Document Type

Article

Publication Date

3-2007

Abstract

Background: Early recognition of acute myocardial infarction (AMI) symptoms and reduced time to treatment may reduce morbidity and mortality. People having AMI experience a constellation of symptoms, but the common constellations or clusters of symptoms have yet to be identified.
Objectives: To identify clusters of symptoms that represent AMI.
Methods: This was a secondary data analysis of nine descriptive, cross-sectional studies that included data from 1,073 people having AMI in the United States and England. Data were analyzed using latent class cluster analysis, an atheoretical method that uses only information contained in the data.
Results: Five distinct clusters of symptoms were identified. Age, race, and sex were statistically significant in predicting cluster membership. None of the symptom clusters described in this analysis included all of the symptoms that are considered typical. In one cluster, subjects had only a moderate to low probability of experiencing any of the symptoms analyzed.
Discussion: Symptoms of AMI occur in clusters, and these clusters vary among persons. None of the clusters identified in this study included all of the symptoms that are included typically as symptoms of AMI (chest discomfort, diaphoresis, shortness of breath, nausea, and lightheadedness). These AMI symptom clusters must be communicated clearly to the public in a way that will assist them in assessing their symptoms more efficiently and will guide their treatment-seeking behavior. Symptom clusters for AMI must also be communicated to the professional community in a way that will facilitate assessment and rapid intervention for AMI.

Comments

Paper posted is the author manuscript version.

Final published version:

Ryan, Catherine J. et. al. "Symptom Clusters in Acute Myocardial Infarction: A Secondary Data Analysis." Nursing Research 56.2 (2007): 72-81.

At the time of publication Kerry Milner was affiliated with Yale University.

DOI

10.1097/01.NNR.0000263968.01254.d6

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.