
How Artificial Intelligence Works: Using

the Gradient Descent Algorithm

Rachel Glowniak

Faculty Mentor: Tina Romansky, M.S.

MA 398: Senior Seminar

Instructor: Elizabeth Tripp, Ph.D.

Fall 2023

1

Glowniak: How Artificial Intelligence Works: Using the Gradient Descent Alg

Published by DigitalCommons@SHU, 2024



2

Contents

1 Introduction 1

2 How Does A Machine Learn? 3

3 The Gradient 4

3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Example of the Gradient Descent Algorithm 12

4.1 How Does This Work? . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Applying The Cost Function . . . . . . . . . . . . . . . . . . . . . 16

4.3 Using Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . 18

5 Conclusion 21

2

Academic Festival, Event 15 [2024]

https://digitalcommons.sacredheart.edu/acadfest/2024/all/15



Abstract

The recent commercialization of affordable and simplified tools has brought

artificial intelligence out of the movies and research labs and into our homes

and classrooms. Using Alexa, Siri, and ChatGPT has been simplified for the

masses, but the algorithms behind these applications are steeped in math-

ematics and computer science. This paper will focus on gradient descent,

an example of an optimization algorithm. The foundation of the algorithm,

as well as its applications and limitations, will be explored. Finally, we will

present a classic example of the gradient descent algorithm. To further an-

alyze the method, the algorithm has been implemented in code and studied

for efficiency.

3

Glowniak: How Artificial Intelligence Works: Using the Gradient Descent Alg

Published by DigitalCommons@SHU, 2024



1

1 Introduction

In this paper, we will be exploring the field of artificial intelligence. Artificial

intelligence is a general term that can be applied to any system that learns.

Definition 1. Artificial intelligence (AI) is the science and engineering of

making intelligent machines, especially intelligent computer programs [2].

We will be focusing on a specific type of AI called machine learning.

Definition 2. Machine learning is a branch of AI and computer science which

focuses on the use of data and algorithms to imitate the way that humans learn,

gradually improving its accuracy [1].

Machine learning applies to any hardware or software system that continuously

improves the accuracy of the results. These machine learning systems consist of

algorithms and a neural network.

Definition 3. Neural networks simulate the way the human brain works, with a

large amount of linked processing nodes. Neural networks are good at recognizing

patterns and play an important role in applications including natural language

translation, image recognition, speech recognition, and image creation [1].

The term neural network describes a machine learning system that models

how the human brain learns, in that it makes functional connections between

4

Academic Festival, Event 15 [2024]

https://digitalcommons.sacredheart.edu/acadfest/2024/all/15



2

various neurons. Neural networks are some of the most crucial components in

any machine learning system, since they execute the action of taking in data and

being able to decipher it correctly. Within the neural networks are algorithms

that are used to make this learning happen. Sometimes multiple algorithms are

used in one network. These algorithms contain high level mathematical features

which make them complex but also allow the computer to improve its accuracy.

First, the neural networks are provided with training data sets as input values for

these algorithms. The accuracy of the output is measured with a cost function.

Definition 4. The cost function measures the difference, or error, between the

actual y and predicted y at its current position [3].

This improves the machine learning model’s efficacy by providing feedback to

the model so that it can adjust the parameters to minimize the error and find the

local or global minimum. The network will run through its training data each

time a change is made to one of the functions parameters. After each iteration

with the training data set, we will again quantify the error of our results with

the cost function. Then by refining the output generating function against known

input/output pairs, the function ‘learns’ to operate on novel data to an acceptable

tolerance of error. In our example that we will see later on, we will use the cost

function to help us get more accurate results from our neural network. We will

also find out how to use gradient descent to help us minimize the cost function.

