels of KS and ROC.  
2. Parameter estimates by site are largely stable after a) inclusion of AR term (Yday_PM2.5), and b) 10% sample reduction (also 

evaluated at 20% and 30%). The model henceforth on which to focus is the AR model at each site.  
3. Parameter estimate magnitude is a function of underlying variable units.  
4. Parameters are interpreted, with some exceptions, as the resulting change in log-odds from a positive 1-unit change in the variable, 

ceteris paribus; for example, increasing L3H_precip (precipitation levels over the last 3 h) by 1 unit (i.e., 2.54 cm) at Gunntown 
would change the log-odds by − 7.31 and therefore change the odds of elevated PM2.5 by exp (-7.31)-1 = − 0.99 or 99% reduction, 
ceteris paribus. 

5. The interpretation of Temp_cF and RH_cF coefficients is more complex, as these are functions of Temperature and Relative Hu
midity. The positive coefficient on Temp_cF implies that for levels above freezing, Temperature has a convex quadratic relationship 
with PM2.5 with a vertex at 60F. A negative coefficient on RH_cF implies that Relative Humidity has a concave quadratic rela
tionship with PM2.5 with a vertex at 60%. This is consistent with the data visualizations. 

6. Generally, the energy-related factors have a positive association with log-odds and meteorological factors have a negative asso
ciation. A counterexample to this is the association with the previous day’s average precipitation (Yday_Precip) at Long Meadow, 
perhaps owing to the increased elevation above sea level at this site. 

Fig. 3 provides a graphical display of the influence of a 1-unit change in each variable on the log-odds of an elevated PM2.5 period. It 

Fig. 3. Relative Influence (in odds of PM2.5 ≥ 12 μg m− 3) of a positive 1 unit factor change.  
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suggests that the energy variables have negligible influence on the odds of elevated PM2.5, while wind and precipitation are sub
stantial. Clearly a 1-unit change, ceteris paribus, can be large for some variables (e.g., precipitation in inches) but small for others (e.g., 
Gross Load in MW). Fig. 4 provides a graphical display of the influence of a 1% change in each variable (from the mean) on the odds of 
an elevated PM2.5 period; 1% is well below the Coefficient of Variation (CV) for each variable in the models, e.g., the CV for OA_nom in 
the Gunntown log-odds model is 20%, or 20× the change being evaluated in Fig. 4, and is the lowest CV produced. 

Fig. 4 seems a more realistic evaluation of relative factor influence for the quantitative factors. Take-aways from this analysis are:  

1) A 1% change (from average level) in previous day’s RH and Wind Speed have the largest negative association with odds of an 
elevated PM2.5 period, reducing odds by 1–3% on average.  

2) A 1% change in previous day’s RH has the greatest negative impact on odds at ~3–4%, with greatest influence at Long Meadow.  
3) A 1% change in compressor throughput (MDTH/day) increases odds by 2–5% on average, with greatest influence at Long Meadow.  
4) A 1% change in energy production (MW) only slightly increases odds. 

Greater changes in the input variable may produce greater changes in log-odds, albeit mutatis mutandis. Based on Fig. 4 and analysis 
of likelihood predictions above 90%, in situations for which compressor throughput is elevated (>1300–1400 MDTH/day), at Tem
peratures generally lower than 60F but above freezing, at Relative Humidity near 60% (but higher on average than the previous day), 
low/no Wind Speed, low/no Precipitation, and when the previous day’s average PM2.5 was elevated, then persistently higher levels of 
PM2.5 are assured and harmful conditions are present. 

3.5. Model output analysis 

The supplemental material contains graphical displays of model output (“prediction”) by site compared with actual data. Plotted 
are the average actual level proportion of hours of elevated PM2.5 by month of year, compared to the average of hourly predicted 
probabilities. An investigation of mold/fungus spore contribution to PM2.5 may prove useful in closing the underprediction manifested 
in July of each year. 

4. Discussion and conclusions 

In the present case study, relevant to the micro-area around Waterbury, Connecticut, we found the following: 
Energy-related variables, temperature, and previous day’s PM2.5 have a positive association with log-odds (supporting a priori 

hypotheses). That is, the CPV/OA energy complex is associated with particulate matter in proportion to its use, with compressor station 
throughput having a markedly larger positive impact than energy production and many meteorological variables under a modest 
positive change in input levels. It does not appear to be true that the influence of the CPV/OA energy complex would be more manifest 
at Gunntown than the other two PA sites (Gunntown has the least positive impact based on compressor throughput). This indicates one 
or more of the following: combusted fossil gas from the compressor distributes and settles across the region, or end-user combusted 
fossil gas is present at/nearby each sensor, or throughput of fossil gas is a covariate/confounded with unmeasured phenomena such as 

Fig. 4. Relative Influence (in odds of PM2.5 ≥ 12 μg m− 3) of a positive 1% factor change.  
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use of wood or fuel oil heating. Nevertheless, monitoring air quality at the energy center is recommended. 
Other meteorological variables (RH, Visibility, Wind Speed, Relative Wind Direction, and Precipitation) generally have a negative 

association with log-odds, other than at Long Meadow – perhaps owing to its elevation (generally supporting a priori hypotheses). 
Temperature and Relative Humidity have a non-linear association with odds of elevated PM2.5, as described earlier in the paper; the 
previous day’s Relative Humidity at the Long Meadow sensor has the greatest negative influence on odds, while the other two sites 
exhibit similar behavior. Wind Speed has a negative impact on odds, as expected, while northerly winds have a negative association 
relative to southerly winds. Use of these meteorological factors is critical to properly attributing potential drivers of elevated PM2.5. 

