Multi-Regression Prediction of Metal Partition Coefficients under Various Physical/Chemical Conditions Design of Experiments As, Cr, Cu, Ni and Zn

Eid A. Alkhatib
Sacred Heart University

Danielle Grunzke

Trey Chabot

Follow this and additional works at: https://digitalcommons.sacredheart.edu/chem_fac

Part of the Chemistry Commons, and the Hydraulic Engineering Commons

Recommended Citation

This Peer-Reviewed Article is brought to you for free and open access by the Chemistry and Physics at DigitalCommons@SHU. It has been accepted for inclusion in Chemistry & Physics Faculty Publications by an authorized administrator of DigitalCommons@SHU. For more information, please contact ferribyp@sacredheart.edu, lysobeyb@sacredheart.edu.
Multi-Regression Prediction of Metal Partition Coefficients under Various Physical/Chemical Conditions “Design of Experiments As, Cr, Cu, Ni and Zn”

Alkhatib EA¹, Grunzke D² and Chabot T²

¹Department of Chemistry, Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825, USA
²Department of Biology, Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825, USA

Corresponding author: Eid A Alkhatib, Department of Chemistry, Sacred Heart University, 5151 Park Avenue, Fairfield, CT, USA, Tel: 203 365-7546; E-mail: alkhatebe@sacredheart.edu

Abstract

The behavior of metals in surface water is complex and their partition coefficients can be impacted by many factors. Organic matter (OM) content in sediments, pH and salinity, are factors that may influence speciation and partitioning of metals. The difficulty in describing the impacts and relationships is that these processes are interconnected with no dominant associations among all. In this study, the partitioning of five metals (As, Cr, Cu, Ni and Zn) under different levels of salinity, pH, and OM content were investigated. A series of factorial design experiments are evaluated in which three levels of OM are tested each time against five levels each of salinity and pH; the design of experiments was generated by the statistical software program MiniTab16®. All metals tested showed a trend of increasing K_d with the increase of OM 0.36% to 4.32%. Higher K_d values resulted after an increase in salinity 0-3%. However, within that lower range of salinity, a positive linear correlation between K_d and salinity was observed which is attributed to potential formation of insoluble metal species with the increase of salinity. Multiple regression equations with the variables pH, OM and salinity were generated to predict K_d of each metal. The study showed no interaction between salinity/OM and pH/OM for all five metals.

Keywords: Metal pollution; Stream water; Ligands

Introduction

Metal pollution continues to be a complex problem, which plagues many of the world’s river systems, estuaries, and coastal embayments. The mobility, fate and bioavailability of metals in surface water systems are directly related to their partitioning between suspended solids and water as well as the form of the metal itself and the other compounds within the environment. Roughly one percent of metal pollutants remain suspended within the water column; the residual metals settle on and are stored within the sediments, thus creating a sink [1]. High bottom shear stress often seen in fast flowing rivers or estuaries with large tidal currents can lead to a higher presence of metals in suspension. Metals present in sediments and on suspended solids is result of precipitation and/or adsorption to active sites on sediment particles. Processes in which metals are bound to solid matrices are referred to as sorption reactions; therefore, metals that are bound to solids are considered to be sorbed. The metal partition coefficient K_d (L/kg) is the ratio of sorbed metal concentration on the solid phase m (mg/kg) to the dissolved metal concentration at equilibrium C (mg/L).

\[K_d = \frac{m}{C} \quad \text{Eqn}(1) \]

The partition coefficients of metals can be influenced by many factors in varying degrees. Such factors include pH, organic matter content (OM) and salinity, degree of bottom sediment mixing and temperature variations. Additional complexity is imparted by the presence of solutes and particles in water as well as at the water/air and water/sediment interfaces. The difficulty in describing the impacts of these factors and their relationships are that these processes are interconnected with no dominant associations among all. The partitioning behavior of metals (K_d) has been previously evaluated by many researchers and their values were determined based on experimental and field measurements. Log K_d values for metal partitioning ranges between 2.1 to 6.9 for various metals in surface water [2,3], where higher Log K_d values indicate more metals are adsorbed on sediment.