5

Glowniak: How Artificial Intelligence Works: Using the Gradient Descent Alg

Published by DigitalCommons@SHU, 2024



3

2 How Does A Machine Learn?

Students learning a new skill will learn from their errors and modify their

process, but how does a machine learn? It does so by modifying its processing

function, then evaluating its error from input to output until it can process novel

data to a minimum degree of error [1]. This structure of machine learning is called

a neural network. There is a set of data consisting of input and output pairs that

is used for training the network. Each data point in the training data set is subtly

different so that the network can be tested to see how well it understands what

inputs should produce the same or different output. This is because the function

will not be one to one, meaning one output could have multiple inputs. We will

use this type of data to train the network, which can take multiple iterations to

do. After each piece of data has ran though the network, we measure the accuracy

of the output with the cost function. This means there will be a cost output for

each data point in our training data set. After this, the average cost is taken to

see how well the network is running. Based on these numbers, tweaks can then be

made to the neural network to better its accuracy. This concept of changing parts

of the neural network is machine learning, since after each iteration the average

cost should be less than before [1]. This same process can be used in any machine

learning system that consists of a neural network. These systems can vary in

complexity, but all have the same basic mathematical components.

6

Academic Festival, Event 15 [2024]

https://digitalcommons.sacredheart.edu/acadfest/2024/all/15



4

3 The Gradient

The gradient, symbolized by ∇, is a direction vector that is associated with a

function. To find the gradient of a function, we first evaluate all of the function’s

partial derivatives. We then put those partial derivatives into a vector. We can

see this with with a two variable example, using the function f(x, y) = x2 + xy:

∇f(x, y) =

 ∂
∂x
(x2 + xy)

∂
∂y
(x2 + xy)

 =

2x+ y

x



This same concept of taking the gradient of a two variable function can applied to

a function with any amount of variables. The number of variables will determine

the number of partial derivatives which will also determine the number of rows in

our vector. The gradient vector has a very important property.

Theorem 3.1. The gradient is the direction of steepest ascent. Thus, the negative

gradient is the direction of steepest descent.

Proof. Let Duf(x0, y0) ̸= 0, the directional derivative of f(x, y) at the point

(x0, y0) in the direction of the unit vector.

Duf(x0, y0) = ∇f(x0, y0) · −→u (1)

= ||∇f(xo, y0)|| ||−→u || cos(θ) (2)

= ||∇f(xo, y0)|| cos(θ) (3)

7

Glowniak: How Artificial Intelligence Works: Using the Gradient Descent Alg

Published by DigitalCommons@SHU, 2024



5

where θ is the angle between −→u and ∇f(x0, y0). Since we want the minimum, we

need θ = π, since that is where cos(θ) is at its minimum.

= ||∇f(x0, y0)|| cos(π) (4)

= ||∇f(x0, y0)||(−1) (5)

= −||∇f(x0, y0)|| (6)

Thus, −→u and ∇F (x0, y0) are in the opposite directions, meaning the directional

derivative is the minimized when −→u is in the direction of −∇f(x0, y0). Therefore

the negative gradient (−∇) is the direction of steepest descent.

Using the gradient to find a minimum of a multi-variable function will be

necessary to minimize error in the application developed later in the paper.

3.1 Requirements

To be able to take the gradient of a function, the function has to be differ-

entiable and convex [6]. To be differentiable, a function must be continuous as

well as smooth. This means the graph can not have any discontinuities, must not

have sharp corners, and can not have any vertical asymptotes. If a function has

breaks, the gradient will not be able to be found, since the point at which we

are taking the gradient at will have no point that is directly next to it. This will

make the gradient part of the algorithm fail, yet the algorithm itself will still run.

8

Academic Festival, Event 15 [2024]

https://digitalcommons.sacredheart.edu/acadfest/2024/all/15



6

This will be managed in the software through appropriate error handling. This is

analogous to dividing by zero: the division is not flawed, the denominator is.

For gradient descent to be applicable to a multi-variable function, the function

also needs to be convex.

Definition 5. For a uni-variate function to be convex, the line segment connect-

ing two function’s points lays on or above its curve (it does not cross it) [6].

For a single variable function to be convex, its second derivative must exist

and be greater then or equal to zero. The Hessian Matrix is the multi-variable

analogue of computing the second derivative [6].

Definition 6. The Hessian matrix of a multi-variable function f(x1, x2, . . . , xn),

organizes all second partial derivatives into a matrix. It is a matrix with functions

as entries. In other words, it is meant to be evaluated at some point (a1, a2, . . . , an)

[8].

