Document Type

Peer-Reviewed Article

Publication Date

2022

Abstract

Mapping radon (222Rn) distribution patterns in the coastal sea is a widely applied method for localizing and quantifying submarine groundwater discharge (SGD). While the literature reports a wide range of successful case studies, methodical problems that might occur in shallow wind-exposed coastal settings are generally neglected. This paper evaluates causes and effects that resulted in a failure of the radon approach at a distinct shallow wind-exposed location in the Baltic Sea. Based on a simple radon mass balance model, we discuss the effect of both wind speed and wind direction as causal for this failure. We show that at coastal settings, which are dominated by gentle submarine slopes and shallow waters, both parameters have severe impact on coastal radon distribution patterns, thus impeding their use for SGD investigation. In such cases, the radon approach needs necessarily to allow for the impact of wind speed and wind direction not only during but also prior to the field campaign.

Comments

Published: 17 September 2022.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License.

DOI

10.1007/s10661-022-10462-5

PubMed ID

36114873

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.