Much of the work relating to metal partitioning has involved in situ measurements. Other work involved the use of well-defined models such as clay and iron, manganese and aluminum oxides [4-6]. Many of these studies investigated the partitioning under one or two conditions of pH and OM content but never at the same time. To our knowledge, no attempts have been made to correlate these factors or assess their impact on metal partitioning. Herein, we attempt to gain better understanding of the partitioning of five common metals (As, Cr, Cu, Ni and Zn) under different conditions of pH, salinity and OM. We maintain that this work will help to shed some light on the processes affecting metal mobility in aquatic and marine systems. Consequent results can be used in formulating pollutant transport models.

Factors affecting metal partitioning behavior

The pH in stream water can vary considerably across the water column within river channels [6]. However, pH levels are often dependent on dissolved organic carbon content. A low pH results in a higher solubility of metals thus creating competition between metals and hydronium ions for attachment sites on the functional groups. An increase in pH of the medium generally results in a higher K_d value,
whereas an increase in ionic strength resulted in a lower K_d value [7]. Solubility of metals increase under more acidic conditions (pH of 5 to pH of 3.3) [8].

Among sediment and suspended solids properties, OM content, whether as particulate organic matter (POM) or dissolved organic matter (DOM), plays an important role in metal speciation. Sources and distribution of OM varies considerably in surface waters and sediments. The OM content of sediments in a river dominated estuary range between 0.07% in silty sand sediments to 5.6% in muddy sediments [2,9]. They also showed that DOM concentrations significantly exceeded POM in the surface water samples.

Structural determination of OM can indicate the presence of chemical units including: phenolic, aliphatic-OH, carbonyl and carboxyl groups all of which may play a role in metal speciation [6,10]. Aside from acting as a proton acceptor, DOM can react with metals in solution through the formation of ionic or covalent bonds. The strength of this interaction depend on a variety of factors such as the number and nature of binding sites on the OM, the property of the metal, other environmental factors such as pH and the presence of competing ligands.

OM can be found in water in its free form or complexed with metals ions/other species; it also can be found in association with other solids such as clay. It is well known that OM form coatings on such mineral surfaces [10]. Metal complexes in water can take various forms depending on the availability of ligands, pH, the pE of the water and the increase of the ionic index of the metal (represented as Z^2/r, formal charge squared/radius). Metal-aquo complexes can exist where no other ligands other than water are available. In natural water, few inorganic species can act as ligands and form complexes with metals. These inorganic species may include carbonates, bicarbonates, chlorides or sulfates.

The ability of metals to react with OM is inversely related to ionic strength [10]. This can be attributed to competition for ligand sites from alkaline earth cations in saline water and the ability of anions to react with metals, thus inhibiting metal-humate reactions. Reactive particulate phases present in the water column include DOM, aluminosilicates (clays), sulfides and hydroxides of Fe, Al and Mn [11]. OM, including DOM, has been found to be the primary transport agent of metals in water. However, DOM and POM also serve as an energy source for microorganisms; this interaction can increase the mobility of metals by releasing adsorbed metals into the dissolved phase [12].

Metal toxicity

The toxicity of metals in sediments is well-known, however, regulatory agencies have not established a sediment standard for toxicity because toxicity has been found to be unrelated to concentration. The majorities of metal concentrations within New England fall under Tier 2 of the National Assessment of Sediment Conditions which states that impacts from sediment contaminants are likely to occur but are expected infrequently [13]. Data were collected and compared to existing toxicity test results to create an equilibrium partitioning method called the Effective Range Mean (ERM). ERM values are concentrations above which adverse effects are frequently observed [14].

Toxicity studies show that the concentrations of metals released during resuspension are not acutely toxic, although some chronic effects have been observed [6]. ERM values of As, Cr, Cu, Ni, Zn (the metals analyzed in this study) were 70, 370, 270, 51.6 and 410 mg/kg of dry weight, respectively. When conducting in-situ testing of bed sediments in New England, concentrations were measured up to 440, 407, 83, and 2015 mg/kg for Cr, Cu, Ni, Pb and Zn, respectively [15]. These concentrations are above the ERM values for Cr, Cu and Zn.