Hf =



∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

· · · ∂2f
∂x∂n

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

· · · ∂2f
∂y∂n

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2

· · · ∂2f
∂z∂n

...
...

...
. . .

...

∂2f
∂n∂x

∂2f
∂n∂y

∂2f
∂n∂z

· · · ∂2f
∂n∂n



9

Glowniak: How Artificial Intelligence Works: Using the Gradient Descent Alg

Published by DigitalCommons@SHU, 2024



7

For a multi-variable function to be convex, its Hessian matrix must be positive

semi-definite over the domain of the function [6]. This means all of the eigenvalues

must be non-negative and the matrix must be symmetric [7].

Definition 7. A matrix is symmetric if and only if A is n× n and A = AT .

AT is the transpose matrix. You can define AT by:
[
AT

]
ij
= [A]ji, meaning

the ijih element of AT is the jith element of A. This means the first column of

A will become the first row of AT , and the first row of A will become the first

column of AT . For our example, we can also note Clairault’s Theorem.

Theorem 3.2. Suppose that f(x, y) is defined near (a, b). If the function fxy and

fyx are continuous, then fyx = fxy

Thus, by Clairault’s theorem, the Hessian Matrix is symmetric as long as

all second order partial derivative are continuous. We now have to see if all

eigenvalues are non-negative. To find the eigenvalues, we have to solve the formula

det(Hf − (λ ·In)) = 0, where Hf is the Hessian matrix and I is the identity matrix

of the same size. Then, we calculate the determinant of that matrix, which we

10

Academic Festival, Event 15 [2024]

https://digitalcommons.sacredheart.edu/acadfest/2024/all/15



8

see in this sequence below [8].

Hf − (λ · In) =



∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

· · · ∂2f
∂x∂n

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

· · · ∂2f
∂y∂n

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2

· · · ∂2f
∂z∂n

...
...

...
. . .

...

∂2f
∂n∂x

∂2f
∂n∂y

∂2f
∂n∂z

· · · ∂2f
∂n∂n


−



λ 0 0 · · · 0

0 λ 0 · · · 0

0 0 λ · · · 0

...
...

...
. . .

...

0 0 0 · · · λ



=



∂2f
∂x2 − λ ∂2f

∂x∂y
∂2f
∂x∂z

· · · ∂2f
∂x∂n

∂2f
∂y∂x

∂2f
∂y2

− λ ∂2f
∂y∂z

· · · ∂2f
∂y∂n

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2

− λ · · · ∂2f
∂z∂n

...
...

...
. . .

...

∂2f
∂n∂x

∂2f
∂n∂y

∂2f
∂n∂z

· · · ∂2f
∂n∂n

− λ


We will demonstrate how to solve det(hf − λIn) = 0 in the 3-dimensional case.

Here, we have

det

∣∣∣∣∣∣∣∣∣∣∣∣

∂2f
∂x2 − λ ∂2f

∂x∂y
∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y2

− λ ∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2

− λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Below, we demonstrate the process of calculating the determinant using the first

column. Note that we may use any column or row in this process and will arrive

11

Glowniak: How Artificial Intelligence Works: Using the Gradient Descent Alg

Published by DigitalCommons@SHU, 2024



9

with the same answer.

(
∂2f

∂x2
− λ

) ∣∣∣∣∣∣∣∣
∂2f
∂y2

− λ ∂2f
∂y∂z

∂2f
∂z∂y

∂2f
∂z2

− λ

∣∣∣∣∣∣∣∣−
∂2f

∂y∂x

∣∣∣∣∣∣∣∣
∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂z∂y

∂2f
∂z2

− λ

∣∣∣∣∣∣∣∣+
∂2f

∂z∂x

∣∣∣∣∣∣∣∣
∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y2

− λ ∂2f
∂y∂z

∣∣∣∣∣∣∣∣ = 0

(
∂2f
∂x2 − λ

) [(
∂2f
∂y2

− λ
)(

∂2f
∂z2

− λ
)
−
(

∂2f
∂y∂z

)(
∂2f
∂z∂y

)]
−

∂2f
∂y∂x

[(
∂2f
∂x∂y

)(
∂2f
∂z2

− λ
)
−
(

∂2f
∂x∂z

)(
∂2f
∂y∂z

)]
+

∂2f
∂z∂x

[(
∂2f
∂x∂y

)(
∂2f
∂y∂z

)
−
(

∂2f
∂x∂z

)( ∂2f
∂y2

− λ
)]

