Document Type

Peer-Reviewed Article

Publication Date

2022

Abstract

We investigate the predictability of payoffs from selling variance swaps on the S&P500, US 10-year treasuries, gold, and crude oil. In-sample analysis shows that structural breaks are an important feature when modeling payoffs, and hence the ex post variance risk premium. Out-of-sample tests, on the other hand, reveal that structural break models do not improve forecast performance relative to simpler linear (or state invariant) models. We show that a host of variables that had previously been shown to forecast excess returns for the four asset classes, contain predictive power for ex post realizations of the respective variance risk premia as well. We also find that models fit directly to payoffs perform as well or better than models that combine the current variance swap rate with a realized variance forecast. These novel findings have important implications for variance swap sellers, and investors seeking to include volatility as an asset in their portfolio.

Comments

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License. Open access publishing facilitated by The University of Melbourne, as part of the Wiley - The University of Melbourne agreement via the Council of Australian University Librarians.

First published online: 04 August 2022.

DOI

10.1002/fut.22371

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.