Methodology

Design of experiments

In a traditional experiment, each investigated factor is individually varied while all of the other factors are held constant. This method ignores possible synergistic effects (interactions) involving two or more factors; each experiment serves only one purpose, that is, to evaluate the impact of that given factor. Therefore, a factorial experiment was conducted in order to evaluate multiple factors at the same time. The experiment was designed in MiniTab® software determine if any significant interactions occurred between factors. For each As, Cr, Cu, Ni, and Zn, two factorial designs of experiments were generated by MiniTab®: pH/OM and Salinity/OM (Table 1). A total of 102 isotherm runs were conducted in the randomized order as dictated by MiniTab® software (Table 2).

<table>
<thead>
<tr>
<th>Factor</th>
<th>Factor value (Level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>3.0(1) 5.0(2) 7.2(3) 9.0(4) 10.5(5)</td>
</tr>
<tr>
<td>Salinity (%)</td>
<td>0.00(1) 0.5(2) 1.0(3) 2.0(4) 3.0(5)</td>
</tr>
<tr>
<td>Organic Matter Content (%)</td>
<td>0.36(1) 2.12(2) 4.32(3) - -</td>
</tr>
</tbody>
</table>

Table 1: Factors and levels for experimental design.

<table>
<thead>
<tr>
<th>Random Order</th>
<th>Run Order</th>
<th>Salinity (%)</th>
<th>OM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1</td>
<td>2</td>
<td>4.32</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>2</td>
<td>2.12</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0.5</td>
<td>2.12</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>3</td>
<td>2.12</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>4.32</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>3</td>
<td>0.36</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>0.5</td>
<td>4.32</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>0.5</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Table 2: Example design of experiment salinity/OM.
in a muffle furnace at 550°C in order to determine the OM% in each portion in accordance with procedures described in standard methods [16]. The resulting OM% measured in each bulk portion of sediments were 0.36%, 2.12% and 4.32%, respectively. These known amounts were then added to each sample in order to simulate the three levels of OM factor in the sediments. Cumulative frequency distribution curves were plotted as a function of grain size, which were used to determine the d50 and d10 values of the sediment used in this study.

Sediment isotherm studies

Isotherm samples were analyzed in the order generated by the Minitab16 software (Table 2). All samples bottles were previously cleaned and soaked in 1% nitric acid until start of analysis. “Instant Ocean” was used to prepare the needed salinity concentration in each bottle. For all isotherm runs, the types of water were categorized based on salinity as fresh (0%), brackish (0.5-2%) or sea water (3%). For the salinity/OM runs, the pH in all bottles was kept constant at pH 7.2. An exact amount of 0.2500 gram retrieved from the sediments with the proper amount of OM was then added to each bottle. For the pH/OM runs, the runs were divided into three categories of water: acidic (pH 3 and 5), neutral (pH 7.2) and basic (pH 10.5). These pH values coincide with the metal precipitating pH as calculated from their solubility products (Ksp). Using these data, the mass was calculated of the metal in mg/kg within the sediment (Table 3).

Two mg/L stock solutions of metal nitrates for Cr, Cu, Ni and Zn and As2O3 were then prepared. The selection of the 2 mg/L metal concentration is based on the average EMR values of 200 mg/kg for the metals tested in this study [15]. Fifteen runs were prepared in duplicate to measure total recoverable metals and dissolved metal concentrations for each of the factor/metal analyses in order to use for Kd calculations. The final volume of solution was maintained at 100 ml volume. Each sample was stirred for 48 hours to achieve a state of equilibrium and full partitioning of metals [2,17]. The same procedure salinity/OM was followed for the pH/OM runs. Trace metal quality 0.1 M HNO3 and 0.1 M NaOH were used to adjust for the needed pH of solution in each bottle. The change in pH after the addition of sediment was in the range between 0.1-0.25 pH units which we considered acceptable and within the scope of this study. Two blank samples were also prepared for each set of duplicates in order to maintain quality assurance.