= 0

We then can then simplify to solve for our eigenvalues, which will be our three

λ values. Note that the number of eigenvalues is determined by the dimension

of the matrix. When we solve for the eigenvalues, if they are all non-negative,

then that covers the first of the two parts of being positive semi-definite [7]. Since

the dimension of our matrix was n × n and it satisfies A = AT , the matrix is

symmetric, so this covers the second part of being positive semi-definite [7]. In

this case, our function will be convex. This process of finding the eigenvalues will

be the same for all matrices as long as they are n × n. If our function is both

differentiable and convex, then we are able to use the gradient descent algorithm

[6].

12

Academic Festival, Event 15 [2024]

https://digitalcommons.sacredheart.edu/acadfest/2024/all/15



10

3.2 Gradient Descent

We will be using gradient decent to help us find the local minimum of a function

that has multiple inputs [3]. For single variable functions, this is quite simple: we

take the derivative and set it equal to zero. However, when we add more variables,

finding the minimum gets more complex. In this case, we also have to consider a

multidimensional direction instead of just left and right. To do this, by Theorem

3.1, we have to use the negative gradient of the function [5]. We do this by simply

multiplying our vector of partial derivatives by a scalar of negative one.

To describe how gradient descent works, we will consider the single variable

case first. For single variable functions, the slope of the tangent line can be

positive, negative, zero, or undefined. For our purpose, we will just be looking at

the cases where the slope of the tangent line is positive or negative. If we happen

to pick a point where the slope is zero, we can stop there, and that point is our

local minima. If we choose a point that is undefined, we select another random

starting point. When the slope is positive at a point, if we want to approach the

minimum of the function, we will move slightly to the left of our starting point;

if it is negative, we will move to the right. We iterate the process of finding the

direction of the slope and moving the point in the corresponding direction [5].

Eventually, we will approach a local minimum of the function where the slope is

0.

13

Glowniak: How Artificial Intelligence Works: Using the Gradient Descent Alg

Published by DigitalCommons@SHU, 2024



11

For multi-variable functions, we will apply a similar process. We will start off

by picking some arbitrary point on the function. We will then take the negative

gradient of the function. The negative gradient of the function, determines the

direction to move towards a next point. Unlike the single variable function, we

can’t just move our point to the left or right. Instead, we will add the vector

that contains our arbitrary point to the vector that contains the negative gradient

of our function at that arbitrary point. This will give us a new point on the

function that is slightly closer to the nearest local minimum [5]. Using the same

two variable function example seen earlier on page 4 and an arbitrary starting

point (a, b), we get

−∇f(x, y) = −1

 ∂
∂x
(x2 + xy)

∂
∂y
(x2 + xy)

 = −1

2x+ y

x

 =

−2x− y

−x


This gives us the direction of steepest descent at a general point (x, y). We will

now plug in our point (a, b). This will give us a specific direction:

−∇f(a, b) =

−2a− b

−a


Next, we will add our point (a, b) to this directional value. This will give us a new

point on the function, that is closer to the local minimum.a
b

+

−2a− b

−a

 =

a+ (−2a− b)

−b+ (−a)



14

Academic Festival, Event 15 [2024]

https://digitalcommons.sacredheart.edu/acadfest/2024/all/15



12

We will repeat this process until our directional value is equal to the zero vector,0
0

. This will mean we have found a local minimum of the function. The local

minimum will be at the final point (a, b) at which the direction vector became the

zero vector.

4 Example of the Gradient Descent Algorithm

Let us consider an example where we want to read image files of hand written

numbers 0-9 and use the gradient descent algorithm to find out what ways to

manipulate the neural network so that the symbolic number in text is the same

as the number that was hand written [9]. Each number has hundreds of different

hand written versions. These different versions will be the training data. We

will run all of our training data through the network after each iteration of the

algorithm. We will use the gradient descent algorithm to help us minimize the

cost function, which is the goal for this algorithm. There is also an example of the

code in the appendix, which can be used for this application to create a neural

network.