Finally, as anticipated, precipitation has the largest influence under a positive 1-unit change (generally negative), while Oxford 
“Algonquin” throughput (positive), Relative Humidity and Wind Speed (negative) have the largest influence under a positive 1% change 
(over average factor levels). 

Generally, we find that low-cost PurpleAir sensors are quite useful in supporting analysis of ambient conditions on PM2.5. Cali
brations to non-colocated reference grade monitors are more precise if done on a micro-level and not macro-level (e.g., by region, state, 
nation, etc.). For example, Gunntown’s LCF is 0.7148, Long Meadow’s LCF is 0.8309, and Lake Zoar’s LCF is 0.6203, despite being 
within 6–16 km of each other. When exogenous data are available, even if non-colocated to a sensor, they can be useful to understand 
PM2.5 variation; a decile means analysis approach is particularly illuminating. 

When the objective is to understand potential drivers of higher levels of PM2.5, a logistic regression approach has utility. Modeling 
identifies associations between key exogenous variables and log-odds of elevated PM2.5. Incorporating previous day’s average PM2.5 
improves modeling (and has a positive influence on log-odds), indicating autoregressive modeling may be justified. 

Based on the relative straightforward application of low-cost sensor data in this paper, admittedly based on a “convenience” se
lection of PurpleAir sensors and their locations, a more controlled study by state regulators with sensors placed at strategic locations 
throughout the state would be highly beneficial. The authors provide all content of the present study in the supplemental materials to 
anyone who wishes to replicate, apply or extend the work. 

More monitoring by CT DEEP, using low-cost PM2.5 sensors such as PurpleAir, placed at strategic locations throughout the state and 
also organizing private sensor deployment, data aggregation and analysis, would supplement the current state Air Quality plan 
considerably. Moreover, the monitoring (and alerting) on raw/hourly data, with a fixed threshold (e.g., calibrated hourly PM2.5 ≥ 12 
μg m− 3) throughout the state/region, that does not get altered from year to year as EPA mandates change, is highly recommended. As 
discussed earlier, even short-term exposure to PM2.5 is linked with very real and negative human health impacts, which should 
motivate local monitoring and reporting of attributable factors on a more frequent basis, e.g., hourly. Accelerating energy transition to 
electrification could eliminate a substantial portion of elevated PM2.5. 

The connection between air pollution, health, and climate change can be used to benefit humanity: reductions in burning fossil 
fuels reduces air pollution and slows global heating, adding years to global life expectancy [34,35]. The science is clear and the so
lution to the epidemic of preventable air pollution deaths must include public health policies that reduce or eliminate fossil fuel 
emissions and facilitate the transition to clean energy [2,6]. 

The limitations of this study are as follows:  

a) PurpleAir sensors used in this study were selected based on proximity to a reference grade monitor (Waterbury) and an operating 
energy center (Oxford). While the approach should be transferrable to any location, the specific conclusions may not be.  

b) Hypotheses regarding calibration factors hinge on various assumptions (e.g., Normality, Independence) which are likely not met. 
Caution should be used when interpreting confidence interval estimates.  

c) The “attribution” analysis was done chiefly on data contemporaneous with PM2.5 measurements at each sensor, although some of 
the hypothesized influencers of PM2.5 are not measured in a colocated fashion. An approach using time lags, such as Autoregressive 
Distributed Lag modeling (ARDL) should prove useful. Our objective was a preliminary attempt at attribution of higher levels of 
PM2.5 to influencers measured contemporaneously (same hour), recently (previous 3 h) and historically (previous day) and the 
analysis suggests that ARDL could have benefits. Clearly a spatial-temporal modeling approach is applicable, as suggested by other 
authors.  

d) Similarly, it would be most beneficial to gather weather-related data at each sensor rather than use data from a nearby source (e.g., 
Waterbury-Oxford Airport) as a proxy for weather data at each site.  

e) Modeling of Temperature and RH based on decile means was heuristic (e.g., the 60F and 60% vertices and a parabolic assumption) 
and could be modeled more analytically.  

f) Air and Roadway Traffic are likely positive influencers but lack of data availability prohibited their use. Roadway traffic data are 
typically available over a very short time horizon (a few days), but these data didn’t justify continued use based on preliminary 
conclusions – a negative association with PM2.5. Take-off and Landing (TOLD) data are available on a daily basis at a substantial 
cost. Based on a very limited time horizon (a month) for publicly available data, analysis did not prove conclusive. A more detailed 
analysis is suggested. 
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