Introduction

Powassan virus, a member of the TBE consists of two lineages with separate enzootic cycles. One of the lineages in focus is the deer tick virus (DTV) lineage, which extends to the blacklegged tick, *Ixodes scapularis*, and the white-footed mouse (*Peromyscus leucopus*). Clinical presentations of both genotypes of POWV may include encephalitis, meningoencephalitis, and aseptic meningitis (1,3,4). A recent increase in POWV human cases has drawn interest in determining the potential public health impact of the virus as an emerging disease that has been on the rise since 1999 (2.5). It has been reported that the DTV genotype is responsible for the large increase in recent encephalitis cases. This can be due to very aggressive, non-specific host seeking and biting habit of *I. scapularis* or its feeding habits and geographic distribution. The introduction and establishment of enzootic transmission of DTV may occur during the colonization of *I. scapularis* in a new environment, or after the tick population becomes well-established (4,6).

Our research aim:

Determine if DTV is present in *I. scapularis* ticks in Fairfield County (known to have high I. scapularis densities). If present, determine the infection prevalence of DTV in *I. scapularis* ticks at different life stages, and sequentlly analyze phylogenetic studies of the isolates. Lastly, perform a sequence analysis and phylogenetic study of the isolates.

Material and Methods

Trapping and Tick Collection: Trapping was conducted using dry ice, dragging, and flagging, as the most common methods of collecting ticks. Carbon dioxide (CO2) released from dry ice actively attracts host-seeking ticks. In addition, dragging techniques were performed by moving a piece of flannel or cotton cloth across vegetation by an observer. This method allows ticks to attach to the cloth as it passes (7-9). Additional samples were obtained from local veterinary hospitals in Hartford, Hamden, and Fairfield Connecticut.

Homogenization of ticks and RNA extraction: 600 μl of buffer solution were added to frozen tick pools of 10 nymphs or individual adult ticks. Samples were then immediately homogenized, followed by RNA and DNA extraction using the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen).

Conventional PCR and genetic analysis: QIAGEN OneStep Ahead RT-PCR Kit (Qiagen) and previously published primers (10); POWSBD1_F/GGCTTCCAGAGGTGAGTTG POWSBD1_R TTCAAATCTGACATTGTA, were used to amplify the envelope gene of the virus. After purification of amplicon with the QIAquick PCR Purification Kit (Qiagen), the amplified 350 bp base-pair fragment of the envelope gene of each virus isolate will be sequenced at the DNA Analysis Facility on Science Hill at Yale University.

Real time PCR: One-step real-time RT-PCRs will be performed using the Power SYBR® Green RNA-to-CT™ 1-Step Kit (ThermoFisher Scientific) according manufacturer recommendation.

References:


Preliminary Results & Discussion:

Over 100 tick samples (different stages) were examined for Powassan Virus (POWV), as it was mentioned in the materials and methods section, ticks were gathered from mainly veterinary hospitals in Connecticut. Before we run real-time RT-PCR on all extracted RNA, we decided to run conventional RT-PCR using QIAGEN One-Step Ahead RT-PCR Kit according to the manufacturer’s instructions. This decision was made to further study the extracted RNA from the possible positive ticks utilizing sequencing and confirmation. To visualize the PCR products, the gel electrophoresis was performed on the PCR products using an E Gel electrophoresis apparatus (Invitrogen, CA) and their recommended 1% agarose pre-cast gel and 1kb plus express DNA ladder (Invitrogen, CA).

Figure 1 shows positive and negative controls and it also indicates three lanes with positive sample for POWV. As it is seen the gels did not run perfectly and bands are not straight to predict the size of the product and location of the band properly. This also indicates a need for the extraction of DNA products from either PCR reaction for gel electrophoresis and sequence them for confirmatory purposes.

Since the extraction kit was able to extract DNA and RNA at the same time from the tick, it was feasible to perform PCR reactions on DNA samples and evaluate other tick-borne diseases such as Lyme. Again, using conventional PCR, we were able to find at least 2 infected ticks with Borrelia Burgdorferi the causative agent for Lyme disease.

Next step and plans:

We are in the process of calibrating the real-time PCR machine and planning to run all samples using this technique. This will give another way of confirmation of the positive samples and optimized tool for identification of future positive ticks. An established system will be utilized in our lab for analysis of future samples from across Connecticut and the sequencing analysis of the positive sample will be used for further phylogenetic and relationship analyses of the analysis using envelope gene sequences and compared to POWV isolates from adult host-seeking *I. scapularis* collected in 2008, 2010, 2011, and 2012 in Bridgeport and North Branford, CT.

Acknowledgements

- This research was supported by the Sacred Heart University Undergraduate Research Initiative Grant and URCG
- Special thanks and gratitude to Dr. Goudarz Molaei at the Connecticut Agricultural Experiment Station for her scientific guidance and support