15

Glowniak: How Artificial Intelligence Works: Using the Gradient Descent Alg

Published by DigitalCommons@SHU, 2024



13

4.1 How Does This Work?

The numbers 0-9 are hand written, and they are each put on a 28 by 28 grid

[9]. So there are 784 cells in total. Each square on the grid is called a neuron.

Each neuron is given a value from 0-1 based on how shaded the neuron is [9]. For

this example, we will be looking at one version of a hand written number.

Figure 1: Grid with Shadedness Values [10]

The 784 neurons each with a given value of shadedness are then put into a

vector and make up the first layer of the neural network. Each neuron from the

first layer is connected to each of an arbitrary amount of neurons in the next layer,

and so on for each layer after, until you get to the last layer, which is the output

layer [9]. This layer will have 10 neurons, one for each possible hand written

number. For this example, we will have the first layer consist of the 784 neurons,

16

Academic Festival, Event 15 [2024]

https://digitalcommons.sacredheart.edu/acadfest/2024/all/15



14

then the second and third layer will both have 16 neurons, and then the final

output layer will have 10 neurons [9].

Figure 2: Trained Neural Network [9]

In Figure 2, the network has produced a perfect result. It gave the value 1 to

the neuron associated with the number 4 and the value 0 to all other neurons. We

will use the function f(x⃗ ) = σ(x1w1 + x2w2 + x3w3 + ...+ xnwn + b) to get from

layer to layer [9]. This will give us the value for each neuron for every layer after

the first layer, since the values for each neuron in the first layer is taken directly

from the grid.

Here, xi are the variables representing the values at each neuron in the prior

layer, wi are the weights, and b is the bias. Each neuron will have a version of

this function associated with it, with different values for each weight and bias.

17

Glowniak: How Artificial Intelligence Works: Using the Gradient Descent Alg

Published by DigitalCommons@SHU, 2024



15

This means we will have 42 formulas to compute, since we have two layers of 16

and one layer of 10. To figure out what weights and biases to use in each of our

formulas, we first need to find out how many different weights and biases we have.

To find the amount of weights, we will compute the formula below where n = 4

is the number of layers in this network:

n−1∑
i=1

(Number of Neurons in layer i)(Number of Neurons in next layer)

=(784× 16) + (16× 16) + (16× 10)

=12, 544 + 256 + 160

=12, 960 weights

To find the number of biases, we will add how many neurons there are in each

layer except the input layer:

16 + 16 + 10 = 42 biases

We will then add the number of weights and the number of biases together to get

the total number of parameters:

12, 960 + 42 = 13, 002 parameters

The bias is just some constant that we add on to the end of our function. The

weights, wi, are how much of that specific variable we want to contribute to the

18

Academic Festival, Event 15 [2024]

https://digitalcommons.sacredheart.edu/acadfest/2024/all/15



16

function. This is why we have to change these weights for the network to run

more accurately. These weights determine how much of the prior neuron we want

for the neuron in the next layer. The sigma function returns a value between 0

and 1 and is shown below:

σ(x) =
1

1 + e−x

Theorem 4.1. For all x ∈ R, the sigma function will always be greater then zero

and less then one.

Proof. We know that e−x will always be greater then zero. This ensures that

1
1+e−x will always be positive. We also know that, since e−x is always greater then

zero, 1 + e−x is always greater then 1. This means 1
1+e−x will always be less then

one. Therefore:

0 <
1

1 + e−x
< 1

4.2 Applying The Cost Function

We start training the neural network by randomizing the weights and biases

for each function. As expected, when we run the program, it performs poorly, as

shown in Figure 3. The output gives us a combination of different values that are

associated with each neuron, instead of one output with the value of 1 and the

rest 0, as we saw with the trained network in Figure 2.

