## Document Type

Article

## Publication Date

2012

## Abstract

A labeling of a graph is a function from the vertices of the graph to some finite set. In 1996, Albertson and Collins defined distinguishing labelings of undirected graphs. Their definition easily extends to directed graphs. Let G be a directed graph associated to the k -block presentation of a Bernoulli scheme X . We determine the automorphism group of G , and thus the distinguishing labelings of G . A labeling of G defines a finite factor of X . We define demarcating labelings and prove that demarcating labelings define finitarily Markovian finite factors of X . We use the Bell numbers to find a lower bound for the number of finitarily Markovian finite factors of a Bernoulli scheme. We show that demarcating labelings of G are distinguishing.

## Recommended Citation

Lazowski, Andrew and Shea, Stephen M., "Finite Factors of Bernoulli Schemes and Distinguishing Labelings of Directed Graphs" (2012). *Mathematics Faculty Publications*. 10.

https://digitalcommons.sacredheart.edu/math_fac/10

## Comments

Originally published:

Lazowski, Andrew and Stephen M. Shea. "Finite Factors of Bernoulli Schemes and Distinguishing Labelings of Directed Graphs."

The Electronic Journal of Combinatorics,19 (2012), P1.