# A Distinguished Subgroup of Compact Abelian Groups

## Document Type

Peer-Reviewed Article

2022

## Abstract

Here “group” means additive abelian group. A compact group G contains δ" role="presentation" style="box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; text-align: left; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">δ–subgroups, that is, compact totally disconnected subgroups Δ" role="presentation" style="box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; text-align: left; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">Δ such that G/Δ" role="presentation" style="box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; text-align: left; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">G/Δ is a torus. The canonical subgroup Δ(G)" role="presentation" style="box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; text-align: left; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">Δ(G) of G that is the sum of all δ" role="presentation" style="box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; text-align: left; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">δ–subgroups of G turns out to have striking properties. Lewis, Loth and Mader obtained a comprehensive description of Δ(G)" role="presentation" style="box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; text-align: left; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">Δ(G) when considering only finite dimensional connected groups, but even for these, new and improved results are obtained here. For a compact group G, we prove the following: Δ(G)" role="presentation" style="box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; text-align: left; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">Δ(G) contains tor(G)" role="presentation" style="box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; text-align: left; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">tor(G), is a dense, zero-dimensional subgroup of G containing every closed totally disconnected subgroup of G, and G/Δ(G)" role="presentation" style="box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; text-align: left; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">G/Δ(G) is torsion-free and divisible; Δ(G)" role="presentation" style="box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; text-align: left; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">Δ(G) is a functorial subgroup of G, it determines G up to topological isomorphism, and it leads to a “canonical” resolution theorem for G. The subgroup Δ(G)" role="presentation" style="box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; text-align: left; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">Δ(G) appeared before in the literature as td(G)" role="presentation" style="box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; text-align: left; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">td(G) motivated by completely different considerations. We survey and extend earlier results. It is shown that td, as a functor, preserves proper exactness of short sequences of compact groups.

## DOI

10.3390/axioms11050200