19

Glowniak: How Artificial Intelligence Works: Using the Gradient Descent Alg

Published by DigitalCommons@SHU, 2024



17

Figure 3: Untrained Neural Network [9]

We will fix this problem by using the cost function [9]. Once we get all ten

outputs from the formula, we subtract each predicted output value from its actual

output value. Then, we will square each difference and add them all together. For

the predicted output value, we use 1 for the neuron associated with the hand

written number we expected and 0 for all the other 9 values. For example, if 3

was the correct output for a handwritten number, the cost function would be as

shown below, where f(x)n represents the actual output value from each neuron in

the output layer:

c(x) = (f(x)0−0)2+(f(x)1−0)2+(f(x)2−0)2+(f(x)3 − 1)2+(f(x)4−0)2+(f(x)5−0)2+

(f(x)6 − 0)2 + (f(x)7 − 0)2 + (f(x)8 − 0)2 + (f(x)9 − 0)2

20

Academic Festival, Event 15 [2024]

https://digitalcommons.sacredheart.edu/acadfest/2024/all/15



18

When the cost c(x) is small, the program is more accurate; when it is large,

it is less effective. Our end goal is to get c(x) = 0. We will repeat the process

of running a new training image though our network, then computing the cost

function, for each different hand written number that we have in our training

data. We will then find the average, where n is the amount of handwritten images

in the training set and c(x)i is the cost of each input/output pair i from the

training data.

Average Cost =
c(x)1 + c(x)2 + c(x)3 + ...+ c(x)m

m

We want to try and find a way to minimize this cost function so the neural

network can run more accurately. We will do this by changing the parameters in

each function. [9].

4.3 Using Gradient Descent

To recap, we have 13,002 parameters and we are trying to find the best value

for these parameters so that we minimize the cost function. In a single variable

function, we can minimize a function by finding the local minimum with the first

derivative test. Recall that this is similar in multi-variable functions, except we

have to use the negative gradient:

∇f(x, y) → −∇f(x, y)

21

Glowniak: How Artificial Intelligence Works: Using the Gradient Descent Alg

Published by DigitalCommons@SHU, 2024



19

To use the gradient in this application, we will first set up a column vector with

all of our initial randomized parameter values in it.
−→
W will represent this column

vector and wi will represent the ith parameter value: [9].

−→
W =



w1

w2

...

w13002


Next, we will compute the gradient of the cost function, C, as a function of our

13002 weights and biases:

∇C(y1, y2, y3, ..., y13002) =



∂
∂y1

C(y1, y2, y3, ..., y13002)

∂
∂y2

C(y1, y2, y3, ..., y13002)

...

∂
∂y13002

C(y1, y2, y3, ..., y13002)


We will then plug in our parameters (w) into ∇C. The value we get will be

represented by ci:

∇C(
−→
W ) =



∂C
∂w1

(w1)

∂C
∂w2

(w2)

...

∂C
∂w13002

(w13002)


=



c1

c2

...

c13002



22

Academic Festival, Event 15 [2024]

https://digitalcommons.sacredheart.edu/acadfest/2024/all/15



20

Now, since we need the negative gradient, we will multiply the vector by the scalar

−1:

−∇C(
−→
W ) = −1



c1

c2

...

c13002


=



−c1

−c2

...

−c13002


We will then add the vectors

−→
W and −∇C(

−→
W ) together. This will give us new

parameters represented by ni,

w1

w2

...

w13002


+



−c1

−c2

...

−c13002


=



n1

n2

...

n13002


We will plug these new parameters into the functions in the neural network,

and run all of the training data though the neural network again using these new

parameter vales [9]. We will compute the value of the cost function after each

input from the training data set. After finding the cost from each input, we can

then compute the average cost and can compare this new average cost from the

new updated neural network to the average cost with the previous parameters.

By using gradient descent, the average cost should decrease from the first attempt

with random parameters. After seeing the new average cost, if the average cost

has not achieved a specified standard, then we will repeat the process: compute

23

Glowniak: How Artificial Intelligence Works: Using the Gradient Descent Alg

Published by DigitalCommons@SHU, 2024



21

the new negative gradient and add it to the current values of the parameters to

get the new, updated parameters to use for the network. This process will be

repeated until the average cost function is at the desired value for accuracy.