Results

Impact of pH and OM on partition coefficient Kd

At the end of each pH run, Kd values generally increased when OM % increased. Kd values progressively increase from acidic to basic conditions. Arsenic showed no change of Kd values beyond pH of 9 (Figure 1). However, a sudden increase in Kd was observed Cr after pH of 8 (Figure 2) and in Cu, Ni, Zn after a pH of 9 (Figures 3-5). Metals adsorbent affinity to suspended solids follows the order: Ni > Cr > Zn > As > Cu. For As, Kd increased from 272 to 521 L/kg, for Cr from 84 to 301 L/kg, for Cu from 32 to 2688 L/kg, for Ni from 85 to 149 and for Zn from 127 to 973 L/kg (Table 4). ANOVA results in Table 6 determined that the pH/OM models showed significant

<table>
<thead>
<tr>
<th>Metal</th>
<th>Solubility Product of M. hydroxide</th>
<th>Precipitating pH as hydroxide</th>
<th>Metal First Hydrolysis pKh</th>
<th>Ionic index Z²/r</th>
<th>Covalent index X²/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>As(III)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14.8</td>
<td>2.7</td>
</tr>
<tr>
<td>Cr</td>
<td>6.8 x 10⁻⁶⁰</td>
<td>7.16</td>
<td>4.0, Cr³⁺</td>
<td>4.8</td>
<td>2.3</td>
</tr>
<tr>
<td>Cu</td>
<td>1.1 x 10⁻¹⁵</td>
<td>9.12</td>
<td>7.5</td>
<td>5.2</td>
<td>2.9</td>
</tr>
<tr>
<td>Ni</td>
<td>4.48 x 10⁻¹⁶</td>
<td>8.98</td>
<td>9.4</td>
<td>5.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Zn</td>
<td>3.0 x 10⁻¹⁷</td>
<td>8.59</td>
<td>9.6</td>
<td>5.3</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Table 3: Ionic/covalent indices, pKh, and Ksp, values of studied metals.
differences in K_d values (for all metals, $p<0.05$, df=101, f-values vary). For the OM factor, the p and F values showed significant impact of OM on K_d for As, Cr and Cu. However, OM was not significant on the K_d values of Ni and Zn (Ni: $p=0.159$, df=101, F=2.34; Zn: $p=0.105$, df=101, F=3.03). Within the multiple regressions, R^2 values for the pH/OM model for the five metals ranged between 92.1% and 99.4% (Table 6).

Figure 1: Partition Coefficient of As at various levels of pH.

Figure 2: Partition Coefficient of Cr at various levels of pH.

Figure 3: Partition Coefficient of Cu at various levels of pH.

Figure 4: Partition Coefficient of Ni at various levels of pH.

Figure 5: Partition Coefficient of Zn at various levels of pH.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type of Water</th>
<th>As</th>
<th>Cr</th>
<th>Cu</th>
<th>Ni</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>3</td>
<td>272.2</td>
<td>84.9</td>
<td>232.1</td>
<td>85.3</td>
<td>127.4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>435</td>
<td>139.7</td>
<td>530</td>
<td>100.9</td>
<td>361.3</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>435</td>
<td>139.7</td>
<td>530</td>
<td>100.9</td>
<td>361.3</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>521.2</td>
<td>301.5</td>
<td>2688.8</td>
<td>149.7</td>
<td>973.9</td>
</tr>
<tr>
<td></td>
<td>10.5</td>
<td>46.3</td>
<td>49.4</td>
<td>86.9</td>
<td>369.1</td>
<td>157.2</td>
</tr>
<tr>
<td>Salinity</td>
<td>0</td>
<td>46.3</td>
<td>49.4</td>
<td>86.9</td>
<td>369.1</td>
<td>157.2</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>76.1</td>
<td>111.8</td>
<td>188.3</td>
<td>479.9</td>
<td>236.4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>149.3</td>
<td>210.5</td>
<td>365.6</td>
<td>561.6</td>
<td>430.3</td>
</tr>
</tbody>
</table>

Table 4: Average K_d (L/kg) values of As, Cr, Cu, Ni and Zn under various conditions.
Impact of salinity and OM on partition coefficients K_d

The lowest values of K_d were all recorded in fresh water (40 L/kg) and the highest in seawater (560 L/kg) (Table 5). ANOVA results determined that the salinity/OM models showed significant differences in K_d values for all metals analyzed (p<0.05, df= 101, F-values vary). Within the salinity/OM model, the R^2 values ranged between 87.4% and 97.8% for the five metals tested (Table 7). The ANOVA table and the estimated effects coefficients generated by MiniTab 16 did not indicate any significant two way interactions between salinity/OM nor pH/OM (p values > 0.4, df= 101, F-values vary).