5 Conclusion

The gradient descent algorithm does have some flaws that are worth mention-

ing. Sometimes, a function may not meet the requirements needed to be able

to calculate the gradient. This means some alternative method would have to

be used to optimize the cost function and improve the efficiency of the neural

network. One way to do this is by using back propagation [9]. This is a differ-

ent algorithm that does not use the gradient that can be used to train a neural

network. Another flaw with gradient descent is that the processing time can be

high, particularly when working with high degree functions, as in our example.

This is why there are different variations of gradient descent including batch, mini

batch, and stochastic [3]. In our example, we used mini batch gradient descent.

This is because we updated our parameters after we ran through all the training

data, instead of after each input/output pair in our training data set. If we did

that, it would be considered stochastic gradient descent [4]. The gradient descent

algorithm is one very small but very important piece of what goes into creating a

machine learning system.

24

Academic Festival, Event 15 [2024]

https://digitalcommons.sacredheart.edu/acadfest/2024/all/15



22

References

[1] What is machine learning?. IBM. (n.d.). https://www.ibm.com/topics/

machine-learning

[2] What is Artificial Intelligence (AI)?. IBM. (n.d.-a). https://www.ibm.

com/topics/artificial-intelligence

[3] What is gradient descent?. IBM. (n.d.). https://www.ibm.com/topics/

gradient-descent

[4] Gradient descent in Machine Learning: A basic introduction. Built In. (n.d.).

https://builtin.com/data-science/gradient-descent

[5] Khan Academy. (n.d.). Gradient descent (article). Khan Academy.

https:// www.khanacademy.org/ math/multivariable-calculus/applications-

of- multivariable-derivatives/optimizing-multivariable-functions/a/what-is-

gradient-descent

[6] Kwiatkowski, R. (2023, October 11). Gradient descent algorithm a deep

dive. Medium. https://towardsdatascience.com/gradient-descent-algorithm-

a-deep-dive-cf04e8115f21

[7] https://www.cse.iitk.ac.in/users/rmittal/prev course/s14/notes/lec11.pdf.

(n.d.).

25

Glowniak: How Artificial Intelligence Works: Using the Gradient Descent Alg

Published by DigitalCommons@SHU, 2024



23

[8] Khan Academy. (n.d.-b). The hessian matrix multivariable calculus (ar-

ticle). Khan Academy. https://www.khanacademy.org/math/multivariable-

calculus/applications-of-multivariable-derivatives/ quadratic-approximations

/a/the-hessian

[9] YouTube. (2017). YouTube. Retrieved December 3, 2023, from

https://www.youtube.com/watch?v=IHZwWFHWa-w.

[10] But what is a neural network?.3Blue1Brown.(n.d.).https://www.3

blue1brown .com/lessons/neural-networks

[11] Stewart, J., Cleeg, D., &amp; Watson, S. (2020). Calculus. Cengage Learning.

[12] Chatgpt. (n.d.). https://chat.openai.com

26

Academic Festival, Event 15 [2024]

https://digitalcommons.sacredheart.edu/acadfest/2024/all/15



24

Appendix

Following is a software implementation of a neural network modeled off of

of the example detailed in the paper [12]. It consist of an input layer with 784

nodes, two interior layers with 16 nodes, and an output layer with 10 nodes. The

program is trained using the MNIST (Modified National Institute of Standards

and Technology) data set, which contains handwritten image files of the numbers

0-9. It is able to take in those files, as well as identify the hand written digits, and

classify them. This code will also asses the performance, quantifying its accuracy

with a metric labeled “Test Accuracy”.

27

Glowniak: How Artificial Intelligence Works: Using the Gradient Descent Alg

Published by DigitalCommons@SHU, 2024



25

28

Academic Festival, Event 15 [2024]

https://digitalcommons.sacredheart.edu/acadfest/2024/all/15



26

Figure 4: Example Code

29

Glowniak: How Artificial Intelligence Works: Using the Gradient Descent Alg

Published by DigitalCommons@SHU, 2024


	tmp.1713287025.pdf.qvTXB