Discussion

pH/OM

The majority of metal partitioning generally occurs on clay minerals, Fe and Mn oxides/hydroxides, carbonates and humic acids. Due to the composition of the added sediment being the same for all runs, the sudden shift of K_d values exhibited in the experiment at the various pHs can be partially attributed to precipitation of metals. It is assumed that the precipitation of metals observed during K_d shifts were due to the concentration added to each sample (2 mg/L). When comparing the experimental results of the tested metals with those
previously obtained, the general trend is that the metal uptake increases with an increase in pH [7,19,20].

Other researchers [19,21] showed that adsorbent affinity follows the metal's first hydrolysis constant (K_h). For the metals tested in this study, Cr was found to have a $pK_{h}=4$ and Cu was found to have a $pK_{h}=8$ which supported the previous finding yet Zn and Ni deviated from them. When comparing the ionic and the covalent indices Z/r and X/r with the order of K_d values of the studied metals, .

Large changes (<6.5->8.2) in pH can occur in estuaries, as high pH seawater mixes with low pH riverine water. Given the fact that K_d values substantially increase at higher levels of pH it is likely that estuarine mixing acts as a sink for such metals before it is able to reach the open coastal area [22]. Meanwhile, recent evidence has shown that pH values in sandy aquifers may reach values of around 10 in the mixing zone between fresh groundwater and seawater [23]. If this were the case, this mixing zone may lead to the precipitation of Cr, Cu, Ni and Zn effectively removing them from solution and storing them in sandy coastal sediments.

Salinity/OM

In general, the calculated K_d values for the five metals (at pH 7.2) were considerably lower than that determined in the pH/OM runs at the same pH. Such a decrease in K_d values due to an increase in ionic strength (salinity) would indicate competition from ions for the adsorption sites on sediments. The sea salt used in the study would have positively charged sodium ions that could compete with the studied metals for these sites.

These values are considerably lower than the pH/OM model predicted, which indicate that salinity suppresses the adsorption of metals onto sediments leading to these lower K_d values. However, within this lower range, a positive linear correlation between K_d and salinity is still observed (Figures 6-10). Under this controlled isotherm study (oxic, pH 7.2, similar types of sediment except for OM %), the studied metal species will be mostly chlorides, sulfates and other potential insoluble metal species which can, in effect, increase K_d values. Salinity, may acts as an “iron curtain” for these metals before entering the open coastal zone and may play an influential role in reducing the toxic effects of high metal concentration in coastal and open ocean waters. As the suspension of OM increases, the K_d of each metal will increase as well. Organic matter is often in higher concentrations in estuarine areas, due to inputs from rivers, decomposition, and human influences.
Significant changes may occur at the discharge point of rivers in seawater, otherwise known as estuaries. Subsurface and surface estuaries exhibit gradual to steep gradients in salinity, both horizontally and vertically, making it very difficult to pinpoint spatial and temporal processes for metal cycling. This research is critical in determining how multiple factors can affect metal availability within an estuarine zone by shedding light on the role of salinity, pH and OM on K\(_d\) processes. Future work should examine factorial design of experiments as such with additional factors at different levels such as water oxidation potential, temperature and degree of agitation as well as the field verifications of the generated multiple regression equations already completed.

Acknowledgements

The authors would like to acknowledge Addus Hatim and Alghamdi Raed for setting up the isotherm studies and preparation for analysis on the ICP-AES. The authors would also like to thank Dr. John Rapaglia for his help writing the grant. This work was funded through an exploratory grant from the Connecticut Sea Grant.

References